

Simplified and Sustainable Acoustic Solutions for High-Performance Mass Timber Buildings

acousti-tech.com

- Introduction and Introductions
- Code Requirements / Expectations
- A good approach to designing Mass Timber buildings
- Flanking mitigation
- Latest solutions for mass timber with exposed ceiling
- Wet versus dry solutions for Mass Timber
- Sustainability
- What's next?

Acousti ECH

Andre Rioux

Co-Owner Ambassador

acousti-tech.com

Mission : Acoustic comfort

Guidance & Solutions for people who are <u>frustrated</u> with:

- Acoustic complaints and/or law-suits
- Customer's negative perception (ex: wood frame)
- Code regulations ex: acoustics / weight / Fire
- Abundance of products & misguided information

- Innovative polymerbased solutions
- Acoustic clips
- Acoustic membranes
- / Drainage solutions

- Expertise
- Off-site support
- On-site support
- Testing
- Training
- R&D

- Complete support
- Recommendations
- Innovative textile solutions
- Data / reports
- On-site assistance
- Laboratory
- R&D
- Documentation

By DCC

- Innovative dry elements made of recycled material
- Light-weight solutions
- Versatile

•

Ease of installation

- Expertise
- Off-site support
- On-site support
- Testing
- Training
- R&D

David Dompierre, ing. Senior Consultant

David Gonzalez

LEED Green Associate **DCC solutions**

DARE BUILD

IFFERENTLY

solutions

- Ambassador of acoustic solutions, exterior cladding and fire protection
- Supporter of healthy, ecological and low carbon footprint building materials.

Mission

"Dare build differently"

- Wood buildings offer great advantages
- Great results can be achieved when paying attention to details
- Unfortunately, acoustics is too often neglected = Frustrations

Sound insulation is now a must!

AIRBORNE NOISES = REQUIREMENTS

Canada:

Minimum STC required = 50 Minimum ASTC required = 47 Recommended minimum STC = 55

USA:

Minimum STC required = 50 Minimum ASTC = 45

IMPACT NOISES = RECOMMENDATIONS

Canada: Minimum IIC required = N/A Minimum AIIC required = N/A Recommended min. IIC = 55

USA:

Minimum IIC required = 50 Minimum AIIC = 45

Thickness/surface weight dependency

Adding mass (approx. 20 PSF) over a performing underlayment can increase the STC by 14 and IIC by 17 to 22 points in average.

The flooring and its underlayment may have minimal impact on the resulting performance.

Stiffness/construction dependency

"At low frequencies the partition tends to move as a membrane exhibiting bending motions. The more resistance there is to this bending motion, that is, the greater the panel stiffness, the higher will be the low frequency transmission loss obtained" (Noise Control in Building services, Sound Research Laboratories Ltd. Pergamon press. p107-108) Coincidence region in CLT can be large and can be happening in areas relevant to building acoustics. The important width of the area, compared to the graph on the left is caused by the intersecting layers of timber (orthotropic panel).

Permeability dependency

Permeability dependency

Cleated platform frame joint

Permeability dependency

Permeability dependency

Moisture issues

Choosing the right connectors

Vibration reduction index (Kij)

Let manufacturers participate in testing

Let manufacturers participate in testing

Let manufacturers participate in testing

New installation for acoustics. Includes flanking testing.

Flanking : Indirect paths by which sound can pass

Create discontinuities

Be cautious when building the layout !

Single-Span Joists

Bulkheads. There are no magic trick

No bearings are required in the case of suspended ceilings and mechanically-isolated facing panels.

Elastic bearings are required *above and below the ceiling* in the case of suspended ceilings without mechanically-isolated facing panels on the walls.

Elastic bearings are required *above the ceiling* in the case of cross-laminated timber ceilings with a timber soffit (without a suspended ceiling) and mechanically-isolated facing panels on the walls.

Elastic bearings are required *above the ceiling* in the case of cross-laminated timber ceilings with a timber soffit (without a suspended ceiling) and without mechanically-isolated facing panels on the walls.

Mechanically-isolated facing panels, suspended ceilings and elastic bearings above and below the ceiling are always required on continuous ceilings above different parts of the building.

Long story short...

- The panel is continuous : Use elastic bearings unless nothing is exposed and isolators/decoupling is well done.
- The panel is discontinuous : Use elastic bearings wherever the structure is exposed.
- The panel is discontinuous and the structure is not exposed : Elastic bearings are not needed as long as the decoupling is great.
 - Both sides of demising walls should always use resilient materials.

Without flooring

38mm concrete : IIC 49 (NRC)

70mm concrete : IIC 46 (NRC)

Conventional solution for mass timber (with topping)

AIIC 62 - 65 ASTC 65 - 70

Advantages of an assembly without concrete topping

- Environmentally friendly!
- Sequencing / Time saving (schedule)
- Quick execution / Easy installation
- No drying time
- No humidity in the building
- No concrete leveling required
- Less weight

Reference floor : ASTC 36

Interesting & relevant tools for architects

Inventory of Acoustically Tested Mass Timber Assemblies

Following is a list of mass timber assemblies that have been acoustically tested as of June 14, 2023. Sources are noted at the end of this document. For free technical assistance on any questions related to the acoustical design of mass timber assemblies, or free technical assistance related to any aspect of the design, engineering or construction of a commercial or multi-family wood building in the U.S., email <u>help@woodworks.org</u> or contact the WoodWorks Regional Director nearest you: <u>http://www.woodworks.org/project-assistance</u>

Contents:

Table 1: CLT Floor Assemblies with Concrete/Gypsum Topping, Ceiling Side Exposed 2	
Table 2: CLT-Concrete Composite Floor Assemblies, Ceiling Side Exposed	9
Table 3: CLT Floor Assemblies without Concrete/Gypsum Topping, Ceiling Side Exposed	11
Table 4: Mass Timber Floor Assemblies with Raised Access Floor or Wood Sleepers, Ceiling Side Exposed	14
Table 5: NLT, GLT & T&G Decking Floor Assemblies, Ceiling Side Exposed	18
Table 6: Mass Timber Floor Assemblies with Ceiling Side Concealed	22
Table 7: Single CLT Wall	33
Table 8: Single NLT Wall	38
Table 9: Double CLT Wall	41
Sources	44
Disclaimer	50

Interesting & relevant tools for architects

dataholz.eu

Building materials Components

Reviewed/approved components > Intermediate floor > gdmnxn02

Scope

All components
Germany

A B C D

Cross section Structure

intermediate floor gdmnxn02

intermediate floor solid wood construction, without lining, wet, with filling

			11/10	P
^^^^	<u></u>	<u>www.ww</u>		D
<u></u>	<u>1 </u>	n anna ann an	1 12 10	H
			-	F

Register of building materials used for this application, cross-section (from top to bottom)

Thickness [mm]		Building material	Thermal performance				
			λ	µ min – max	ρ	c	to fire
	60,0	cement screed	1,330	50-100	2000	1,080	A1
		plastic separation layer	0,200	100000	1400	1,400	Е
		- variable insulation material					
		- variable building material					
		trickling protection					E
		- variable building material					

Variations of building components

	Thickness of layer			Note	Fire performance	Thermal performance		Acoustic performance		Eco Sustainability	Mass	
		Thickness [mm]	Building material	Σ		REI	U [W/(m²K)]	Diffusion	L _{n,w} (C _l)	R _w (C,C _{tr})	Δ013	m [kg/m²]
gdmnxn02- 00	C D F	30,0 60,0 140,0	impact sound absorbing subflooring MW-T [s'= $35MN/m^3$] bonded chippings cross laminated timber, minimum 5-ply, d \geq 140,0; first layer minimum 26 mm	290,0		60	0,44	adequate	65 (-2)	54 (-2,-6)	49,56	302,7
gdmnxn02- 01	C D F	30,0 60,0 140,0	impact sound absorbing subflooring MW-T [s'= 35MN/m ³] non-bonded chippings cross laminated timber, minimum 5-ply, d \geq 140,0; first layer minimum 26 mm	290,0		60	0,44	adequate	57 (-1)	60 (-2,-6)	48,72	296,7
gdmnxn02- 02	C D F	30,0 60,0 140,0	impact sound absorbing subflooring MW-T [s'=10 MN/m ³] bonded chippings cross laminated timber, minimum 5-ply, d \ge 140,0; first layer minimum 26 mm	290,0		60	0,43	adequate	60	55	47,76	301,8
gdmnxn02- 03	C D F	30,0 60,0 140,0	impact sound absorbing subflooring MW-T [s'=10 MN/m ³] non-bonded chippings cross laminated timber, minimum 5-ply, d \geq 140,0; first layer minimum 26 mm	290,0		60	0,43	adequate	52	62	46,92	295,8
gdmnxn02- 04	C D F	30,0 60,0 140,0	impact sound absorbing subflooring MW-T [s'=10 MN/m ³] elastic bonded fill (m' aprrox. 90 kg/m ²) cross laminated timber, minimum 5-ply, d \ge 140,0; first layer minimum 26 mm	290,0		60		adequate	46 (-1)	73 (-2,-8)	47,35	300,0
gdmnxn02- 05	C D F	30,0 60,0 160,0	impact sound absorbing subflooring MW-T [s'=10 MN/m ³] non-bonded chippings, m' approx. 93 kg/m ² cross laminated timber, first layer minimum 40mm	310,0	D: fill m' approx. 93 kg/m²; F: first layer minimum 40 mm	90	0,41	adequate	47 (2)	74 (-2,-7)	53,24	325,7

Interesting & relevant tools for architects

lig	Lignum Construction	data n products and comp	onents							
Home	Components	Products	ood species							
FILTER		CATALOG FLOOR ASSEMBLY								
General Informat	tion	Page 6 of 14. There were 131 r Lignum ID-№ Graphic	matching component found. Base structure Paneling Origin of sound insulation values	Construction height Weight U-value	Values of airbo insulation	orne sound	Values of footf	all sound		
Environmental in	npact per m² co 🕨	A0839	Solid wood panel	285 mm	Rw	60 dB	Lnw	55 dB		
			with floor construction	206 kg/m ²	с	-3 dB	Ст	1 dB		
Assembly			Verified calculation	≈0.273 W/m ² K	C50-3150	-6 dB	C150-2500	4 dB		
			Detail HFC4 LOD300							
Manufacturer		A0841	Solid wood panel	247 mm	Rw	51 dB	Lnw	64 dB		
			with floor construction	125 kg/m ²	с	-3 dB	Сі	1 dB		
Search assembly	number		Verified calculation	≈0.289 W/m²K	C50-3150	-3 dB	C150-2500	1 dB		
Search assembly			O Detail 🕒 IFC4 LOD300							
		A0842	Solid wood panel	325 mm	Rw	64 dB	Lnw	51 dB		
Sort data			with floor construction	288 kg/m ²	с	-3 dB	Сі	0 dB		
			Verified calculation	≈0.268 W/m²K	C50-3150	-7 dB	CI50-2500	5 dB		
🕨 Reset search o	criteria		Detail 🕒 IFC4 LOD300							
		A0844	Solid wood panel	300 mm	Rw	61 dB	Lnw	54 dB		
			with floor construction	222 kg/m ²	с	-3 dB	Сі	1 dB		
			Verified calculation	≈0.269 W/m ² K	C50-3150	-7 dB	C150-2500	5 dB		
			🚯 Detail 🔹 IFC4 LOD300							
		A0846	Solid wood panel	262 mm	Rw	52 dB	Lnw	63 dB		
			with floor construction	141 kg/m ²	С	-3 dB	СІ	1 dB		
			Verified calculation	≈0.285 W/m ² K	C50-3150	-3 dB	C150-2500	1 dB		
			Detail IFC4 LOD300							

Rw is very similar to STC and defines the sound insulation of a partition. Rw 55 can be interpreted as STC 55 (or should be close).

Ln,w indicated the impact sound insulation and can be roughly converted to IIC by applying the simple following equation : IIC = 110 - Ln,w

29 billion \$ in damages (2022)

Global GHG Emissions

Decarbonizing the economy

Montreal Sets Zero-Emission Target for All New Buildings by 2025

May 6, 2022 Reading time: 2 minutes

Toronto is the latest city to crackdown on carbonheavy building materials

There's mounting awareness around the carbon intensity of garden-variety materials such as cement, concrete, steel, glass and aluminum

BY JOHN LORINC MAY 25, 2023

Decarbonizing the economy

VANCOUR
RELEASES PLANE
BOUCE
BUCE
BUCE
BUCE

July 10, 2021

State Public Procurement Reduces Carbon

by Meghan Lewis Senior Researcher, Carbon Leadership Forum

States are taking big steps on embodied carbon action this legislative session. Procurement policies related to embodied carbon were introduced in eight states in 2021, including Washington, Oregon, California, Colorado, Minnesota, Connecticut, New York, and New Jersey.

Embodied Carbon

Cement & Steel = 20% of Global GHG Emissions

1 Source: https://www.ledevoir.com/environnement/697041/environnement-donner-une-deuxieme-vie-carboneutre-a-un-immeuble

Why build with wood

For a sustainable transition in construction

Types of toppings to soundproof floors

Mortar bed ("screed")

Concrete topping (self-levelling)

Dry topping solutions

Objective of study:

To assess the impact of building design choices with an outlook of reducing GHG emissions from materials used in tall wooden buildings. This report focuses on the reductions in the carbon footprint (or GHG) that can be achieved through a building eco-design approach.

Figure 17. Potentiels de réchauffement climatique relatifs des scénarios

Conclusion:

The scenario of replacing the concrete screed by fiber gypsum panels has the greatest impact on the carbon footprint of the building.

Structural materials savings

Environmental certifications

EPD: Environmental Product Declaration Life Cycle Analysis

Health Product Declaration (Non-toxic ingredients)

Indoor Air Quality (VOC Emissions)

LEED Certification

Does not certify products, only projects

SUSTAINABILITY CONTRIBUTION DECLARATION

Contribution to LEED v4[®] (Leadership in Energy and Environmental Design)

Reference: LEED v4 BD+C: New Construction

What's next?

Mass Timber Flow Chart - Residential Occupancy

Coffman Engineers - AcoustiTECH | May 23, 2023

Questions and inquiries

Tech-support@acousti-tech.com

Thank you

