Chapter 1 Introduction to Timber Structures

CIVE480 Timber Structures 2019

1.1 Timber Structures in History

1) Earliest shelters (Europe)

Timber has been available as a construction material for most societies since the human race first started to build crude shelters at the dawn of civilization." (Kuklik 2008) [1]

- Tree branches
- Covered with grass
- <u>Circular</u> floor plan

The shelter framework of primeval man (120 000 – 40 000 BC) [1]

1) Earliest shelters (Europe)

Timber has been available as a construction material for most societies since the human race first started to build crude shelters at the dawn of civilization." (Kuklik 2008) [1]

- Tree branches
- Covered with hides
- Elliptical floor plan

Primeval mankind shelter $(40\ 000 - 10\ 000\ BC)$ [1]

2) First timber-framed houses (Europe)

Longhouse (4 500 BC) [1]

- Durability: less than 20 years
- Floor: 5.5-7m width, 20-45m long

Longhouse (3 000 BC) [1]

- Floor: a little trapezoidal
- No windows

3) Timber-framed houses (Europe)

House constructed by the Celts (400 BC) [1]

• Stone pedestal

House constructed by the Teutons (0 - 500 AD) [1]

 Primitive and small (5m×6m or 4m×5m)

4) Rural houses (Europe)

Between the 13th to the 15th century: timber, stone (foundations and walls) and clay (nogging)

Details of log house corners [1]

- Logs laid horizontally to form walls
- Notching at the corner intersections to provide stability

4) Rural houses (Europe)

Half-timbered house: short logs, clay (nogging)

Half-timbered wall [1]

- 12th century in Germany, first used in town houses
- 15th century, also used in rural houses

4) Rural houses (Europe)

Bracing used in the longitudinal direction

Roof Structures [1]

5) Urban houses (Europe)

- 14th century, stone and brick as structural materials (fire resistance)
- 16th century, brickwork structures (predominant)
- 18th century, timber prohibited in towns, except for floors, separating walls and roofs

Attaches house [1]

6) Timber bridges (Europe)

The oldest know timber bridges go back to 600 BC

Trussed bridges (Palladio 1570) [1]

7) Timber structures (China)

 Since 1500 BC, Tenon and Dougong connections have been used in traditional Chinese timber structures.

• Dougong: a unique structural element of interlocking wooden brackets

Post-beam structures (Yingzao Fashi)

8) Dougong (China)

9) Yingxian Pagoda (China)

- Built in 1056
- Height: 67.31m
- 54 different kinds of Dougong connections
- Survived several large earthquakes throughout the centuries

1.2 Current Timber Structures and Trends

1) Light wood frame structures

- Residential buildings
- Up to 6-storey (BC 2009)

Single family house

(Susan M Boyce)

Multi-story apartment under construction

2) Heavy timer structures

- Commercial buildings
- Structures exposed

(Western Wood Structures, Inc.)

A car museum in Tacoma WA

The Centre for Interactive Research on Sustainability (UBC)

3) Mass timber structures

Mass timber panel

(kihusa.com)

Cross laminated timber (CLT)

(structurlam.com)

Wood Innovation and Design Centre (UNBC)

4) Hybrid timber structures

(Liz Brown)

Reinforced concrete podium and core + CLT floor and Glulam column

(Idaho Airships Inc.)

Reinforced concrete podium + light wood frame structure

4) Hybrid timber structures

(structurlam.com)

Timber floor and column + steel lateral bracing

https://www.pinterest.ca/oguzakdenizz/roof-structure/

Hybrid timber-steel roof

5) Other timber structures

(Wildwood Log Cabins)

Round log cabin

(AWR)

Metropol Parasol, Spain

6) Trends

(Will Pryce)

9-storey, Murray Grove, London, 2009

(Victoria Harbour)

10-storey, Forté, Melbourne, 2012

6) Trends

(Malo K.A. et al 2016)

14-storey, Treet, Norway, 2015

(naturallywood.com)

18-storey, Brock Commons, Vancouver, 2017

6) Trends

(newcivilengineer.com)

24-storey, HoHo, Vienna, under construction, 2018

(Sumitomo Forestry)

70-storey, W350, Japan, Proposed for 2041

1.3 Characteristics of Timber Structures

1) Advantages — Green Building

Wood is renewable material

Sustainable forestry harvesting

TimberWest

A total of 5.35 million native species planted on Vancouver Island in TimberWest's spring 2015 planting season

1) Advantages — Green Building

Green and environmentally friendly

(remove carbon from the atmosphere)

Example: embodied effects of a single family home (CWC report [2]) Relative to the **wood** design, the **steel** and **concrete** designs

•	Energy:	26%	57%
•	Greenhouse gas:	34%	81%
•	Air pollution:	24%	47%
•	Water pollution:	4 times	3.5 times
•	Resources:	11%	81%
•	Solid waste:	8%	23%

1) Advantages — Structure

Light weight

	Average building weight [3]
Timber	$1.9-2.4 \text{ kN/m}^2$
Steel framed	$2.9-3.6 \text{ kN/m}^2$
Reinforced concrete	$5.3-6.2 \text{ kN/m}^2$

- Higher strength to weight ratio
- Good seismic performance
 - Structural redundancy
 - Deformation
 - Energy dissipation

1) Advantages

Modular and offsite construction

Stora Enso

A timber school for Vienna - with CLT

- Fast construction
- Quality control

bonestructure.ca

A light wood frame building

1) Advantages

Aesthetic benefit

2) Challenges — Fire

■ Timber is a combustible material

Light wood frame

Gregory Havel

Gypsum drywall board firebreak

Mass timber

R.H. White and F.E. Woeste

Char layer

2) Challenges — Durability

Wood is biodegradable

CWC

Decay

Moisture control

Sturdi-Wall Brackets

 Details example: timber separated from concrete

2) Challenges — Durability

Wood is biodegradable

CWC

Termites

CWC

Attached by termites

Integrated control: The 6Ss

- Suppression
- Site management
- Soil barrier
- Slab/foundation details
- Structural durability
- Surveillance and remediation

(http://cwc.ca/wp-content/uploads/controllingtermites-TermiteControlThe6Ss.pdf)

2) Challenges — Vibration and acoustic

Composite timber and concrete floor

• Less susceptible to vibration

• Better acoustic separation

• Stiffer

Top: Poured concrete

Middle: Rigid foam board insulation

Base: CLT structural floor system

2) Challenges — Moisture content

Timber shrinks and swells with changes of moisture content

https://inspectapedia.com/structure/Beam_Log Checking Cracks.php

Checking

- Caused by moisture loss in the outer fibers
- Usually has minimal effect on the strength
- Needs to be evaluated

References

- [1] Kuklik, P. 2008. *History of timber structures*. Leonardo da Vinci Pilot Project, CZ/06/B/F/PP/168007, Educational materials for designing and testing of timber structures. Czech Technical University in Prague, Prague, Czech Republic.
- [2] Canadian Wood Council (CWC). *Energy and the environment in residential construction*. Ottawa, ON, Canada. http://cwc.ca/wp-content/uploads/publications-Energy-and-the-Environment.pdf
- [3] Hibbeler R.C. 2018. Structural analysis. Pearson Education, Inc. Hoboken, NJ, USA.

