en-ca

Searching for: pressure treated wood

Searching results for “pressure treated wood”
23 results found...
Sort By Dropdown Icon

Pressure Treated Wood

Preservative-treated wood is typically pressure-treated, where the chemicals are driven a short distance into the wood using a special vessel that combines pressure and vacuum. Although deep penetration is highly desirable, the impermeable nature of dead wood cells makes it extremely difficult to achieve anything more than a thin shell of treated wood. Key results of the pressure-treating process are the amount of preservative impregnated into the wood (called retention), and the depth of penetration. These characteristics of treatment are specified in results-based standards. Greater preservative penetration can be achieved by incising – a process that punches small slits into the wood. This is often needed for large or difficult to treat material to meet results-based penetration standards.

Pressure treatment processes vary depending on the type of wood being treated and the preservative being used. In general, wood is first conditioned to remove excess water from the wood. It is then placed inside a pressure vessel and a vacuum is pulled to remove air from inside the wood cells. After this, the preservative is added and pressure applied to force the preservative into the wood. Finally, the pressure is released and a final vacuum applied to remove and reuse excess preservative. After treatment some preservative systems, such as CCA, require an additional fixation step to ensure that the preservative is fully reacted with the wood.

Information on the different types of preservatives used can be found under Durability by Treatment

Non-Pressure Treated Wood

Non-Pressure Treated Wood

For most treated wood, preservatives are applied in special facilities using pressure. However, sometimes this isn’t possible, or the need for treated wood was not apparent until after construction or building occupancy. In those cases, preservatives can be applied using methods that do not involve pressure vessels.

Some of these treatments can only be done by licensed applicators. When using wood preservatives, as with all pesticides, the label requirements of the Pest Management Regulatory Agency (in Canada) or the EPA (in the USA) must be followed.

Five categories of non-pressure treatments

Treatment during Engineered Wood Product Manufacture

Some engineered wood panel products, such as plywood and laminated veneer lumber (LVL) are able to be treated after manufacture with preservative solutions, whereas thin strand based products (OSB, OSL) and small particulate and fibre-based panels (particleboard, MDF) are not. The preservatives must be added to the wood elements before they are bonded together, either as a spray on, mist or powder.

Products such as OSB are manufactured from small, thin strands of wood. Powdered preservatives can be mixed in with the strands and resins during the blending process just prior to mat forming and pressing. Zinc borate is commonly used in this application. By adding preservatives to the manufacturing process it’s possible to obtain uniform treatment throughout the thickness of the product. 

In North America, plywood is normally protected against decay and termites by pressure treatment processes. However, in other parts of the world insecticides are often formulated with adhesives to protect plywood against termites.

Surface pre-treatment

This is anticipatory preservative treatment applied by dip, spray or brush application to all of the accessible surfaces of some wood products during the construction process. The intent is to provide a shell of protection to vulnerable wood products, components or systems in their finished form. One example would be spraying house framing with borates for resistance to drywood termites and wood boring beetles in some cases. Such treatments may also be applied to lumber, plywood and OSB to provide additional protection against mould growth.

Sub-surface pre-treatment (Depot treatment)

This is preservative treatment applied at discrete locations, not to the entire piece, during the manufacturing process or during construction. The intent is to pro-actively provide protection only to the parts of the wood product, component or systems that might be exposed to conditions conducive to decay. One example would be placing borate rods into holes drilled in the exposed ends of glulam beams projecting beyond a roof line.

Supplementary treatment

This is preservative treatment applied at discrete locations to treated wood in service to compensate for either incomplete initial penetration of the cross section, or depletion of preservative effectiveness over time. The intent is to boost the protection in previously-treated wood, or to address areas exposed by necessary on-site cutting of treated wood products. One example would be the application of a ready-made bandage to utility poles that have suffered depletion of the original preservative loading. Another example is field-cut material for preserved wood foundations.

Remedial treatment

This is preservative treatment applied to residual sound wood in products, components or systems where decay or insect attack is known to have begun. The intent is to kill existing fungi or insects and/or prevent decay or insects from spreading beyond the existing damage. One example would be roller or spray application of a borate/glycol formulation on sound wood left in place adjacent to decayed framing (which should be cut out and replaced with pressure-treated wood).

Formats of non-pressure treatments

Non-pressure treatments come in three different forms: solids, liquids/pastes, and fumigants. Unlike pressure-treatment preservatives, which rely on pressure for good penetration, these rely on the mobility of the active ingredients to penetrate deep enough in wood to be effective. The active ingredients can move in the wood via capillarity or can diffuse in water and/or air within the wood. This mobility not only allows the active ingredients to move into the wood but can also allow them to move out under certain conditions. This means the conditions within and around the structure must be understood so the loss of preservative and consequent loss of protection can be minimized. Borates, fluorides and copper compounds are particularly suitable for use as solids, liquids and pastes. Methyl isothiocyanate (and its precursors), methyl bromide, and sulfuryl fluoride are the only widely used fumigant treatments. Methyl bromide was phased out, except for very limited uses, in 2005.

Solids

The major advantage of solids in these applications is that they maximize the amount of water-soluble material that can be placed into a drilled hole, due to the high percentage of active ingredients contained in commercially-available rods. The major disadvantage is the requirement for sufficient moisture and the time needed for the rod to dissolve. The earliest and best-known solid preservative system is the fused borate rod, originally developed in the 1970s for supplementary and remedial treatment of railroad ties. These have since been used successfully on utility poles, timbers, millwork (window joinery), and a variety of other wood products. A mixture of borates is fused into glass at extremely high temperatures, poured into a mould and allowed to set. Placed into holes in the wood, the borate dissolves in any water contained in the wood and diffuses throughout the moist region. Mass flow of moisture along the grain may speed up distribution of the borate. Secondary biocides such as copper can be added to borate rods to supplement the efficacy of the borates against decay and insects. While all preservatives should be treated with respect, many users feel more comfortable dealing with borate and copper/borate rods because of their low toxicity and low potential for entry into the body.

Fluorides are also currently available in a rod form. The rod is produced by compressing sodium fluoride and binders together, or by encapsulation in a water-permeable tubing. Fluorides diffuse more rapidly than borates in water and may also move in the vapour phase as hydrofluoric acid.

Zinc borate (ZB) is a powder used to protect strand-based products. It is blended with the resins and stands during the manufacturing processes for OSB and other strand based products becomes well dispersed throughout. Zinc borate has very low water solubility and can protect strand based products from decay and termites.

Liquids, Pastes and Gels

Liquids can be sprayed or brushed on to surfaces, or poured or pumped into drilled holes. Pastes are most often brushed or troweled on, then covered with polyethylene-backed kraft paper creating a “bandage.” Pastes can also be packed into drilled holes or incorporated into ready-to-use bandages for wrapping around poles. Borates and fluorides are commonly used in these formulations because they diffuse very rapidly in wet wood. Copper moves more slowly because it reacts with the wood. For dryer wood, glycols can be added to borate formulations to improve penetration. Over-the-counter wood preservatives available for brush application are based on either copper naphthenate (a green colour), or zinc naphthenate (clear). Both are dissolved in mineral spirits-type solvents. In addition, water-borne borate/glycol formulations can also be purchased over-the-counter as roll-on liquids.

Fumigants

These treatments are typically delivered as liquids or solids; they change to a gas upon exposure to air, and become mobile in the wood as a gas. Some solid and liquid fumigants are packed in permeable capsules or aluminum tubes. Methyl isothiocyanate (MIT), and chemicals that produce this compound as they break down, are used for utility poles and timbers. This compound adsorbs to wood and can provide several years of residual protection. Sulfuryl fluoride and methyl bromide are used for tent fumigation of houses to eradicate drywood termites.

Repairing Cuts in the Treated Shell

Pressure-treated wood in the ground can undergo significant internal decay within just six or seven years if cuts, bolt holes and notches are not brush treated with a field-cut preservative. Common over-the-counter agents for this purpose include copper naphthenate (a green colour), or zinc naphthenate (clear). Both are dissolved in mineral spirits-type solvents. Other brush-on agents include water-borne borate/glycol formulations which can also be purchased at building supply outlets.

Forgetting this critical step will almost certainly shorten the life span of the product and will void any warranties on the product. Although brush-on application of wood preservatives isn’t nearly as effective as pressure-treatment, the field-cut preservatives are usually applied to the end grain, whereby the solution will soak in further than if applied to the side grain.

In FPInnovations’ field tests of these preservatives, copper naphthenate performed best. Zinc naphthenate (2% zinc), which is colourless, was not as effective but may be suitable for above-ground applications where the decay hazard is lower and if the dark green colour of copper naphthenate is undesirable. Note that the dark green of the copper-based product will fade after a few years.

WPC Specification Guide for Non Residential Pressure Treated Wood Products Web

Specification Guide for Non-Residential Pressure Treated Wood Products

Surface Pre-treatment

Liquid application: Dip diffusion treatment of green (wet) lumber

Dip-diffusion treatment involves immersion of freshly cut lumber, still wet from the tree, in a concentrated solution of preservative. The preservative may be thickened to increase the amount of solution retained on the surface. The lumber is stacked, covered and stored for periods of weeks to allow the preservative to diffuse deep into the wood. In New Zealand, framing lumber has been treated with borates using this process since the 1950s. Dip-diffusion works well with wood species that are mostly sapwood or have wet heartwood. The ratio of the surface area to the volume, the amount of solution retained on the surface, and the solubility of the preservative limit the amount of chemical that can be delivered deep into the wood using this process. For example, a boric acid loading of 0.5% by weight of the wood, sufficient to prevent decay and beetle attack, can be applied to nominal 2 inch lumber using this process. However, a boric acid loading of 2.0% by weight, sufficient to prevent attack by Formosan termites, cannot be achieved without multiple dips and months of storage.

Liquid application: Spray treatment of framing

Since this type of treatment is typically done during the construction phase, it can be applied to the whole structure or to selected parts of the structure that are anticipated to be at risk from fungal decay or insect attack. Solids and fumigants are not appropriate for these applications, and the only widely used formulations are based on borates. Because the wood is dry at this stage, and because borates require moisture for diffusion, it helps if such treatments are formulated to improve penetration in dry wood. This is usually achieved by adding glycols. Nevertheless, the initial preservative penetration cannot be expected to be as good as that provided by a pressure treatment process. Spray applications of borate are becoming popular in certain regions of the USA as part of termite management systems. Typically, whole house superficial treatments are used to protect against drywood termites and wood boring beetles. This replaces regular fumigation. For subterranean termite protection, concentrated glycol borates may be applied to the bottom two feet of all wood in contact with the slab or, for crawl space construction, two feet up and inwards from the foundation. This replaces a soil barrier.

Brush Application

Brush applications for surface pre-treatment are basically limited to field-cut preservatives for pressure treated wood and homeowner treatment of structures, presumably with limited life expectancy. Copper naphthenate works well above ground or in ground contact, but its dark green colour (fading to brown after a year or so) is not very appealing. Zinc naphthenate is colourless and can be tinted to suit, but does not work as well in ground contact. Borates are typically used for field cuts on interior sill plates. In addition, borate/glycol mixtures are available for domestic use.

CSA 080 Wood Preservation

The National Building Code of Canada (NBC) contains requirements regarding the use of treated wood in buildings and the CSA O80 Series of standards is referenced in the NBC and in provincial building codes for the specification of preservative treatment of a broad range of wood products used in different applications. The first edition of CSA O80 was published in 1954, with eleven subsequent revisions and updates to the standard, with the most recent edition published in 2015.

The manufacture and application of wood preservatives are governed by the CSA O80 Series of standards. These consensus-based standards indicate the wood species that may be treated, the allowable preservatives and the retention and penetration of preservative in the wood that must be achieved for the use category or application. The CSA O80 Series of standards also specifies requirements related to the fire retardance of wood through chemical treatment using both pressure and thermal impregnation of wood. The overarching subjects covered in the CSA O80 Series of standards also include materials and their analysis, pressure and thermal impregnation procedures, and fabrication and installation.

Canadian standards for wood preservation are based on the American Wood Protection Association (AWPA) standards, modified for Canadian conditions. Only wood preservatives registered by the Canadian Pest Management Regulatory Agency are listed.

The required preservative penetrations and loadings (retentions) vary according to the exposure conditions a product is likely to encounter during its service life. Each type of preservative has distinct advantages and the preservative used should be determined by the end use of the material.

Processing and treating requirements in the CSA O80 Series are designed to assess the exposure conditions which pressure treated wood will be subjected to during the service life of a product. The level of protection required is determined by hazard exposure (e.g., climatic conditions, direct ground contact or exposure to salt water), the expectations of the installed product (e.g., level of structural integrity throughout the service life) and the potential costs of repair or replacement over the life cycle.

The technical requirements of CSA O80 are organized in the Use Category System (UCS). The UCS is designed to facilitate selection of the appropriate wood species, preservative, penetration, and retention (loading) by the specifier and user of treated wood by more accurately matching the species, preservative, penetration, and retention for typical moisture conditions and wood biodeterioration agents to the intended end use.

The CSA O80.1 Standard specifies four Use Categories (UC) for treated wood used in construction:

  • UC1 covers treated wood used in dry interior construction;
  • UC2 covers treated wood and wood-based materials used in dry interior construction that are not in contact with the ground but can be exposed to dampness;
  • UC3 covers treated wood used in exterior construction that is not in ground contact;
    • UC3.1 covers exterior, above ground construction with coated wood products and rapid run off of water;
    • UC3.2 covers exterior, above ground construction with uncoated wood products or poor run off of water;
  • UC4 covers treated wood used in exterior construction that is in ground or freshwater contact;
    • UC4.1 covers non-critical components;
    • UC4.2 covers critical structural components or components that are difficult to replace;
  • UC5A covers treated wood used in Coastal waters including; brackish water, salt water and adjacent mud zone.

This CSA O80 Series of standards consists of five standards, as follows:

  1. CSA O80.0 General requirements for wood preservation; specifies requirements and provides information applicable to the entire series of standards.
  2. CSA O80.1 Specification of treated wood; is intended to help specifiers and users of treated wood products identify appropriate requirements for preservatives for various wood products and end use environments.
  3. CSA O80.2 Processing and treatment; specifies minimum requirements and process limitations for treating wood products.
  4. CSA O80.3 Preservative formulations; specifies requirements for preservatives not referenced elsewhere.
  5. CSA O80.4 has been withdrawn.
  6. CSA O80.5 CCA Additives — Utility Poles; specifies requirements for preparation and use of CCA preservative/additive combinations for utility poles permitted by CSA O80.1 and CSA O80.2.

 

For further information, refer to the following resources:

www.durable-wood.com

CSA O80 Wood preservation

Wood Preservation Canada

National Building Code of Canada

Pest Management Regulatory Agency

American Wood Protection Association

ISO 21887 Durability of wood and wood-based products Use classes

Treatment during engineered wood product manufacture

Some engineered wood panel products, such as plywood and laminated veneer lumber (LVL) are able to be treated after manufacture with preservative solutions, whereas thin strand based products (OSB, OSL) and small particulate and fibre-based panels (particleboard, MDF) are not. The preservatives must be added to the wood elements before they are bonded together, either as a spray on, mist or powder.

Products such as OSB are manufactured from small, thin strands of wood. Powdered preservatives can be mixed in with the strands and resins during the blending process just prior to mat forming and pressing. Zinc borate is commonly used in this application. By adding preservatives to the manufacturing process it’s possible to obtain uniform treatment throughout the thickness of the product.

In North America, plywood is normally protected against decay and termites by pressure treatment processes. However, in other parts of the world insecticides are often formulated with adhesives to protect plywood against termites. 

Environmental Issues

Safe Handling

Using common sense and standard safety equipment (personal protection and wood-working machinery) applies when working with any building products. Gloves, dust masks and goggles are appropriate for use with all woodworking. Here are a few key points specific to treated wood:

  • Pressure-treated wood is not a pesticide, and it is not a hazardous product. In most municipalities, you may dispose of treated wood by ordinary garbage collection. However, you should check with your local regulations.
  • Never burn treated wood because toxic chemicals may be produced as part of the smoke and ashes.
  • If preservatives or sawdust accumulate on clothes, launder before reuse. Wash your work clothes separately from other household clothing.
  • Treated wood used for patios, decks and walkways should be free of surface preservative residues.
  • Treated wood should not be used for compost heaps where free organic acids produced early in the composting process can remove the fixed chemicals. It is, however, safe to use for growing vegetables in raised soil beds. If, after reading this, you are still concerned, place a layer of plastic sheet between the soil and the treated wood wall.
  • Treated wood should not be cleaned with harsh reducing agents since these can also remove the fixed chemicals.

Environmental Concerns

All wood preservatives used in the U.S. and Canada are registered and regularly re-examined for safety by the U.S. Environmental Protection Agency and Health Canada’s Pest Management and Regulatory Agency, respectively. 

Wood preservation is not an exact science, due to the biological – and therefore variable and unpredictable – nature of both wood and the organisms that destroy it. Wood scientists are trying to understand more about how wood decays to ensure that durability is achieved through smart design and construction choices where possible, so that as a society we can be selective in our use of preservatives.

Comparing treated wood to alternative products

A series of life cycle assessments has been completed comparing preservative treated wood to alternative products. In most cases, the treated wood products had lower environmental impacts.

Environmental Issues Environmental Issues

 

 

 

 

 

 

Click for consumer safety information on handling treated wood (Canada).

Read More

Finishing Quick Tips

For new wood, remember:

  • The wood must be dry.  Drying time depends on a few factors.
    • Ideally the wood should be kiln-dried (stamped “S-DRY”, “KD” or “KDAT”, see glossary of “dry lumber”). If the wood is surface wet from rain or washing, let dry 1 to 2 days.
    • If the wood is wet through (green lumber, pressure-treated lumber not stamped “KDAT”), 2 days of drying is acceptable if using a “damp-friendly” coating.  Otherwise:
    • The wood must be allowed to thoroughly dry to a stable outdoor moisture content; about 15% in most climates. The characteristics of the wood and the climatic characteristics of its environment are so variable that drying time is hard to predict.  The common way to determine wood moisture content is with a moisture meter. (Note: specific correction factors should be applied if a moisture meter is used on preservative-treated wood.)
  • Weather conditions during coating application can affect the coating’s drying, appearance and performance. Follow the coating manufacturer’s recommendation.
  • Coat as soon as possible after the wood has been planed or sanded.  Apply finishes within two weeks of exposure, or sooner if possible (Surface Preparation for Fresh Wood).  Otherwise, follow the instructions for aged (weathered) wood below.
  • If the wood is very smooth, lightly sand it to roughen the surface with 100-120 grit sand paper.  This greatly improves the coating bond.  Brush free of dirt and sawdust.
  • If painting the wood, apply a primer coat. Use an extractive-blocking primer, if needed (for example, with western red cedar or redwood) over the entire piece, or a knot sealing primer if needed (Special Considerations).  When dry, apply two coats of top quality paint. For stains and water repellents, follow the  instructions on the can regarding number of coats.
  • Carefully follow the instructions on the can regarding best environmental conditions for coating, application recommendations, safety precautions and clean-up.

For aged (weathered) wood, remember:

  • For wood that has been previously coated, please read about refinishing.
  • Clean the wood and remove discolourations such as iron stain, if desired.  Expose fresh wood because coatings perform best when applied to freshly exposed wood surfaces.  Allow to dry. See Surface Preparation for Aged Wood.
  • Brush free of dirt and sawdust, and proceed with application of the coating.

When maintaining or refinishing, remember:

  • Avoid the need to refinish by keeping an eye on the coating and adding a fresh coat before the previous coat wears away, cracks or peels.  This may be as frequent as every six months with water repellents, every year or two with stains, and every few years with paint (See Maintenance).
  • Spot-treat worn areas to extend the period between full applications of a fresh coat.  Sand away any failed coating and any weathered wood, and re-apply the coating (See Maintenance).
  • If the coating has failed on a large scale, or the coating is getting too thick for refinishing, or if a change in type of coating is desired, completely strip away the old coating – please read about refinishing.

Choosing and Applying Exterior Wood Coatings

Choosing a coating depends on what appearance is desired and what level of maintenance would be tolerable.  For many people, the basic choice is paint versus stain. The trade-off is often between maintenance frequency and appearance.

For many people, additional criteria include VOC emissions, ease of clean up, and cost.  See our Links page for web sites and books with detailed information on choosing and applying wood finishes.  Read our About exterior wood coatings page for an understanding of the differences between paints and stains, pigmented versus clear coatings, and so forth.

Because exterior wood shrinks and swells with moisture changes, the coating needs to be flexible. Flexibility varies by product – some products may be clearly identified as suitably flexible for wood’s dimensional changes.  Water-borne coatings are generally more flexible than alkyds. Coatings containing urethanes tend to be more flexible than coatings containing acrylics.

For factory finishing with transparent coatings, with special considerations for UV and mildew control, please see our fact sheet Factory Finishing with Transparent Coatings: Requirements for Maximizing Longevity.

Special Considerations

If a coating is desired for a wear surface such as a deck or stairs, consult carefully with the coating manufacturer to choose the right product for this demanding application.  All coatings will be challenged by foot traffic and increased exposure to weather in a horizontal application.  High traffic routes will show wear faster than other areas. Paints and other thick film-formers may fail quickly in this situation, and a time-consuming refinishing process will be necessary each time the coating fails.  Hence many people will find a stain the more convenient choice for decks and stairs.

Knots may require a bit of extra care as some wood extractives or resin may leach out or bleed. Extractive bleeding can cause discolouration, but this can usually be prevented by applying special stain-blocking primers. In some species, especially the pines and Douglas-fir, knots and pitch pockets contain resin. The resin can bleed and may discolour the finish, leave hard beads of resin on the surface, or may otherwise interfere with the coating bond. The best way to prevent this is to purchase kiln-dried wood where the resin should be set (hardened and fixed in place). If painting is desired, choose higher grades of lumber as these will have fewer knots, and choose kiln-dried lumber if using a resinous species.

If siding or sidewall shingles are to be painted, the US Forest Products Laboratory (USFPL) recommends they be backprimed.  This application of a coating to the back side will plug the wood pores, preventing extractive bleed without blocking water vapour transmission and also preventing liquid water uptake.

If possible, round out any sharp corners for best coating adhesion on these edges – for example, a square-edged stair tread will show coating degradation quickly, but bullnosed stair tread edges will retain a coating much longer.  This is because a coating applied to a corner tends to pull away from the corner, leaving a much thinner layer there than elsewhere.

Surface Preparation

Durability of any finish is highly dependent on proper application, which includes good preparation of the surface to be coated.  Specific details on surface preparation depend on what condition the wood is to begin with – read on for tips that apply to various scenarios.

Surface Preparation for Fresh Wood

While fresh, clean wood can be coated without surface preparation, a light sanding with 100 grit sandpaper (and dust removal) can double the service life of some water-based coatings. For best results apply a coating to a fresh wood surface as soon as possible after planing or sanding.  If exposed to rain and sun for more than two weeks, adhesion of coatings will not be as good. The surface must also be free of anything that will interfere with coating adhesion, such as dirt, damaged wood fibres and moisture. Grade stamps on wood should also be removed before applying a semitransparent stain, preferably by sanding.

Cleaning

If there are discolourations caused by dirt, iron stains or other discolourations on the wood surface, cleaning may be desired. It is always preferable to achieve cleaning with sanding when possible.  Another safe way to clean wood without damaging the surface is to simply use a garden hose, with or without a pressure nozzle.  Use pressure-washing only with extreme care as it can damage wood, especially low-density species such as western red cedar.  The pressure should be kept at a minimum, and never hold the nozzle in one place for a long time.  If necessary, use a little bit of dish detergent, and lightly scrub (not with steel wool, as this will leave iron stains) in the direction of the grain for any stubborn discolourations.  For discolourations that resist soap-and-water cleaning, chemical cleaners will be effective.  The chemicals in commercial wood cleaners can be caustic soda (sodium hydroxide), sodium metasilicate, oxalic acid, citric acid, phosphoric acid, borax or some mixture. Wood cleaners containing caustic soda at a 1% –  2% solution will remove nearly all discolourations with the least damage to wood. Some acid cleaners are especially effective for removing extractive stains and iron stain.  Bleach is commonly used for cleaning wood, but we do not recommend this, since a poor wood substrate will usually be left behind for subsequent coating.  Resin (pine pitch) can be generally removed with mineral spirits. Please note that all acidic or alkaline chemicals need to be thoroughly rinsed off before coating. Chemicals can be toxic, corrosive and harmful, so handle all these chemicals with care and follow all manufacturer’s instructions.

Surface Preparation for Aged Wood

Wood coatings need a fresh surface or the coating simply won’t last. The longer wood has been allowed to weather, the poorer the coating adhesion. If a fresh surface is allowed to weather or age outdoors for more than two weeks, coating adhesion will deteriorate. This is mainly due to wood damage from sunlight. Weathered wood surfaces usually have a higher acidity, higher contact angle, and lower surface energy.

Restoring an aged wood surface is necessary before applying a coating.  The damaged (aged/weathered) wood fibres must be removed, exposing fresh wood.  Also, any discolourations will typically be removed along with the damaged fibres, so the process of restoration is simultaneously a cleaning process.  Wood restoration can be achieved with sanding or with chemicals, but sanding is always preferable when possible.  Sanding can be done by hand or machine until the true wood colour shows. Then brush off the sawdust and apply the coating immediately.  For many jobs, a chemical method will be far easier.  Read the label of each product to identify the active components.  In general, caustic soda (sodium hydroxide) is the best chemical choice for both cleaning and restoration.  It effectively removes weathered wood fibres from the surface and leaves the surface at a suitable pH for coating.  Oxalic acid is also commonly identified as a wood restorer, however, it is only effective at discolouration removal and does not remove the damaged wood fibres from the surface – in other words, it is not restoring the wood to be an appropriate substrate for a coating.  However, oxalic acid can be used to return the original wood colour after the use of sodium hydroxide.  Sodium hydroxide will slightly darken the wood, and, if this is undesirable, simply rinse the wood with oxalic acid after restoration with sodium hydroxide.  Please note that all these chemicals must be handled with care and all manufacturer’s instructions should be followed, as the chemicals can be toxic, corrosive and harmful. Where the wood is close to plants, wet down the leaves with a garden hose prior to and after chemical use. Wood surfaces should also be thoroughly rinsed with water before coating.

Maintenance

Maintaining a coating means giving it a wash occasionally, watching for signs that the coating is losing integrity, and applying a fresh coat before full failure sets in.  If a coating is reapplied before the last coat has failed, the stripping process may not be necessary. It’s time to apply another coat when paint has worn down to the primer, or if the coating colour has undesirably faded, or if the surface of water-repellent treated wood no longer beads water.  Then wash or brush off dirt and apply a new coat.  Any areas showing failure (the coating has lifted from the surface or cracked, or bare wood is showing) can be spot-treated.  Remove any loose pieces of paint and use sandpaper to feather the edges of adjacent sound paint so the transition won’t be evident through the new paint layer.  Also sand away any weathered wood.  For large scale failure, refinishing will be necessary. For all coating systems, there is a limit to the number of coats a surface can support. When the coating gets too thick, refinishing will also become necessary.

Refinishing

Refinishing a coating means stripping off the old coating and starting over.  This is necessary when large areas of the coating have failed, or the coating is getting too thick for refinishing, or if a decision is made to change the type of coating.  A coating has failed when it no longer adheres to the wood surface.  If the coating has bubbled, cracked, or peeled, it must be removed.  If the coating has simply faded but otherwise appears to still be well-bonded, it may not need to be removed.  When a change of coating type is desired, the new coating may be incompatible with the old coating – to ensure a good bond for the new coating, strip off the old one.  Remove coatings by sanding or with a chemical product.  Sanding has advantages over chemical stripping in restoring the fresh wood surface, but even if sanding is done by machine, it is still very labour-intensive for large painted areas typical of outdoor projects.  Sandblasting is not recommended except for large timbers and logs, as it will pit the wood and is hard to keep away from elements like window frames.  Powerwashing will only remove loose paint, leaving behind paint that is still adhered.  So, a chemical approach is generally regarded as the most effective and least labour-intensive way to strip a coating.  Sodium hydroxide at a 6% –  8% dilution is the recommended chemical for stripping – and offers the additional benefits of cleaning discolourations and restoring the wood surface at the same time.  Products containing sodium hydroxide are corrosive and should be prevented from touching skin. Follow manufacturers’ instructions.  There are also other chemical products for stripping coatings in the market.  After stripping with chemicals, always give the wood a final rinse with water.  Many projects will still require some light sanding around stubborn stains or heavily damaged wood.

Assessing and Restoration of Decay

Sometimes it happens – wood in service suffers from decay. How can you identify decayed wood and what are the recommended actions to take? First, be sure you actually have decay. The wood may only be harmlessly discoloured, for any number of reasons. See the publication in the side bar for help if your wood is stained but you’re not sure why.

If wood is badly decayed, this will be quite obvious. The wood will be softer than normal and perhaps even be breakable by hand. Decayed wood often has a colour change, either darker or lighter than normal, although this could be due to weathering or could just be a stain. The wood may display an unexpected cracking pattern, or may look stringy- this is a sign of fairly advanced decay. If fungal growth is visible on the surface, the wood has quite likely already suffered strength loss even if this isn’t visibly obvious. However, do not rely on visual cues alone.

Wood can appear stained and yet be sound, or can appear normal yet have already suffered significant strength loss due to decay. Some researchers or engineers use the pick test to determine if the wood is sound. They insert the point of a knife at a shallow angle to the surface and attempt to lever up a thin splinter. If the wood splinters with longer fragments, it is likely sound. If instead it breaks or crumbles in small pieces over the blade, it could be decayed. Decayed wood breaks somewhat like a carrot snapping in half, at one section, versus the splintering along the length of sound wood. See our Biodeterioration page to learn more about the science of decay.

Assessing and Restoration of Decay

If you are still unsure whether or not you have decayed wood, you are advised to seek help from a wood restoration specialist.

How urgent is a decay problem? By the time you notice decay, the wood typically has lost substantial strength already. In cases where the decayed wood is supporting load you are strongly advised to contact a structural engineer or other appropriate expert to more thoroughly assess the problem and proceed with a repair.

A small, localized and non-critical case of decay may be a do-it-yourself project under some conditions. All decayed wood should be removed. If you are unable to remove the entire affected piece, remove the decayed portion plus an additional portion of adjacent wood beyond the visible decay. A rule of thumb is to remove an additional two feet (60 cm) of adjacent wood from each side, although this will of course depend on the extent of the decay. The removal of adjacent wood is because the fungus may have extended deep into the wood beyond the area of decay and may be ready to cause more damage in adjacent sound wood.

Then apply a field treatment to the remaining adjacent wood, such as a borate solution in roll-on, rod or paste form, before replacing the removed pieces. Use treated or naturally durable wood to replace the removed pieces. If damaged wood must be left in place, a penetrating epoxy can sometimes be applied as a stabilizer. In those cases and for best results in all wood repair projects we recommend you consult with a wood restoration expert.

Indoors, it is extremely important that you find the source(s) of the moisture that allowed wood decay fungi to grow. If you had wood decay in a location that is supposed to be dry, then you have a leak or a condensation problem that needs fixing to prevent any future problems. Look for primary and secondary sources of moisture. A short term leak may have allowed decay to start, for example, and condensation may be sustaining the decay. If the location of the decayed wood was outdoors or in a wet location, you need to use treated or naturally durable wood.

If you have building moisture problems on a large scale, you need to hire some experts and be prepared for a potentially substantial remediation project. Seek out a qualified consultant, who will begin by using a variety of techniques and tools to determine the extent of the damage. This will include a visual examination for staining, bulging, cracking, presence of water, and warping. Subsurface moisture penetration will be tested with probes and/or thermography.

In a building with wood structural members, the consultant will probably use a moisture meter to sample wetness of structural wood components in several locations. Based on the results of this investigation, the consultant will recommend a course of action for repair and future prevention. Canada Mortgage and Housing Corporation has developed a guide for building envelope rehabilitation, in two volumes: one for owners, one for consultants.

More Information
Click Here for a fact sheet Discolourations on wood products: Causes and Implications for help if your wood is stained and you’re not sure why.
Click here for more information on biodeterioration and the science of decay.
Click here for more information on remedial treatments.
Click here for links on decay assessment and other durability topics

Durability Solutions

Wood has been a valuable and effective structural material since the earliest days of human civilisation. With normal good practice, wood can deliver many years of reliable service. But, like other building materials, wood can suffer as a result of mistakes made in storage, design, construction, and maintenance practices.

How can you ensure long life of a wood building? The best approach is always to remember that wood meant for dry application must stay dry. Start out by buying dry wood, store it carefully to keep it dry, design the building to protect the wood elements, keep wood dry during construction, and practice good maintenance of the building. This approach is called durability by design.

If wood won’t stay dry, you have two choices in approach. Because wet wood is at risk of decay, you must select a product with decay resistance. One choice is to choose a naturally durable species like Western red cedar. This approach is called durability by nature.

Most of our construction lumber is not naturally durable, but we can make it decay resistant by treating it with a preservative. Preservative-treated lumber is more reliably resistant to decay than naturally durable lumber. This approach is called durability by treated wood.

The level of attention you give to durability issues during the course of design depends on your decay hazard. In other words, the more that your circumstances put wood at risk, the more care you must take in protecting against  decay. In outdoor applications, for example, any wood in contact with the ground is at high risk of decay and should be pressure-treated with a preservative. For wood that is exposed to the weather but not in direct ground contact, the degree of hazard correlates with climate. The fungi that harm wood generally grow best in moist environments with warm temperatures. Researchers have developed hazard zones in North America using mean monthly temperature and number of rainy days. This map in particular shows the rainfall hazard and applies to exposed uses of wood such as decks, shingles and fence boards. A high degree of hazard would indicate a need to carefully choose a wood species or preservative treatment for maximum service life. In the future, building codes may provide more specific directives as a function of decay hazard. For wood not exposed to weather, such as framing lumber, this map is only moderately useful. This is because the environmental conditions in the wall may be substantially different than those outdoors.

Pressure Treated Wood
Non-Pressure Treated Wood
WPC Specification Guide for Non Residential Pressure Treated Wood Products Web
Specification Guide for Non-Residential Pressure Treated Wood Products
Surface Pre-treatment
CSA 080 Wood Preservation
Treatment during engineered wood product manufacture
Environmental Issues
Finishing Quick Tips
Choosing and Applying Exterior Wood Coatings
Assessing and Restoration of Decay
Durability Solutions
Preservative-treated wood is typically pressure-treated, where the chemicals are driven a short distance into the wood using a special vessel that combines pressure and...
Non-Pressure Treated Wood For most treated wood, preservatives are applied in special facilities using pressure. However, sometimes this isn’t possible, or the need for...
Liquid application: Dip diffusion treatment of green (wet) lumber Dip-diffusion treatment involves immersion of freshly cut lumber, still wet from the tree, in a concentrated...
The National Building Code of Canada (NBC) contains requirements regarding the use of treated wood in buildings and the CSA O80 Series of standards is referenced in the NBC...
Some engineered wood panel products, such as plywood and laminated veneer lumber (LVL) are able to be treated after manufacture with preservative solutions, whereas thin...
Safe Handling Using common sense and standard safety equipment (personal protection and wood-working machinery) applies when working with any building products. Gloves, dust...
For new wood, remember: The wood must be dry.  Drying time depends on a few factors. Ideally the wood should be kiln-dried (stamped “S-DRY”, “KD” or “KDAT”, see...
Choosing a coating depends on what appearance is desired and what level of maintenance would be tolerable.  For many people, the basic choice is paint versus stain. The...
Sometimes it happens – wood in service suffers from decay. How can you identify decayed wood and what are the recommended actions to take? First, be sure you actually have...
Wood has been a valuable and effective structural material since the earliest days of human civilisation. With normal good practice, wood can deliver many years of reliable...

Get Access to Our Resources

Stay in the loop and don’t miss a thing!

1
2
3

Get Access to Our Resources

Stay in the loop and don’t miss a thing!

What’s Your Occupation?

Help us personalize the content for you.

What Interests You the Most?

Help us personalize the content for you.

Filters

Post Type Icon
Post Type
Persona Icon
Persona
Language Icon
Language
Tags Icon
Tags
Mass Timber Plus Icon Environment Plus Icon Safety Plus Icon Durability Plus Icon Design Systems Plus Icon Budget Plus Icon Construction Management Plus Icon Fire Resistance Plus Icon Tall Buildings Plus Icon Short Buildings Plus Icon
Date Icon
Date
Line Separator