Chapter 9 Design of CLT Structures

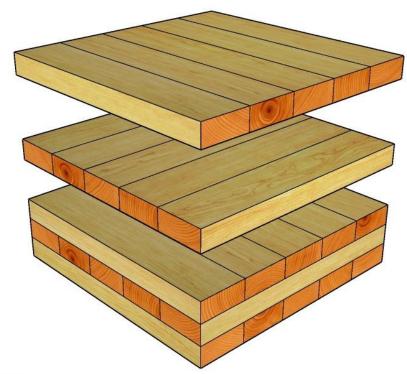
CIVE480 Timber Structures 2019

9.1 Introduction of CLT (cross-laminated timber)

1) History

- CLT was first developed in Europe
- In the mid 1990s, industry-academia joint research (Austria)
 → modern CLT
- In early **2000s**, construction in CLT increased significantly (*driven by green building movement...*)

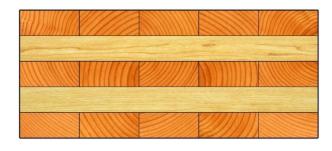
2) In Canada


- In 2005, FPInnovations launched a CLT research program,
 - → Prepared CLT Handbook (2011)
- NSERC Network NEWBuildS (CLT is one of its four themes) (2010-2015)

→ CLT was introduced into the **CSA O86-14** "Engineering design in wood" **2014 edition update 1** (May 2016)

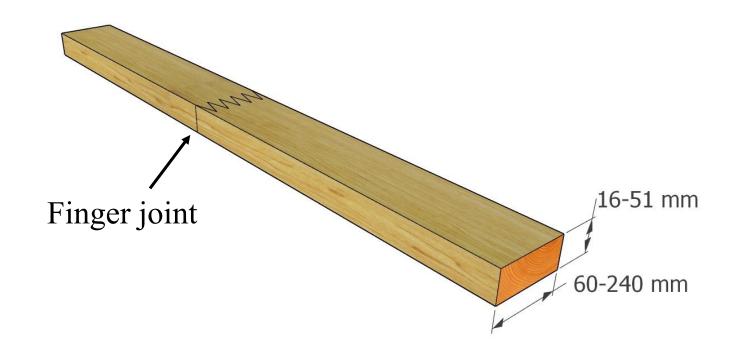
3) Definition

 CLT panels consist of several layers of boards stacked crosswise (typically at 90 degrees) and glued together on their wide faces and, sometimes, on the narrow faces as well.

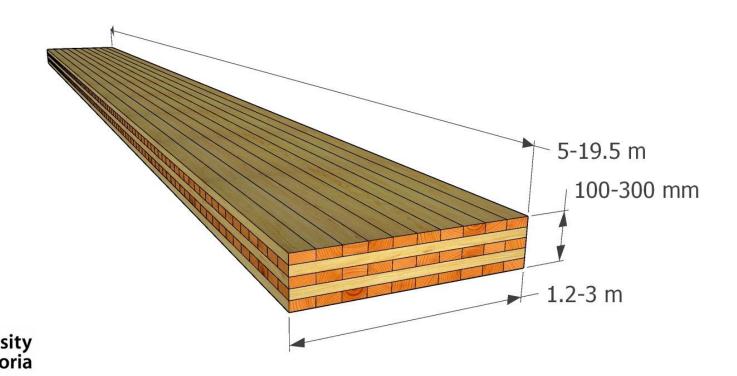


4) Cross section

- Typically consist of 3 to 9 alternating layers
- Same grade and species of sawn lumber in one lamination
- Consecutive layers may be placed in the same direction


Consecutive layers

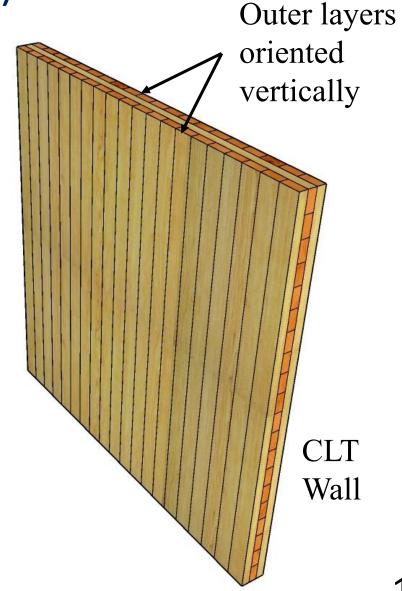
5) Individual board


- Size: 16-51 mm thick, 60-240 mm wide
- Finger joint using structural adhesive, kiln dried

6) CLT panel

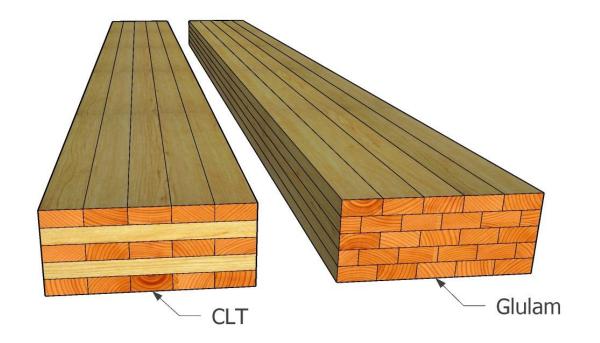
- Size: width (1.2 m to 3 m), length (5 m to 19.5 m), thickness (100 mm to 300 mm)
- Limited by the size of manufacturer's press and transportation regulations

7) Stress grades


- Five primary CLT stress grades (E1, E2, E3, V1, and V2)
 "E" machine stress rated (MSR, or E-rated)
 "V" visually graded lumber
- Lumber strength in longitudinal direction strength > transverse direction (*Table 8.2.3 of CSA 086*)

	Longitudinal layers	Transverse layers
E1, E2, E3	MSR	Visually graded
V1, V2	Visually graded	Visually graded

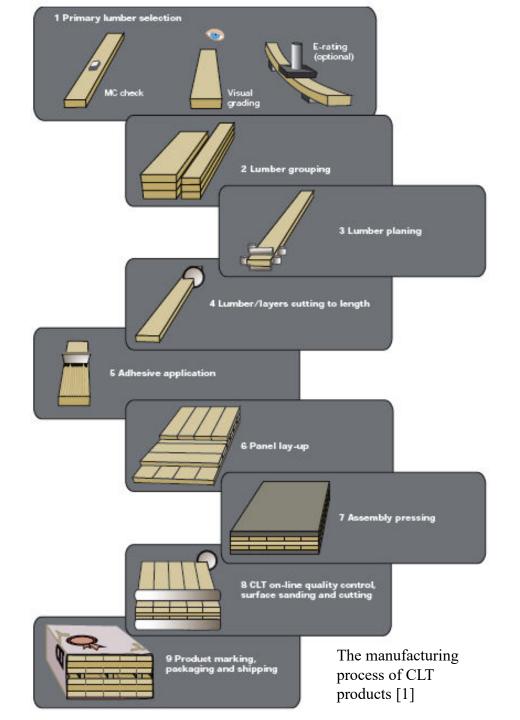
8) Advantages (walls and floors/roofs)


- Improved dimensional stability (wide and long walls and floors)
- Increase splitting resistance of some CLT connections

9) Benefits of cross laminating

Two-way action capability of floors

CLT panel vs Glued-laminated timber


10) Other advantages

- Easy handling in construction
- High level of prefabrication
- Good thermal insulation
- Good sound insulation
- A fairly good performance under fire conditions

11) Manufacturing process

- Lumber selection (quality consistency)
- Lumber grouping and planning
- Adhesive application (adhesive bond quality control)
- Panel lay-up and pressing
- Product cutting
- Marking and packaging

9.2 Structural design and serviceability considerations of CLT

1) Floor/roof elements

- In-plane and out-of-plane bending and shear strength and stiffness
- Short-term and long-term behavior:
- Instantaneous deflection
- Long-term strength for permanent loading
- Long-term deflection (creep deformation)
- Compression perpendicular to grain strength (bearing)
- Fire performance, durability, vibration performance, acoustic performance

2) Wall elements

- In-plane and out-of-plane bending and shear strength and stiffness
- Short-term and long-term behavior:
- Instantaneous deflection
- Long-term strength for permanent loading
- Long-term deflection (creep deformation)
- Loading-bearing capacity (critical)
- Fire performance, durability, vibration performance, acoustic performance

3) CLT in Construction

Single-family house in Klagenfurt, Austria (courtesy of KLH) [1]

Multi-family building in London, United Kingdom (courtesy of KLH and Waugh-Thistleton) [1]

3) CLT in Construction

Impulsezentrum, Graz, Austria (courtesy of KLH) [1]

Brock Common Building at UBC

9.3 Design of CLT panels as flexural members

1) Design

- Factored moment resistance $M_r \ge maximum$ factored moment M_f
- Factored shear resistance $V_r \ge maximum$ factored shear force V_f (loads within a distance from the support equal to the depth of the member may be neglected?)
- Factored bearing resistance $Q_r \ge maximum$ factored reaction Q_f
- Maximum deflection under specified loads < deflection criteria
- Actual span does not exceed the span determined by vibration criteria

2) Design Factors

- Load duration factor, K_D
- Service condition factors, K_S
- System factor, K_H
- Treatment factor, K_T

3) Load duration factor, K_D

 The specified strengths and capacities in CSA O86 are based on the standard-term duration of the specified loads

Load duration	K _D	Explanatory notes
Short term	1.15	Last less than 7 days (e.g. wind, earthquake)
Standard term	1	Between short and long term (e.g. snow, occupancy, wheel loads)
Long term	0.65	Subjected to continuous load (e.g. dead loads, fixed machinery)

(Table 5.3.2.2 of CSA O86)

3) Load duration factor, K_D

For standard-term loads, P_L is greater than the P_s

$$K_D = 1.0 - 0.5 \log(P_L/P_S) \ge 0.65$$

Where:

 P_L = specified long-term load

P_s = specified standard-term load based on S and L loads acting alone or in combination

= S, L, S+0.5L, or 0.5S+L, determined using importance factors equal to 1.0

3) Load duration factor, K_D

• For standard-term loads, P_L is greater than the P_s

$$K_D = 1.0 - 0.5 \log(P_L/P_S) \ge 0.65$$

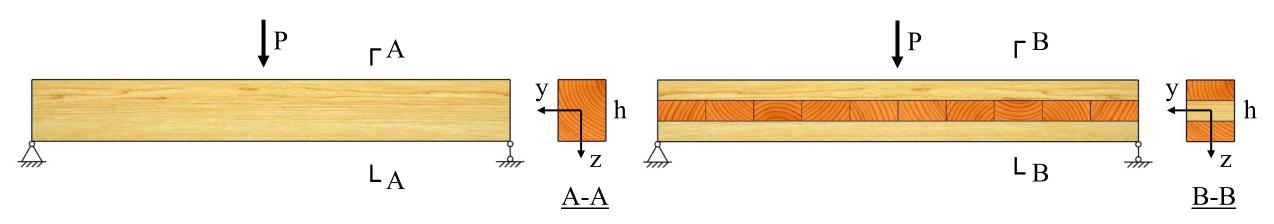
K _D		Specified standard-term load Ps (kPa)				
		1.0	1.9	2.0	2.4	
Specified long-term load P _L (kPa)	1.5	0.91	1.00	1.00	1.00	
	2.0	0.85	0.99	1.00	1.00	
	2.5	0.80	0.94	0.95	0.99	

4) Service condition factors, K_S

 Unless specifically permitted by the manufacturers, CLT panels are only used in dry service conditions for which

$$K_{Sb} = K_{Sc} = K_{Sp} = K_{St} = K_{Sv} = K_{SE} = 1.0$$

5) System factor, K_H


• K_H is to be taken as 1.0 for all strength properties of CLT panels.

6) Treatment factor, K_T

- CLT shall not be treated with water-borne preservatives after gluing
- For CLT treated with fire-retardant or other potentially strength-reducing chemicals, strength and stiffness is required to be based on documented results of tests.

$$M = \sigma I_y \frac{2}{h} = \sigma \frac{EI_y}{E} \frac{2}{h}$$

where σ = bending strength

 I_{ν} = moment of inertia

E= Young's modulus

 EI_{ν} = bending stiffness of cross section

$$M_{CLT} = \sigma \frac{(EI)_{eff,y}}{E} \frac{2}{h}$$

 $(EI)_{eff,y}$ = effective bending stiffness of cross section

- The out-of-plane factored bending moment resistance:
- (a) For the **major** strength axis

$$M_{r,y} = \emptyset F_b S_{eff,y} K_{rb,y}$$

where
$$\emptyset = 0.9$$

 $F_b = f_b(K_D K_H K_{Sb} K_T)$

where f_b = specified bending strength of **laminations** in the longitudinal layers, MPa

$$S_{eff,y} = \frac{(EI)_{eff,y}}{E} \frac{2}{h}$$

where $(EI)_{eff,y}$ = effective bending stiffness of **the panel** for the major strength axis, N·mm² E= specified modulus of elasticity of **laminations** in the longitudinal layers, MPa h= thickness of **the panel**, mm

$$K_{rb.v} = 0.85$$

- The out-of-plane factored bending moment resistance:
- (b) For the minor strength axis

$$M_{r,x} = \emptyset F_b S_{eff,x} K_{rb,x}$$

where
$$\emptyset = 0.9$$

 $F_b = f_b(K_D K_H K_{Sb} K_T)$

where f_b = specified bending strength of **laminations** in the transverse layers, MPa

$$S_{eff,x} = \frac{(EI)_{eff,x}}{E} \frac{2}{h_x}$$

where $(EI)_{eff,x}$ = effective bending stiffness of **the panel** for the minor strength axis, N·mm² E= specified modulus of elasticity of **laminations** in the transverse layers, MPa h_x = thickness of **the panel** without the outer longitudinal layers, mm $K_{rh,x}$ = 1.0

- The factored **shear** resistance:
- (a) For the major strength axis
- (b) For the minor strength axis

$$V_{r,zy} = \emptyset F_s \, 2A_{g,zy}/3$$

$$V_{r,zx} = \emptyset F_s \, 2A_{g,zx}/3$$

```
where \emptyset = 0.9

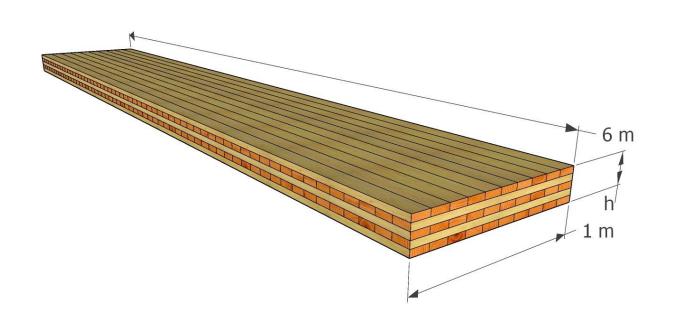
F_S = f_S(K_D K_H K_{Sv} K_T)
```

where f_s = specified strength in **rolling shear of laminations** in the longitudinal layers, MPa $A_{g,zy}$ = gross cross-sectional area of **the panel** for the major strength axis (including all layers), mm²

 $A_{g,zx}$ = gross cross-sectional area of **the panel** for the minor strength axis (not including the outer layers), mm²

Example 1: CLT floor panel (Strength)

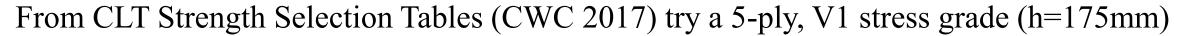
Design single span floor CLT panels


Conditions:

- Panel span = 6 m
- Panel width = 1 m
- Specified dead load = 1.5 kPa
- Specified live load = 2.4 kPa
- Standard load duration
- Dry service condition
- Untreated

Use stress grade V1 oriented about its major strength axis.

The thickness of each ply is 35 mm.



Example 1: CLT floor panel (Strength)

Calculation:

Total factored load =
$$(1.25 \times 1.5) + (1.5 \times 2.4) = 5.48 \text{ kPa}$$

 $w_f = 5.48 \times 1m = 5.48 \text{ kN/m}$
 $M_f = \frac{w_f L^2}{8} = \frac{5.48 \times 6.0^2}{8} = 24.6 \text{ kN} \cdot m/m$
 $V_f = \frac{w_f L}{2} = \frac{5.48 \times 6.0}{8} = 16.4 \text{ kN/m}$

$$M_{r,y} = 31.2 \ kN \cdot m/m > 24.6 \ kN \cdot m/m$$

$$V_{r,zy} = 66.2 \ kN/m > 16.4 \ kN/m$$

<mark>Acceptable</mark>

<mark>Acceptable</mark>

8) Serviceability check

Deflection (bending, shear and creep effects)

$$\Delta_{max} = \Delta_{ST} + \Delta_{LT} K_{creep}$$

where Δ_{ST} = elastic deflection due to short term and/or standard term loads, without dead load in combination

 Δ_{LT} instantaneous elastic deflection due to long term loads

 K_{creep} = creep adjustment factor = 2.0 for dry service condition

8) Serviceability check

• Deflection under a specified uniformly distributed load, ω

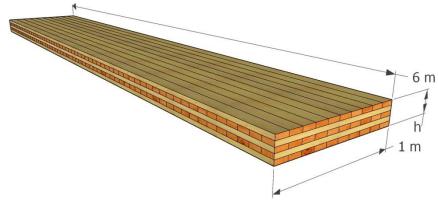
$$\Delta = \frac{5}{384} \frac{\omega L^4}{(EI)_{eff}} + \frac{1}{8} \frac{\omega L^2 \kappa}{(GA)_{eff}}$$

where
$$(EI)_{eff}$$
 = effective bending stiffness $(GA)_{eff}$ = effective in-plane (planar) shear rigidity

• For a concentrated line load, P, in the middle of a single span CLT panel

$$\Delta = \frac{1}{48} \frac{PL^3}{(EI)_{eff}} + \frac{1}{4} \frac{PL\kappa}{(GA)_{eff}}$$

where κ = form factor = for rectangular cross-sections



Example 2: CLT floor panel (Serviceability)

For the same cross section and design conditions as in Example 1

Total specified load = 1.5 + 2.4 = 3.90kPa

Total specified live load = 2.4 kPa

Calculation

Considering major strength axis, the live load is L = 2.4 kPa

From CLT Serviceability Selection Tables (CWC 2017) for vibration and deflation, the maximum panel lengths for stress grade V1, 5-ply, are **5.27 m** and **6.63 m**, respectively.

6 m floor span exceeds the vibration span limit.

A different grade or thickness of panel would be required. For example, a 7-ply V1 stress grade panel has a vibration controlled maximum span of **6.58 m**.

9.4 Design of CLT shearwall

1) General

- Platform-type construction, height limit: 30 m
- High seismic zones (i. e. $I_E F_a S_a(0.2) > 0.75$), height limit: 20 m
- The factored shear resistance of CLT shearwalls shall be governed by the resistance of the connections
- Assuming each individual panel acts as a rigid body (CSA 086 does not provide the in-plane bending and shear strength and stiffness of CLT panels)

2) Seismic design consideration (Capacity design principles)

Energy dissipative connections

(wall-foundation, wall- supporting floor, wall-parallel wall, discrete hold-downs)

Non-dissipative connections

(continuous steel rods, floor-supporting wall, wall-perpendicular wall

3) Energy-dissipative connections

- Yielding mode governs the resistance
- At least moderately ductile
- Possess sufficient deformation capacity to allow for the CLT panels to develop their assumed deformation behaviour (rocking, sliding)

4) Non-dissipative connections

- Not to yield while the energy-dissipative connections reach their ultimate resistance, and to tolerate the displacement demands when the energy-dissipative connections reach the target displacement
- The factored resistance of the non-dissipative connections > strength demand on them when the energy-dissipative connections reach their 95th percentile of ultimate resistance under cyclic loading

5) Aspect ratios of CLT shearwalls

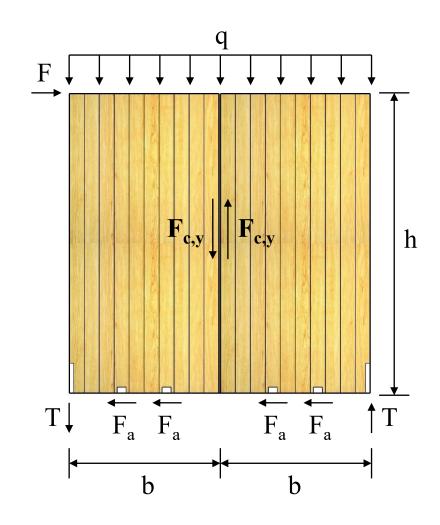
■ 1:1 and higher, with the maximum 4:1 (ensures the ductility of the structure and desirable rocking mechanism)

$$R_d = 2.0, R_o = 1.5$$

• Less than 1:1, or acting in sliding only

$$R_d R_o = 1.3$$

6) Deflections


- In principle, it should account panel bending, shear, sliding, rocking and deformation of supports
- For simplicity in design situations, the O86 assumes CLT panels act as rigid bodies, and therefore panel **bending and shear** deformation may be ignored

Two-panel CLT shearwall strength

Conditions:

- Hold-down and panel joints are assumed as rigidplastic
- Rocking motion is assumed
- Hold-down resists the uplift caused by overturning
- Angle brackets contribute only to horizontal shear resistance (using slotted holes in the uplift direction)
- The shear force at the vertical panel joint is represented by $F_{c,v}$

Couple-panel (CP) kinematic mode

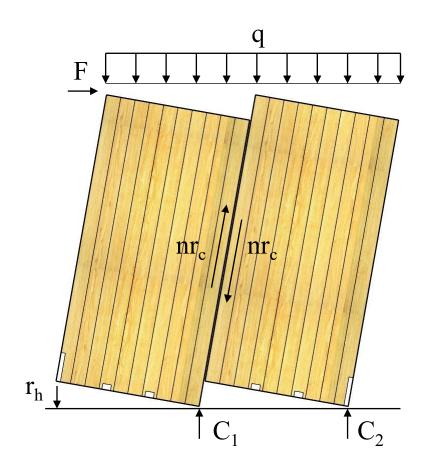
Each panel rotates about its respective point of rotation

The moment about the bottom right corner of the wall

$$\sum M_o = r_h \cdot 2b + q \cdot 2b \cdot b - F \cdot h - C_1 \cdot b = 0$$

Where C_1 and C_2 are reaction forces

$$F = \frac{b}{h}(2r_h + 2qb - C_1)$$


Where C_1 can be found based on equilibrium in the vertical direction for the left-hand side panel

$$\sum F_y = 0 \rightarrow C_1 = qb + r_h - n \cdot r_c$$

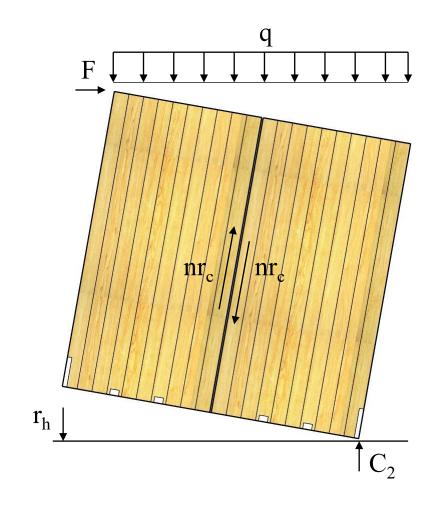
The maximum lateral force can be written as a function of the panel joint and hold-down strength:

$$R_w = F = \frac{b}{h}(r_h + qb + n \cdot r_c)$$

Single-wall (SW) kinematic mode

Two panels rotate about one center of rotation

The moment about the bottom right corner of the wall


$$\sum M_o = r_h \cdot 2b + q \cdot 2b \cdot b - F \cdot h = 0$$

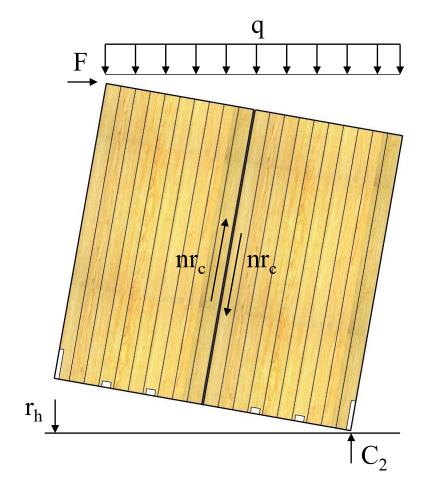
The lateral force acting on the wall can be obtained

$$F = \frac{r_h \cdot 2b}{h} + \frac{q \cdot (2b)^2}{2h}$$

Using small angle approximating, and performing the static equilibrium for a single panel

$$\sum F_y = n \cdot r_c - qb - r_h = 0 \rightarrow n \cdot r_c = qb + r_h$$
$$n \cdot r_c = qb + \frac{F \cdot h}{2b} - \frac{q \cdot 2b}{2} = \frac{F \cdot h}{2b}$$

Single-wall (SW) kinematic mode


Two panels rotate about one center of rotation

The lateral force, F, can also be expressed as

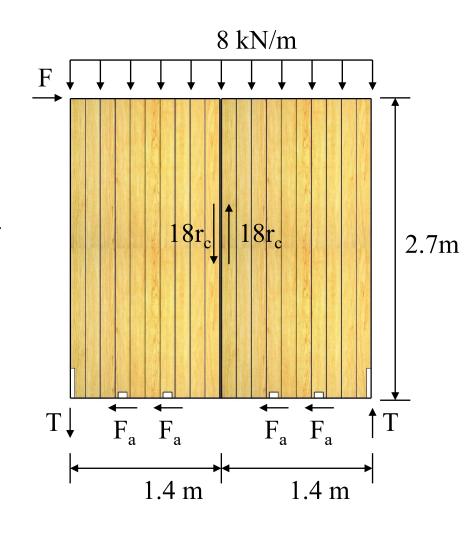
$$F = \frac{n \cdot r_c \cdot 2b}{h}$$

The lateral force acting on the wall is the minimum of the panel joint strength and the hold-down strength:

$$R_w = Min(\frac{n \cdot r_c \cdot 2b}{h}, \frac{r_h \cdot 2b}{h} + \frac{q \cdot (2b)^2}{2h})$$

Example 3: Two-panel CLT shearwall strength

Calculation


Case A: Strength governed by panel joint

The elastic strength for vertical joint (r_c) and hold-down (r_h) are assumed equal to 2kN and 100kN, respectively

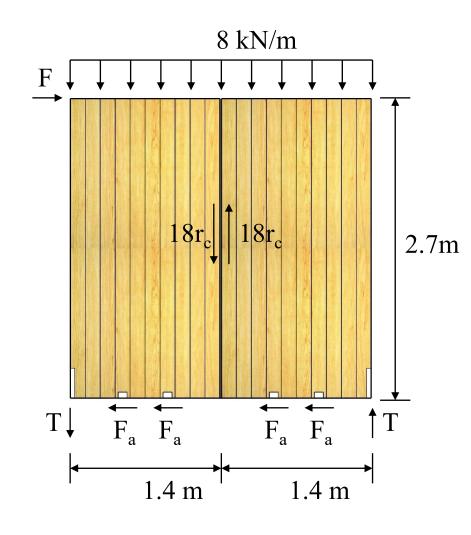
CP:
$$R_w = F = \frac{b}{h}(r_h + qb + n \cdot r_c) = \frac{1.4}{2.7}(100 + 8 \times 1.4 + 18 \times 2) = 76.3kN$$

SW:
$$R_W = Min\left(\frac{n \cdot r_c \cdot 2b}{h}, \frac{r_h \cdot 2b}{h} + \frac{q \cdot (2b)^2}{2h}\right) = Min\left(\frac{18 \times 2 \times 2.8}{2.7}, \frac{100 \times 2.8}{2.7} + \frac{8 \times (2.8)^2}{2 \times 2.7}\right) = Min(37.3,115.3) = 37.3kN$$

The wall strength is taken as the minimum obtained from the two assumptions: 37.3kN

Example 3: Two-panel CLT shearwall strength

Calculation


Case B: Strength governed by hold-down

The elastic strength for vertical joint (r_c) and hold-down (r_h) are assumed equal to 5kN and 50kN, respectively

CP:
$$R_W = F = \frac{b}{h}(r_h + qb + n \cdot r_c) = \frac{1.4}{2.7}(50 + 8 \times 1.4 + 18 \times 5) = 78.4kN$$

SW:
$$R_W = Min\left(\frac{n \cdot r_c \cdot 2b}{h}, \frac{r_h \cdot 2b}{h} + \frac{q \cdot (2b)^2}{2h}\right) = Min\left(\frac{18 \times 5 \times 2.8}{2.7}, \frac{50 \times 2.8}{2.7} + \frac{8 \times (2.8)^2}{2 \times 2.7}\right) = Min(93.3,63.5) = 63.5kN$$

The wall strength is taken as the minimum obtained from the two assumptions: 63.5kN

This lecture is developed based on the CLT Handbook [1], Wood Design Manual [2] and CSA O86-2014 [3].

References

- [1] FPInnovations. 2011. CLT Handbook. Quebec, QC, Canada
- [2] Canadian Wood Council (CWC). 2017. Wood design manual. Ottawa, ON, Canada.
- [3] Canadian Standards Association (CSA). 2017. Engineering design in wood. CSA O86-14, Toronto, ON, Canada.

