en-ca

No search term entered.

Please enter a search term to find results.

50 results found...
Sort By Dropdown Icon

Wood Design and Building Awards

We are pleased to open our Call for Entries and invite North American and International submissions to the 2025 Wood Design and Building Awards program celebrating excellence in wood architecture and construction.

Entries should showcase the use of wood products in any, or several, of their many forms and applications, demonstrating an understanding of the special properties of wood including strength, durability, beauty, and cost-effectiveness. To be eligible, projects must have been completed within the past three years and must be fully constructed by July 1, 2025.

Awards will be presented at the discretion of the jury in the following categories: Honor, Merit, and Citation. Winners will receive a custom wood trophy recognizing their achievement and will also:

  • Be announced in a media release and on social media
  • Receive a feature profile on the Wood Innovation Network
  • Be showcased in a dedicated video posted across various media platforms
  • Be featured in Wood Design & Building Magazine (digital)

 

Projects can be submitted in the following categories:

  • Non-residential
  • Residential
  • Adaptive Reuse, Additions, and Renovations
  • International Building
  • Other (Exterior Structures, Bridges etc.)

 

Plus, don’t miss our specialty awards:

Sponsored by WoodWorks
Sustainable Forestry Initiative (SFI)
Sansin
Real Cedar
Wood Preservation Canada (WPC)
Ontario region
British Columbia region
Prairie region

Entry Fees

Early Bird Entry Fees
(applicable until May 31, 2025)
Regular Entry Fees
First Entry – $150.00 USD
Subsequent Entries – $140.00 USD
First Entry – $175.00 USD
Subsequent Entries – $165.00 USD

Deadline to Submit: June 27, 2025, at midnight PST

 

Wood Decay and Repair

LEAKY BUILDINGS AND DECAYING WOOD – WHAT’S HAPPENING?

The news across North America seems to frequently contain stories about serious moisture failures in wood-frame buildings. Whether it’s Vancouver’s “leaky condo crisis” or the “EIFS disaster” in North Carolina, homeowners are struggling with wood decay wherever the other components of the building’s walls and roof aren’t properly protecting the wood structure from excessive moisture. Interestingly, leaks are also getting attention in steel and concrete high-rises, causing rust in steel studs and fasteners and degradation of gypsum wallboard.

Why are we suddenly finding so many failures in buildings, including in our tried-and-true wood construction? This is a frustrating problem for everyone in the building industry, because there are no easy answers. It’s convenient to blame unskilled or unethical practitioners in the building industry. Other occasional targets for blame include municipalities for developing zoning ordinances that conflict with performance issues; energy efficiency codes for making our building envelopes tighter; new and complicated materials in our building envelopes; the building occupants for not practising proper maintenance; or the wood, which some seem to feel has declined in quality. The bottom line: many people have opinions, but so far there is little firm technical data to answer these questions. Please see our Links page for some of the research institutions working in this area.

Buildings have probably always leaked, although it is only recently that moisture seems to be a problem. Some believe that the difference is that today’s buildings are less tolerant of those leaks; that perhaps the older buildings were able to dry out. Another theory is that today’s leaky buildings leak more than in the past, due to design errors, sloppy construction, lack of overhangs, etc.

Thankfully, many people working in the building industry have turned their attention towards better design and construction practice for moisture control. A number of “best practice guides” are listed in our Links section.

HOW CAN I TELL IF WOOD IS DECAYED?

If wood is badly decayed, this will be quite obvious. The wood will be soft and perhaps even be breakable by hand. Decayed wood breaks with a carrot-like snap versus the splintering of sound wood. Use the pick test to be sure.

MY WOOD IS STAINED – IS IT DECAY?

Probably not, if this is new lumber. There are many harmless sources of wood stains, including dirt, iron filings, or staining fungi that merely colour the wood without damaging it. Please see the fact sheet “Discolourations on wood products: Causes and Implications” for a thorough explanation including photos. If the discoloured wood is found in a leaky building under repair and may have been wet, perform the pick test to see if it is rotted – see our page on Assessing decay.

I HAVE DECAYED WOOD – WHAT SHOULD I DO?

Remove all decayed wood and additionally remove another two feet of sound wood all around the decayed section. Any sound wood that is left in place when decayed wood around it has been removed should be field treated with a penetrating preservative. Also field treat any wood that may continue to get wet after repairs. We recommend preservatives containing a diffusible low-toxicity fungicide such as sodium borate, and low-toxicity formulating agents which assist in penetrating dry wood, such as propylene glycol. By the time the cladding has been removed, the structure has been inspected and the decayed wood has been removed, the wood left in place will likely have dried too much for effective use of formulations without a penetration aid. Under conditions of high relative humidity, the propylene glycol may cause a short term increase in the moisture content at the wood surface. For more information, please see our page on Assessing decay.

IS KILN-DRIED LUMBER MORE RESISTANT TO DECAY THAN GREEN OR AIR-DRIED LUMBER?

One advantage of kiln-dried lumber is that any live fungi present in the green lumber will have been killed by the heat of the kiln; in other words, KD lumber is sterile after leaving the kiln. However, if it gets sufficiently wet afterwards, then it is at the same risk of decay as any other wood.

ARE COMPOSITE WOOD PRODUCTS MORE RESISTANT TO DECAY THAN SOLID LUMBER?

No. Composite products (glulam, OSB, laminated veneer lumber, etc.) have the same resistance to decay as the wood from which they were made. The adhesives used in composites do not affect decay resistance.

DO WE HAVE TERMITES IN CANADA?

Yes, in a few limited areas across the country and to a greater extent around Toronto, termite species causing damage to buildings are present. Although termites are a significant problem in parts of southern Ontario, overall they are only a mild concern in this country. They prefer warmer conditions and are a far greater problem in parts of the United States. In Canada we do not have the voracious Formosan subterranean termite causing so much damage in the southeastern US.

WHAT IS DRY ROT?

Contrary to popular usage, dry rot does not mean rot that can happen in dry wood, or wood that has rotted and dried out. Dry rot is a specific kind of fungus, although the term is very commonly misused to describe all wood rot. This is unfortunate, because it disassociates rot from moisture. Wood rot always requires moisture, and the key to wood durability is the control of moisture. Wood that rotted long ago and is now dry was moist at the time of the rot. The true dry rot fungus has the ability to tap into a water source and conduct water to what would otherwise be dry wood. However, it has to wet the wood before it can attack the wood. The true dry rot fungus is more likely to be found in buildings that contain brick or stone than in all-wood buildings.

HOW FAST DOES WOOD DECAY?

It’s impossible to say; there are so many variables that influence the process. In a laboratory, under ideal conditions for decay fungi, wood can rot quite quickly. However, in real life applications, the entire process is slower and unpredictable.

Wood Design: A Guide for Architects and Educators

This Guide is designed to help educators increase wood content in their already crowded curricula, exposing students to the unique challenges and opportunities of designing with advanced wood systems, within the context of the program and student performance criteria established, maintained, and evaluated by the Canadian Architectural Certification Board.

Canadian Wood Council releases new Environmental Product Declarations for 5 Canadian manufactured wood products

OTTAWA, ON, 1 APR 2025 – The Canadian Wood Council (CWC) is pleased to announce the release of five new Environmental Product Declarations (EPDs) for Canadian softwood lumber, oriented strand board (OSB), plywood, trusses, and prefabricated wood I-joists. These EPDs provide comprehensive, transparent environmental data on the potential impacts associated with the cradle-to-gate life cycle stages of these essential wood products.

Developed as regionalized, industry-wide business-to-business (B2B) Type III declarations, the EPDs comply with the highest international standards, including ISO 21930, ISO 14025, ISO 14040, ISO 14044, the governing product category rules, and ASTM General Program Instructions for Type III EPDs. This ensures credible, third-party verified environmental impact data, supporting designers, builders, and policymakers in making informed, sustainable material choices.

“The release of these new EPDs reinforces our commitment to transparency and sustainability in the wood products sector,” said Peter Moonen, National Sustainability Manager at the Canadian Wood Council. “By providing robust, science-based environmental information, we’re equipping the industry with the tools needed to demonstrate the environmental benefits of wood and support low-carbon construction.”

The EPDs are available for download from the Canadian Wood Council’s digital resource hub: www.cwc.ca

EPDLink
An Industry Average EPD for Canadian Pre-fabricated Wood I-JoistsView Resource
A Regionalized Industry Average EPD for Canadian Softwood LumberView Resource
A Regionalized Industry Average EPD for Canadian Oriented Strand BoardView Resource
An Industry Average EPD for Canadian Softwood PlywoodView Resource
A Regionalized Industry Average EPD for Canadian Wood TrussesView Resource

Environmental product declarations (EPDs) – Copy

EPD
Link
An Industry Average EPD for Canadian Pre-fabricated Wood I-Joists
A Regionalized Industry Average EPD for Canadian Softwood Lumber
A Regionalized Industry Average EPD for Canadian Oriented Strand Board
An Industry Average EPD for Canadian Softwood Plywood
A Regionalized Industry Average EPD for Canadian Wood Trusses

Stakeholders within the building design and construction community are increasingly being asked to include information in their decision-making processes that take into consideration potential environmental impacts. These stakeholders and interested parties expect unbiased product information that is consistent with current best practices and based on objective scientific analysis. In the future, building product purchasing decisions will likely require the type of environmental information provided by environmental product declarations (EPDs). In addition, green building rating systems, including LEED®, Green Globes™ and BREEAM®, recognize the value of EPDs for the assessment of potential environmental impacts of building products.

EPDs are concise, standardized, and third-party verified reports that describe the environmental performance of a product or a service. EPDs are able to identify and quantify the potential environmental impacts of a product or service throughout the various stages of its life cycle (resource extraction or harvest, processing, manufacturing, transportation, use, and end-of-life). EPDs, also known as Type III environmental product declarations, provide quantified environmental data using predetermined parameters that are based on internationally standardized approaches. EPDs for building products can help architects, designers, specifiers, and other purchasers better understand a product’s potential environmental impacts and sustainability attributes.

An EPD is a disclosure by a company or industry to make public the environmental data related to one or more of its products. EPDs are intended to help purchasers better understand a product’s environmental attributes in order for specifiers to make more informed decisions selecting products. The function of EPDs are somewhat analogous to nutrition labels on food packaging; their purpose is to clearly communicate, to the user, environmental data about products in a standardized format.

EPDs are information carriers that are intended to be a simple and user-friendly mechanism to disclose potential environmental impact information about a product within the marketplace. EPDs do not rank products or compare products to baselines or benchmarks. An EPD does not indicate whether or not certain environmental performance criteria have been met and does not address social and economic impacts of construction products.

Data reported in an EPD is collected using life cycle assessment (LCA), an internationally standardized scientific methodology. LCAs involve compiling an inventory of relevant energy and material inputs and environmental releases, and evaluating their potential impacts. It is also possible for EPDs to convey additional environmental information about a product that is outside the scope of LCA.

EPDs are primarily intended for business-to-business communication, although they can also be used for business-to-consumer communication. EPDs are developed based on the results of a life cycle assessment (LCA) study and must be compliant with the relevant product category rules (PCR), which are developed by a registered program operator. The PCR establishes the specific rules, requirements and guidelines for conducting an LCA and developing an EPD for one or more product categories.

The North American wood products industry has developed several industry wide EPDs, applicable to all the wood product manufacturers located across North America. These industry wide EPDs have obtained third-party verification from the Underwriters Laboratories Environment (ULE), an independent certification body. North American wood product EPDs provide industry average data for the following environmental metrics:

  • Global warming potential;
  • Acidification potential;
  • Eutrophication potential;
  • Ozone depletion potential;
  • Smog potential;
  • Primary energy consumption;
  • Material resources consumption; and
  • Non-hazardous waste generation.

Industry wide EPDs for wood products are business-to-business EPDs, covering a cradle-to-gate scope; from raw material harvest until the finished product is ready to leave the manufacturing facility. Due to the multitude of uses for wood products, the potential environmental impacts related to the delivery of the product to the customer, the use of the product, and the eventual end-of-life processes are excluded from the analysis.

For further information, refer to the following resources:

Design for Deconstruction in Light Wood Frame

The Guidebook of Design for deconstruction in Light Wood Frame presents a methodology for altering typical light wood frame assemblies so that they can be easily disassembled and the materials of the building can be reused. The province of BC and, more broadly, Canada, has relatively little infrastructure for recycling wood waste. In Vancouver alone, the construction, renovation, and demolition (CRD) sector produces about 1.7 million tonnes of waste per year.1 Of this, an estimated 30-60% is wood waste which is largely discarded in landfills. What little wood that is recycled is generally incinerated for waste-to-energy conversion or shredded for biomass. Deconstructing wood buildings and reusing the salvaged wood for new construction would extend the lifespan of the wood, add value and longevity to a valuable material, reduce GHG emissions and reduce the amount of new resources required for new construction projects. Despite the benefit of re-using wood, there are some barriers to deconstructing typical light wood frame buildings, including the use of irreversible fasteners, adhesives, spray foams, and liquid applied sealants. The presence of toxic materials such as asbestos and lead are also of concern when deconstructing a building. While use of toxic materials is now prohibited in new constructions the use of nails (particularly when applied with nail guns) and adhesives makes deconstruction very difficult if not impossible in some cases.2 This guidebook proposes a design for deconstruction system that addresses these remaining issues with simple modifications of typical light wood frame construction practices, allowing for both simple construction, solid performance, and easy deconstruction.

Wood Design & Building Magazine, vol 24, issue 96

Buildings that stand the test of time aren’t just durable—they are cherished. When we invest in quality materials and good design, we can create buildings that people connect with. As you’ll discover in this issue, many heavy timber warehouses and factories constructed in the early 1900s remain a vital part of our cities today—not because they still serve their original purpose, but because people valued them enough to adapt, restore, and reuse them, giving them a new purpose.

Fast forward a hundred years and resilient structures include many new forms. Modular construction, for example, has seen significant growth in recent years as this form of construction has transformed from a building method once considered inferior, into a method relied upon to deliver high-performance durable buildings.

Alongside our features on historic timber buildings and modular construction, this issue also highlights notable projects and emerging trends shaping today’s built environment. From innovative mass timber structures to forward-thinking design solutions, we explore how thoughtful craftsmanship and smart engineering continue to define the spaces we build—and the ones we keep.

Updates to Hem-Fir (N) design values for dimension lumber

The Canadian Wood Council is proud to share the National Lumber Grades Authority (NLGA) latest updates to the design values for Hem-Fir (N) dimension lumber, effective April 1, 2025. These changes result from a routine reassessment of strength and stiffness properties, ensuring Hem-Fir (N) continues to meet structural performance expectations.

Key Points:

  • Minimal Practical Impact: The updated design values should not result in significant changes to the practical use of Hem-Fir (N) in most applications, maintaining continuity for builders, designers, and engineers.
  • Consistent Performance: Hem-Fir (N) remains a trusted and dependable choice for residential and commercial construction, with values that closely align with previous standards.
  • No Impact on Existing Construction: Structures built under previous building codes remain compliant.
  • The updates are reflected in the NLGA Standard Grading Rules for Canadian Lumber, CSA O86 – Engineering Design in Wood, and the National Design Specification® (NDS®) Supplement for Wood Construction.

For additional details, including specific design value changes, affected lumber grades, and implementation considerations, please refer to the Frequently Asked Questions (FAQ) document for Canada or the USA.

Download publication by Region:

Cunard Street: Live / Work / Grow Building

The new home for FBM is constructed on a 50 ft by 100 ft brown field site in the north end of Halifax; close to the city’s Commons. A one-storey transmission shop was previously located on the site, making the soil and bedrock remediation necessary to allow for the current development. Site plan The Commons, in the centre of the city, forms a green swath of space for recreation, sports fields, and well-being. Surrounding the site is a mix of occupancies, including social housing for seniors, small scale businesses, day cares, bars and restaurants, military uses at the Halifax Armory for the Princess Louise Fusiliers and Cadet units, Urban agriculture, and several architecture firms that have recently chosen this area for their new offices. The design of the new Cunard St Live/ Work/ Grow building embodies the values of FBM Architecture – a place for ‘people driven design’. This is expressed through the firm’s interest in contributing to the community, through the materials, and the work culture that the building supports.

Canadian Wood Council Applauds Strategic Federal Investments in B.C.’s Forest Industry

OTTAWA, March 25, 2025 – The Canadian Wood Council welcomes the Government of Canada’s announcement of over $20 million in funding for 67 projects that support the growth and resilience of British Columbia’s forest sector.

While the announcement includes several strategic large-scale investments in advanced wood manufacturing, a significant strength of this initiative lies in the breadth of smaller-scale, high-impact projects that are collectively transforming communities across the province. From feasibility studies for Indigenous-led forest product businesses to the development of next-generation building technologies, these projects are advancing wood innovation, supporting workforce development, and expanding the role of wood in low-carbon construction.

Administered through Natural Resources Canada, this Green Construction through Wood (GCWood) funding supports a wide range of initiatives—from fire-testing mass timber connections and refining modelling guides for timber structures, to developing bioenergy solutions and value-added wood processing in Indigenous communities.

This announcement underscores the importance of decentralized innovation, where targeted investments in communities and research institutions alike contribute to a stronger, more sustainable forest sector. The Canadian Wood Council applauds this commitment and looks forward to continuing its work with design professionals, governments, and industry partners to support the expanded use of wood in the province through its market-leading WoodWorks program.

View the announcement from Natural Resources Canada here:
https://www.canada.ca/en/natural-resources-canada/news/2025/03/canada-announces-support-for-british-columbias-forest-sector.html https://www.canada.ca/en/natural-resources-canada/news/2025/03/canada-announces-support-for-british-columbias-forest-sector.html

Canadian Wood Council Applauds Federal-Provincial Investment in Advanced Wood Construction in Quebec

OTTAWA, March 24, 2025 – The Canadian Wood Council (CWC) applauds the joint investment of over $8.5 million by Natural Resources Canada and Quebec’s Ministry of Natural Resources and Forests in four innovative wood construction-related projects across Quebec. These strategic initiatives will help strengthen the manufacturing sector and accelerate the adoption of low-carbon, Canadian-made wood products and technologies in residential construction and other critical community infrastructure.

By supporting advanced wood construction methods—including modular mass timber housing, artificial intelligence to modernize engineered wood manufacturing, and the design of tall wood residential buildings—this investment reinforces the essential role of wood in delivering high-performance, low-carbon construction solutions. From a 20-unit modular development and a 21-storey design study to the cultural leadership of the Cree First Nation of Waswanipi in forest-to-form construction, these projects demonstrate how innovative wood technologies can meet urgent housing needs in a sustainable way, through scalable and repeatable, locally driven approaches.

The Canadian Wood Council commends both levels of government for recognizing the critical role of Canada’s forest sector in delivering smart, climate-friendly building systems. These investments demonstrate how advanced wood technologies can contribute to addressing urgent housing needs while helping to lower the carbon footprint of the built environment.

Design and construction professionals in Quebec can access free technical support related to wood design and construction through the market-leading resource program, Cecobois. The CWC is pleased to provide support further expand the use of wood in residential, commercial, and institutional buildings throughout the rest of Canada through its WoodWorks program.

View the announcement from Natural Resources Canada here:
https://www.canada.ca/en/natural-resources-canada/news/2025/03/canada-and-quebec-invest-in-sustainable-wood-construction.html

Canadian Wood Council Applauds Federal Investment in Nova Scotia’s Mass Timber Industry

OTTAWA, ON, 21 MAR 2025 – The Canadian Wood Council (CWC) applauds the Government of Canada’s strategic investment in Nova Scotia’s mass timber sector, recognizing its role in advancing low-carbon construction, economic growth, and job creation.

This funding will accelerate the fabrication of high-value mass timber components from undervalued eastern spruce, unlocking new opportunities for Canada’s forest sector and expanding the use of advanced wood materials in construction. By supporting the production of Cross-Laminated Timber (CLT) and Glulam in Nova Scotia, this investment strengthens supply chains, creates skilled jobs in the region, and enhances the competitiveness of low-carbon building solutions across Canada.

Mass timber is increasingly recognized as a proven strategy for the rapid construction of much-needed housing and other critical infrastructure. Its benefits extend across multi-residential and commercial buildings, offering a scalable, efficient, and sustainable approach to modern construction.

Canada’s forest sector is well-positioned to meet the growing domestic demand for sustainable construction materials. This investment will drive innovation in mass timber manufacturing, creating economic opportunities in Nova Scotia while enhancing Canada’s capacity to produce and supply mass timber products nationwide. Expanding domestic production advances low-carbon building solutions and strengthens Canada’s wood manufacturing sector.

The CWC applauds this commitment to fostering a resilient and competitive mass timber industry in Atlantic Canada. Through our WoodWorks technical program, we look forward to supporting construction professionals with the knowledge and resources they need to integrate mass timber into more projects across the country.

View the announcement from Natural Resources Canada here: https://www.canada.ca/en/natural-resources-canada/news/2025/03/canada-invests-in-nova-scotias-local-mass-timber-industry.html

Canadian Wood Council’s 2024 Annual Report Now Available
Rapport annuel 2024 du CCB
2024 CWC Annual Report
Mass Timber Course of Construction Insurance Project Questionnaire + Checklist
Wood Design & Building Magazine, vol 24, issue 97
Exploring the Role of Mass Timber – Industrial Buildings and Warehouse Construction
2025 Wood Design & Building Awards Call for Submissions Now Open
KITCHENER, ON — The Canadian Wood Council (CWC) was proud to participate in a significant announcement by the Government of Ontario yesterday, where the Honourable Mike...
The Canadian Wood Council is pleased to share it’s 2024 Annual Report, offering a clear view of the progress, resilience, and impact achieved over the past year. In his...
Nous avons le plaisir de vous présenter le Rapport annuel 2024 du Conseil canadien du bois (CCB), qui met en lumière les progrès, la résilience et les retombées...
We are pleased to share the Canadian Wood Council’s 2024 Annual Report, offering a clear view of the progress, resilience, and impact achieved over the past year. In his...
Who can use this document:Contractors, Developers, Owners and Design Teams. How to use this document:This document is an editable form that teams can fill out to aid in...
ARCHITECT: Faction Architecture Inc. STRUCTURAL ENGINEER: RJC Engineers DEVELOPER: Faction Projects Inc. CONSTRUCTION MANAGER: Faction Construction BUILDING CODE CONSULTANT:...
In wood construction, success is rarely improvised. It’s the earned result of early design coordination, clearly communicated expectations, and a shared commitment to...
The Engineering Complex at UNB is comprised of five buildings, all constructed at different times, and physically connected as one. The first building constructed in 1901...
This report serves as a practical guide for small to medium-sized enterprises, start-ups, and builders looking to transition into offsite construction. With a specific focus...
Mass timber construction offers speed, sustainability, and design flexibility – but it also requires a higher level of coordination than traditional structural systems. Its...
The emerging use of mass timber in industrial buildings presents promising opportunities that are shaping the future of construction in this sector. As a sustainable and...
OTTAWA, ON, 23 APR 2025 – The Canadian Wood Council is accepting submissions for the 2025 Wood Design & Building Awards. Now in its 41st year, this annual program...

Get Access to Our Resources

Stay in the loop and don’t miss a thing!

1
2
3

Get Access to Our Resources

Stay in the loop and don’t miss a thing!

What’s Your Occupation?

Help us personalize the content for you.

What Interests You the Most?

Help us personalize the content for you.

Filters

Post Type Icon
Post Type
Persona Icon
Persona
Language Icon
Language
Tags Icon
Tags
Mass Timber Plus Icon Environment Plus Icon Safety Plus Icon Durability Plus Icon Design Systems Plus Icon Budget Plus Icon Construction Management Plus Icon Fire Resistance Plus Icon Tall Buildings Plus Icon Short Buildings Plus Icon
Date Icon
Date
Line Separator