Bienvenue sur le nouveau Hub de Ressources Numériques du CCB (BETA)

Construire avec du bois

Explorez notre large éventail de sujets liés à la construction en bois.

54 results found...
Trier par Icône de la liste déroulante

Dans le Code national du bâtiment du Canada (CNB), le " degré de résistance au feu " est défini en partie comme suit : "le temps en minutes ou en heures pendant lequel un matériau ou un assemblage de matériaux résiste au passage des flammes et à la transmission de la chaleur lorsqu'il est exposé au feu dans des conditions d'essai et selon des critères de performance spécifiés..."

Le degré de résistance au feu est la durée, en minutes ou en heures, pendant laquelle un matériau ou un assemblage de matériaux résiste au passage des flammes et à la transmission de la chaleur lorsqu'il est exposé au feu dans des conditions d'essai et selon des critères de performance spécifiés, ou tel que déterminé par extension ou interprétation des informations qui en découlent, comme le prescrit le CNB.

Les critères d'essai et d'acceptation mentionnés dans le CNB sont contenus dans une méthode d'essai au feu normalisée, CAN/ULC-S101, publiée par ULC Standards.

Sous-face du plancher montrant les solives. Le degré de résistance au feu n'est exigé qu'à partir de la face inférieure de l'ensemble.

Les assemblages horizontaux tels que les planchers, les plafonds et les toits sont testés pour l'exposition au feu par le dessous uniquement. Cela s'explique par le fait qu'un incendie dans le compartiment inférieur représente la menace la plus grave. C'est la raison pour laquelle le degré de résistance au feu doit être mesuré uniquement à partir de la face inférieure de l'ensemble. Le degré de résistance au feu de l'ensemble testé indiquera, dans le cadre des limites de conception, les conditions de retenue de l'essai. Lors de la sélection d'un degré de résistance au feu, il est important de s'assurer que les conditions de contrainte de l'essai sont les mêmes que celles de la construction sur le terrain. Les assemblages à ossature bois sont normalement testés sans contrainte d'extrémité afin de correspondre à la pratique normale de la construction.

Début de l'ossature avec les solives de plancher et la poutre porteuse.

Les cloisons ou les murs intérieurs qui doivent avoir un degré de résistance au feu doivent être évalués de la même manière de chaque côté, car un incendie peut se développer de n'importe quel côté de la séparation coupe-feu. Elles sont normalement conçues de manière symétrique. S'ils ne sont pas symétriques, le degré de résistance au feu de l'ensemble est déterminé sur la base d'essais effectués du côté le plus faible. Pour un mur porteur, l'essai exige que la charge maximale autorisée par les normes de conception soit superposée à l'ensemble. La plupart des murs à ossature bois sont testés et répertoriés comme porteurs. Cela leur permet d'être utilisés à la fois dans des applications porteuses et non porteuses.

Les listes pour les murs porteurs à ossature bois peuvent être utilisées pour les cas non porteurs puisque les mêmes ossatures sont utilisées dans les deux cas. Le chargement pendant l'essai est critique car il affecte la capacité de l'assemblage mural à rester en place et à remplir sa fonction de prévention de la propagation du feu. La perte de résistance des montants résultant de températures élevées ou de la combustion réelle d'éléments structurels entraîne une déformation. Cette déformation affecte la capacité des membranes de protection des murs (plaques de plâtre) à rester en place et à contenir le feu. Le degré de résistance au feu des murs porteurs est généralement inférieur à celui d'un mur non porteur de conception similaire.

Les murs extérieurs n'ont besoin d'être classés que pour l'exposition au feu depuis l'intérieur d'un bâtiment. En effet, l'exposition au feu depuis l'extérieur d'un bâtiment ne risque pas d'être aussi grave que celle d'un incendie dans une pièce ou un compartiment intérieur. Comme ce classement n'est exigé que de l'intérieur, les murs extérieurs ne doivent pas être symétriques.

Le CNB permet à l'autorité compétente d'accepter les résultats d'essais au feu effectués selon d'autres normes. Comme les méthodes d'essai ont peu changé au fil des ans, les résultats basés sur des éditions antérieures ou plus récentes de la norme CAN/ULC-S101 sont souvent comparables. La principale norme américaine en matière de résistance au feu, l'ASTM E119, est très similaire à la norme CAN/ULC-S101. Toutes deux utilisent la même courbe temps-température et les mêmes critères de performance. Les taux de résistance au feu établis conformément à la norme ASTM E119 sont généralement acceptés par les autorités canadiennes. L'acceptation par l'autorité compétente des résultats des essais basés sur ces normes dépend principalement de la familiarité de l'autorité avec ces normes.

Les laboratoires d'essais et les fabricants publient également des informations sur des listes exclusives d'assemblages qui décrivent les matériaux utilisés et les méthodes d'assemblage. Une multitude d'essais de résistance au feu ont été réalisés au cours des 70 dernières années par des laboratoires nord-américains. Les résultats sont disponibles sous forme de listes ou de rapports de conception par l'intermédiaire de :

En outre, les fabricants de produits de construction publient les résultats d'essais de résistance au feu sur des assemblages incorporant leurs propres produits (par exemple, le Gypsum Association's GA-600 Manuel de conception de la résistance au feu).

Le CNB contient des informations génériques sur les degrés de résistance au feu des assemblages et éléments en bois. Il s'agit notamment de tableaux de résistance au feu et au bruit décrivant divers assemblages de murs et de planchers constitués de matériaux de construction génériques, auxquels sont attribués des degrés de résistance au feu spécifiques. Au cours des deux dernières décennies, le Conseil national de recherches du Canada (CNRC) a mené un certain nombre de grands projets de recherche sur les murs et les planchers à ossature légère, portant à la fois sur la résistance au feu et sur la transmission du son. Le CNB dispose ainsi de centaines de murs et de planchers différents auxquels sont attribués des degrés de résistance au feu et des indices de transmission du son. Ces résultats sont publiés dans le tableau A-9.10.3.1.A. Résistance au feu et au bruit des murs et le tableau A-9.10.3.1.B Résistance au feu et au bruit des planchers, plafonds et toits du CNB. Les assemblages décrits n'ont pas tous fait l'objet d'essais. Les degrés de résistance au feu de certains assemblages ont été extrapolés à partir d'essais de résistance au feu effectués sur des assemblages de murs similaires. Les listes sont utiles parce qu'elles offrent aux concepteurs des solutions standard. Elles peuvent cependant limiter l'innovation car les concepteurs utilisent des assemblages qui ont déjà été testés plutôt que de payer pour faire évaluer de nouveaux assemblages. Les assemblages répertoriés doivent être utilisés avec les mêmes matériaux et les mêmes méthodes d'installation que ceux qui ont été testés.

La section précédente sur les degrés de résistance au feu traite de la détermination des degrés de résistance au feu à partir d'essais normalisés. D'autres méthodes de détermination des degrés de résistance au feu sont également autorisées. Les méthodes alternatives de détermination des degrés de résistance au feu sont contenues dans le CNB, division B, annexe D, classements des performances en matière de résistance au feu. Ces méthodes de calcul alternatives peuvent remplacer les essais de résistance au feu propriétaires coûteux. Dans certains cas, elles permettent d'appliquer des exigences moins strictes en matière d'installation et de conception, telles que d'autres détails de fixation pour les plaques de plâtre et l'autorisation d'ouvertures dans les membranes de plafond pour les systèmes de ventilation. La section D-2 de l'annexe D de la division B du CNB comprend des méthodes permettant d'attribuer des degrés de résistance au feu aux éléments suivants :

  • les murs, les planchers et les toits à ossature en bois dans l'annexe D-2.3 (méthode des composants additifs) ;
  • les murs, les planchers et les toits en bois massif de l'annexe D-2.4 ; et,
  • poutres et colonnes en bois lamellé-collé à l'annexe D-2.11.

La méthode de calcul alternative la plus pratique comprend des procédures de calcul du degré de résistance au feu des murs, planchers et toits à ossature légère en bois, basées sur des descriptions génériques des matériaux. Cette méthode additive par composants (CAM) peut être utilisée lorsqu'il est clair que le degré de résistance au feu d'un ensemble dépend strictement de la spécification et de la disposition des matériaux pour lesquels il existe des normes reconnues au niveau national. Les ensembles doivent être conformes à toutes les exigences de l'annexe D-2.3 de la division B du CNB. Murs, planchers et toits à ossature bois et acier.

Bien que les informations contenues dans l'annexe D-2.4. portent sur des techniques de construction plus anciennes, l'utilisation de ces assemblages a connu un certain regain et les informations peuvent être particulièrement utiles lors de la réaffectation de bâtiments historiques.

L'annexe D de la division B du CNB comprend également des équations empiriques pour le calcul du degré de résistance au feu des poutres et des poteaux en bois lamellé-collé (glulam), à l'annexe D-2.11. Ces équations ont été élaborées à partir de prévisions théoriques et validées par des résultats d'essais. Les grands éléments en bois ont une résistance au feu inhérente parce que :

  • la lenteur de la combustion des gros bois, qui est d'environ 0,6 mm/minute dans des conditions d'essai au feu standard ; et,
  • les effets isolants de la couche de charbon, qui protège la partie non brûlée du bois.

Ces facteurs font que les éléments non protégés peuvent rester en place pendant une longue période lorsqu'ils sont exposés au feu. Le CNB reconnaît cette caractéristique et autorise l'utilisation d'éléments en bois non protégés, y compris les planchers et les tabliers de toit, qui respectent les dimensions minimales pour les constructions en bois massif, à la fois là où un degré de résistance au feu de 45 minutes est exigé et dans de nombreux bâtiments incombustibles. La méthode de calcul de l'annexe D permet de déterminer le degré de résistance au feu des poutres et des poteaux en lamellé-collé en fonction de l'exposition au feu sur trois ou quatre côtés.

La formule pour les poteaux ou les poutres qui peuvent être exposés sur trois côtés s'applique uniquement lorsque la face non exposée est le plus petit côté d'un poteau ; il n'existe pas de données expérimentales pour vérifier la formule lorsqu'un côté plus grand n'est pas exposé. Si un poteau est encastré dans un mur ou une poutre dans un plancher, les dimensions complètes de l'élément structurel sont utilisées dans la formule pour l'exposition au feu sur trois côtés. La comparaison des degrés de résistance au feu calculés avec les résultats expérimentaux montre que les valeurs calculées sont très souvent conservatrices. Un concepteur peut déterminer la résistance pondérée d'une poutre ou d'un poteau en se référant à la norme CSA O86 du Conseil canadien du bois (Wood Design Manual).

En outre, la norme CSA O86 comprend une annexe B informative qui fournit une méthode de calcul des degrés de résistance au feu pour les éléments en bois de grande section, tels que les poutres et les colonnes en bois lamellé-collé, les bois lourds sciés massifs et les bois composites structuraux.

De plus amples informations sur le calcul de la résistance au feu des éléments en bois lourds sont disponibles dans la publication de l'American Wood Council. Rapport technique 10 : Calcul de la résistance au feu des éléments en bois exposés (TR10).

 

Pour plus d'informations, consultez les ressources suivantes :

Manuel de conception du bois (Conseil canadien du bois)

Conception de la sécurité incendie dans les bâtiments (Conseil canadien du bois)

Code national du bâtiment du Canada

Code national de prévention des incendies du Canada

CSA O86, Conception technique en bois

CAN/ULC-S101 Méthode normalisée d'essai de résistance au feu des constructions et des matériaux de construction

ASTM E119 Méthodes d'essai normalisées pour les essais de résistance au feu des constructions et des matériaux de construction

Conseil américain du bois

Sultan, M.A., Séguin, Y.P., et Leroux, P. ; "IRC-IR-764 : Results of Fire Resistance Tests on Full-Scale Floor Assemblies", Institut de recherche en construction, Conseil national de recherches du Canada, mai 1998.

Sultan, M. A., Latour, J. C., Leroux, P., Monette, R. C., Séguin, Y. P., et Henrie, J. P. ; "RR-184 : Results of Fire Resistance Tests on Full-Scale Floor Assemblies - Phase II ", Institut de recherche en construction, Conseil national de recherches du Canada, mars 2005.

Sultan, M.A., et Lougheed, G.D. ; "IRC-IR-833 : Results of Fire Resistance Tests on Full-Scale Gypsum Board Assemblies", Institut de recherche en construction, Conseil national de recherches du Canada, août 2002.

Construction en bois lourd

Performance des adhésifs dans le bois abouté dans les assemblages muraux résistants au feu

Séparations coupe-feu et indices de résistance au feu

 

La vulnérabilité d'un bâtiment en cas d'incendie est plus élevée pendant la phase de construction que lorsqu'il est achevé et occupé. Cela s'explique par le fait que les risques et les dangers présents sur un chantier de construction diffèrent, tant par leur nature que par leur impact potentiel, de ceux qui existent dans un bâtiment achevé. En outre, ces risques et dangers surviennent à un moment où les éléments de prévention et de protection contre l'incendie qui sont conçus pour faire partie du bâtiment achevé ne sont pas encore en place.

Pour ces raisons, la sécurité incendie sur les chantiers de construction comporte des défis uniques. Toutefois, la compréhension des dangers et des risques potentiels constitue la première étape de la prévention et de l'atténuation des incendies.

Il est important de se conformer aux réglementations applicables en matière de planification de la sécurité incendie pendant la construction, et la coopération entre toutes les parties prenantes dans l'établissement et la mise en œuvre d'un plan contribue grandement à réduire le risque potentiel et les conséquences d'un incendie sur les sites de construction. Outre les réglementations provinciales, les gouvernements locaux et les municipalités peuvent également avoir des lois, des réglementations ou des exigences spécifiques qui doivent être respectées. Le service local de lutte contre les incendies peut être une ressource pour vous orienter vers ces réglementations ou exigences supplémentaires.

La sécurité sur le chantier peut avoir un impact sur la productivité et la rentabilité à n'importe quelle phase du projet. Étant donné que les réglementations provinciales ou municipales fixent les exigences minimales en matière de sécurité incendie sur les chantiers, il convient également de prendre en considération les caractéristiques, les objectifs et les buts spécifiques du projet, qui pourraient inciter à dépasser les normes réglementées en matière de sécurité incendie sur les chantiers. Il peut être prudent d'évaluer et de mettre en œuvre diverses "meilleures pratiques", basées sur les besoins spécifiques de votre site, qui peuvent fournir un niveau de protection supplémentaire et instaurer une culture de la sécurité incendie.

La plupart des incendies de chantier peuvent être évités grâce aux connaissances, à la planification et à la diligence, et l'impact des incendies qui peuvent se produire peut être considérablement réduit. Comprendre et traiter les dangers et les risques généraux et spécifiques d'un chantier de construction particulier nécessite de l'éducation et de la formation, ainsi qu'une préparation et une vigilance continues.

 

Pour plus d'informations, consultez les ressources suivantes :

Une structure doit être conçue pour résister à toutes les charges qui devraient agir sur elle pendant sa durée de vie. Sous l'effet des charges appliquées prévues, la structure doit rester intacte et fonctionner de manière satisfaisante. En outre, la construction d'une structure ne doit pas nécessiter une quantité démesurée de ressources. La conception d'une structure est donc un équilibre entre la fiabilité nécessaire et l'économie raisonnable.

Les produits du bois sont fréquemment utilisés pour fournir les principaux moyens de soutien structurel des bâtiments. L'économie et la solidité de la construction peuvent être obtenues en utilisant des produits du bois comme éléments d'applications structurelles telles que les solives, les montants muraux, les chevrons, les poutres, les poutrelles et les fermes. En outre, les produits de revêtement et de platelage en bois jouent à la fois un rôle structurel en transférant les charges du vent, de la neige, des occupants et du contenu aux principaux éléments structurels, et une fonction d'enveloppe du bâtiment. Le bois peut être utilisé dans de nombreuses formes structurelles telles que les maisons à ossature légère et les petits bâtiments qui utilisent des éléments répétitifs de petite dimension ou dans des systèmes d'ossature structurelle plus grands et plus lourds, tels que la construction en bois de masse, qui est souvent utilisée pour les projets commerciaux, institutionnels ou industriels. La conception technique des composants et systèmes structuraux en bois est basée sur la norme CSA O86.

Au cours des années 1980, la conception des structures en bois au Canada, conformément au Code national du bâtiment du Canada (CNB) et à la norme CSA O86, est passée de la conception des contraintes de travail (WSD) à la conception des états limites (LSD), rendant l'approche de la conception structurelle pour le bois similaire à celle des autres principaux matériaux de construction.

Toutes les approches de conception structurelle exigent les éléments suivants pour la résistance et l'aptitude au service :

Résistance des éléments = Effets des charges de calcul

En utilisant la méthode LSD, la structure et ses composants individuels sont caractérisés par leur résistance aux effets des charges appliquées. Le CNB applique des facteurs de sécurité à la fois au côté résistance et au côté charge de l'équation de conception :

Résistance pondérée = Effet de charge pondéré

La résistance pondérée est le produit d'un facteur de résistance (f) et de la résistance nominale (résistance spécifiée), tous deux indiqués dans la norme CSA O86 pour les matériaux et les assemblages en bois. Le facteur de résistance tient compte de la variabilité des dimensions et des propriétés des matériaux, de l'exécution, du type de défaillance et de l'incertitude dans la prédiction de la résistance. L'effet de la charge pondérée est calculé conformément au CNB en multipliant les charges réelles sur la structure (charges spécifiées) par des facteurs de charge qui tiennent compte de la variabilité de la charge.

Il n'existe pas deux échantillons de bois ou de tout autre matériau ayant exactement la même résistance. Dans tout processus de fabrication, il est nécessaire de reconnaître que chaque pièce fabriquée sera unique. Les charges, telles que la neige et le vent, sont également variables. Par conséquent, la conception structurelle doit tenir compte du fait que les charges et les résistances sont en réalité des groupes de données plutôt que des valeurs uniques. Comme pour tout groupe de données, il existe des attributs statistiques tels que la moyenne, l'écart-type et le coefficient de variation. L'objectif de la conception est de trouver un équilibre raisonnable entre la fiabilité et des facteurs tels que l'économie et l'aspect pratique.

La fiabilité d'une structure dépend d'une série de facteurs qui peuvent être classés comme suit :

  • les influences externes telles que les charges et les changements de température ;
  • la modélisation et l'analyse de la structure, des interprétations du code, des hypothèses de conception et des autres jugements qui constituent le processus de conception ;
  • la solidité et la consistance des matériaux utilisés dans la construction ; et
  • la qualité du processus de construction.

L'approche LSD consiste à fournir une résistance adéquate à certains états limites, à savoir la résistance et l'aptitude au service. Les états limites de résistance font référence à la capacité de charge maximale de la structure. Les états limites d'aptitude au service sont ceux qui restreignent l'utilisation et l'occupation normales de la structure, comme une déflexion ou des vibrations excessives. Une structure est considérée comme défaillante ou impropre à l'utilisation lorsqu'elle atteint un état limite au-delà duquel ses performances ou son utilisation sont compromises.

Les états limites pour la conception du bois sont classés dans les deux catégories suivantes :

  • Les états limites ultimes (ELU) concernent la sécurité des personnes et correspondent à la capacité de charge maximale. Ils comprennent des défaillances telles que la perte d'équilibre, la perte de capacité de charge, l'instabilité et la rupture ; et
  • Les états limites d'aptitude au service (ELAS) concernent les restrictions à l'utilisation normale d'une structure.

Les exemples de SLS comprennent la déflexion, les vibrations et les dommages localisés.

En raison des propriétés naturelles uniques du bois, telles que la présence de nœuds, la flache ou l'inclinaison du grain, l'approche de la conception pour le bois nécessite l'utilisation de facteurs de modification spécifiques au comportement structurel. Ces facteurs de modification sont utilisés pour ajuster les résistances spécifiées dans la norme CSA O86 afin de tenir compte des caractéristiques du matériau propres au bois. Les facteurs de modification couramment utilisés dans le calcul des structures en bois comprennent les effets de la durée de la charge, les effets de système liés aux éléments répétitifs agissant ensemble, les facteurs de conditions de service humides ou sèches, les effets de la taille des éléments sur la résistance et l'influence des produits chimiques et du traitement sous pression.

Les systèmes de construction en bois ont un rapport résistance/poids élevé et les constructions à ossature légère en bois contiennent de nombreux petits connecteurs, le plus souvent des clous, qui offrent une ductilité et une capacité importantes lorsqu'il s'agit de résister à des charges latérales, telles que les tremblements de terre et le vent.

Les murs de cisaillement et les diaphragmes à ossature légère constituent une solution de contreventement latéral très courante et pratique pour les bâtiments en bois. Généralement, le revêtement en bois, le plus souvent du contreplaqué ou des panneaux à copeaux orientés (OSB), qui est spécifié pour résister à la charge de gravité, peut également faire office de système de résistance aux forces latérales. Cela signifie que le revêtement remplit plusieurs fonctions, notamment la distribution des charges aux solives du plancher ou du toit, le contreventement des poutres et des montants pour éviter qu'ils ne se déforment et la résistance latérale aux charges dues au vent et aux tremblements de terre. D'autres systèmes de résistance aux charges latérales sont utilisés dans les bâtiments en bois, notamment les cadres rigides ou les portiques, les contreventements à genoux et les contreventements transversaux.

Un tableau des portées typiques est présenté ci-dessous pour aider le concepteur à choisir un système structurel en bois approprié.

Estimation de la portée des éléments en bois dans la conception des structures pour les solives, les poutres, les fermes et les arcs. 

 

Pour plus d'informations, consultez les ressources suivantes :

Introduction à la conception en bois (Conseil canadien du bois)

Manuel de conception en bois (Conseil canadien du bois)

CSA O86 Conception technique du bois

Code national du bâtiment du Canada

www.woodworks-software.com

Pendant de nombreuses années, les valeurs de calcul des bois de construction canadiens ont été déterminées en testant de petits échantillons clairs. Bien que cette approche ait bien fonctionné dans le passé, certains éléments indiquaient qu'elle ne reflétait pas toujours avec exactitude le comportement en service d'un élément de taille normale.

À partir des années 1970, de nouvelles données ont été recueillies sur le bois d'œuvre calibré en grandeur réelle, connu sous le nom d'essais en cours de fabrication. Au début des années 1980, l'industrie canadienne du bois a mené un important programme de recherche dans le cadre du Programme des propriétés du bois du Conseil canadien du bois, portant sur les propriétés de résistance à la flexion, à la traction et à la compression parallèle au fil du bois de 38 mm d'épaisseur (2 pouces nominaux) pour tous les groupes d'essences canadiennes commercialement importants. Le Lumber Properties Program a été mené en coopération avec l'industrie américaine dans le but de vérifier la corrélation de la classification des bois d'œuvre d'une usine à l'autre, d'une région à l'autre et entre le Canada et les États-Unis.

Le programme d'essais au sol a consisté à tester des milliers de pièces de bois de construction jusqu'à leur destruction afin de déterminer leurs caractéristiques en service. Il a été convenu que ce programme d'essai devait simuler, aussi fidèlement que possible, les conditions structurelles d'utilisation finale auxquelles le bois serait soumis.

Après avoir été conditionnés à un taux d'humidité d'environ 15 %, les échantillons ont été soumis à une charge à court et à long terme conformément à la norme ASTM D4761. Des échantillons de bois de trois dimensions : 38 x 89 mm, 38 x 184 mm et 38 x 235 mm (2 x 4 po, 2 x 8 po et 2 x 10 po) ont été sélectionnés dans toutes les régions de culture du Canada pour les trois groupes d'essences commerciales les plus importants : épicéa-pin-sapin (S-P-F), sapin de Douglas-mélèze (D.Fir-L) et sapin-épicéa. Les essences Select Structural, No.1, No.2, No.3, ainsi que les essences de charpente légère, ont été échantillonnées en flexion. Les qualités Select Structural, No.1 et No.2 ont été évaluées en traction et en compression parallèlement au fil. Plusieurs essences de moindre volume ont également été évaluées à des intensités d'échantillonnage plus faibles.

Les essais sur le terrain ont permis d'établir de nouvelles relations entre les essences, les dimensions et les qualités. La base de données des résultats du bois de construction a été examinée afin d'établir les tendances des propriétés de flexion, de tension et de compression parallèles au grain, en fonction de la taille et de la qualité de l'élément. Ces études ont servi de base à l'extension des résultats à l'ensemble des qualités de bois d'œuvre et des dimensions des éléments décrits dans la norme CSA O86. Au Canada, la norme CSA O86 et le Code national du bâtiment du Canada (CNB) ont adopté les résultats du Programme des propriétés du bois de sciage. Les données ont également été utilisées pour mettre à jour les valeurs de calcul aux États-Unis.

Les données scientifiques issues du Lumber Properties Program ont démontré :

  • une corrélation étroite entre les propriétés de résistance du bois de dimension n° 1 et n° 2 classé visuellement ;
  • une bonne corrélation dans l'application des règles de classement d'une usine à l'autre et d'une région à l'autre ; et
  • une diminution de la résistance relative à mesure que la taille augmente (effet de taille) - par exemple, la résistance unitaire à la flexion d'un élément de 38 × 89 mm (2 x 4 pouces) est supérieure à celle d'un élément de 38 × 114 mm (2 x 6 pouces).

Suite à ce programme d'essais, la norme ASTM D1990, basée sur un consensus, a été élaborée et publiée. Les données relatives à la flexion, à la traction parallèle au grain, à la compression parallèle au grain et au module d'élasticité continuent d'être analysées conformément à cette norme.

Contrairement au bois d'œuvre classé visuellement, dont les propriétés de résistance anticipées sont déterminées à partir de l'évaluation d'une pièce sur la base de l'aspect visuel et de la présence de défauts tels que les nœuds, les flaches ou l'inclinaison du grain, les caractéristiques de résistance du bois d'œuvre classé par contrainte mécanique (MSR) sont déterminées en appliquant des forces à un élément et en mesurant réellement la rigidité d'une pièce particulière. Lorsque le bois est introduit en continu dans l'équipement d'évaluation mécanique, la rigidité est mesurée et enregistrée par un petit ordinateur, et la résistance est évaluée par des méthodes de corrélation. Le classement MSR peut être effectué à des vitesses allant jusqu'à 365 m (1000 ft) par minute, y compris l'apposition d'une marque de classement MSR. Le bois de MSR fait également l'objet d'un contrôle visuel des propriétés autres que la rigidité qui pourraient affecter l'adéquation d'une pièce donnée. Étant donné que la rigidité de chaque pièce est mesurée individuellement et que la résistance est mesurée sur des pièces sélectionnées dans le cadre d'un programme de contrôle de la qualité, le bois de MSR peut se voir attribuer des résistances de conception spécifiées plus élevées que le bois de dimension classé visuellement.

 

Pour plus d'informations, consultez les ressources suivantes :

Canadian Lumber Properties (Conseil canadien du bois)

ASTM D1990 Standard Practice for Establishing Allowable Properties for Visually-Graded Dimension Lumber from In-Grade Tests of Full-Size Specimens (Pratique standard pour l'établissement des propriétés admissibles pour le bois de dimension à classement visuel à partir d'essais en cours sur des spécimens de taille normale)

ASTM D4761 Standard Test Methods for Mechanical Properties of Lumber and Wood-Based Structural Materials (Méthodes de test standard pour les propriétés mécaniques du bois de construction et des matériaux structuraux à base de bois)

Autorité nationale de classification des bois (NLGA)

Humidité, dégradation et termites

Le bois est un matériau naturel et biodégradable. Cela signifie que certains insectes et champignons peuvent décomposer le bois pour le recycler via la terre en un nouveau matériau végétal.

La décomposition, également appelée pourriture, est la décomposition de la matière organique par l'activité fongique. Quelques espèces spécialisées de champignons peuvent agir sur le bois. Il s'agit d'un processus important dans la forêt. Mais il s'agit évidemment d'un processus à éviter pour les produits en bois en service.

La clé de la lutte contre la pourriture est le contrôle de l'humidité excessive. L'eau en elle-même n'endommage pas le bois, mais elle permet à ces organismes fongiques de se développer. Le bois est en fait assez tolérant à l'eau et pardonne de nombreuses erreurs d'humidité. Mais un excès d'humidité involontaire (par exemple, une fuite importante dans un mur) peut entraîner un risque important de pourriture. Si un produit en bois doit être utilisé dans une application qui sera fréquemment mouillée pendant de longues périodes, des mesures doivent être prises pour protéger le bois contre la pourriture.

Différents types d'insectes peuvent endommager le bois, mais les principaux responsables des problèmes sont les termites. Les termites vivent partout dans le monde où le climat est chaud ou tempéré.

Une fondation permanente en bois (CPB) est un système de construction technique qui utilise des murs porteurs extérieurs en bois à ossature légère dans une application sous le niveau du sol. Une fondation permanente en bois se compose d'un mur à colombages et d'une sous-structure de semelle, construits en contreplaqué et en bois d'œuvre traités avec des produits de préservation approuvés, qui soutiennent une superstructure située au-dessus du niveau du sol. En plus de fournir un support structurel vertical et latéral, le système PWF offre une résistance aux flux de chaleur et d'humidité. Les premiers exemples de PWF ont été construits dès 1950 et nombre d'entre eux sont encore utilisés aujourd'hui.

Le PWF est un système technique solide, durable et éprouvé qui présente un certain nombre d'avantages uniques :

  • les économies d'énergie résultant de niveaux d'isolation élevés, réalisables grâce à l'application d'une isolation des cavités des montants et d'une isolation extérieure rigide (jusqu'à 20% de transfert de chaleur peuvent se produire à travers les fondations) ;
  • un espace de vie sec et confortable grâce à un système de drainage supérieur (qui ne nécessite pas de tuiles pleureuses) ;
  • une augmentation de l'espace habitable puisque les cloisons sèches peuvent être fixées directement sur les montants des murs de fondation ;
  • résistance à la fissuration due aux cycles de gel/dégel ;
  • s'adapte à la plupart des constructions, y compris les vides sanitaires, les annexes et les sous-sols aménagés ;
  • un seul corps de métier pour une planification plus efficace de la construction ;
  • constructible en hiver avec une protection minimale autour des semelles pour les protéger du gel ;
  • une construction rapide, qu'il s'agisse d'une ossature sur place ou d'une préfabrication hors site ;
  • les matériaux sont facilement disponibles et peuvent être expédiés efficacement vers les sites de construction ruraux ou éloignés ; et
  • une longue durée de vie, sur la base de l'expérience acquise sur le terrain et en ingénierie.

Les MPO conviennent à tous les types de construction à ossature légère couverts par la partie 9 "Logements et petits bâtiments" du Code national du bâtiment du Canada (CNB), c'est-à-dire que les MPO peuvent être utilisés pour des bâtiments d'une hauteur maximale de trois étages au-dessus des fondations et dont la surface de construction ne dépasse pas 600 mètres.2. Les MPO peuvent être utilisés comme systèmes de fondation pour les maisons individuelles, les maisons en rangée, les appartements de faible hauteur et les bâtiments institutionnels et commerciaux. Ils peuvent également être conçus pour des projets tels que les vides sanitaires, les ajouts de pièces et les fondations de murs de genoux pour les garages et les maisons préfabriquées.

Il existe trois types différents de PWF : le sous-sol à dalle de béton ou à plancher de bois, le sous-sol à plancher de bois suspendu et le vide sanitaire non excavé ou partiellement excavé. Les montants de bois utilisés dans les CPE sont généralement de 38 x 140 mm (2 x 6 pouces) ou de 38 x 184 mm (2 x 8 pouces), de qualité n° 2 ou supérieure.

Des méthodes améliorées de contrôle de l'humidité autour et sous le PWF permettent d'obtenir un espace de vie confortable et sec sous le niveau du sol. Le PWF est placé sur une couche de drainage granulaire qui s'étend sur 300 mm au-delà des semelles. Un pare-vapeur extérieur, appliqué à l'extérieur des murs, assure la protection contre les infiltrations d'humidité. Les joints calfeutrés entre tous les panneaux muraux extérieurs en contreplaqué et au bas des murs extérieurs ont pour but de contrôler les fuites d'air à travers le PWF, mais aussi d'éliminer les voies de pénétration de l'eau. Le résultat est un sous-sol sec qui peut être facilement isolé et aménagé pour un maximum de confort et d'économies d'énergie.

Tout le bois d'œuvre et le contreplaqué utilisés dans un PWF, à l'exception d'éléments ou de conditions spécifiques, doivent être traités à l'aide d'un produit de préservation du bois à base d'eau et identifiés comme tels par une marque de certification attestant de leur conformité à la norme CSA O322. Les clous résistants à la corrosion, les ancrages d'ossature et les sangles utilisés pour fixer les matériaux traités à l'aide d'un produit de préservation du bois doivent être galvanisés par immersion à chaud ou en acier inoxydable. Les pare-vapeur et les pare-humidité extérieurs doivent avoir une épaisseur d'au moins 0,15 mm (6 mil). Les panneaux de drainage à excroissances sont souvent utilisés comme pare-vapeur extérieur.

 

Pour plus d'informations, voir les références suivantes :

Fondations permanentes en bois (Conseil canadien du bois)

Fondations permanentes en bois 2023 - Durable, confortable, adaptable, économe en énergie, économique (Préservation du bois Canada et Conseil canadien du bois)

Manuel de conception en bois (Conseil canadien du bois)

Préservation du bois Canada

CSA S406 Spécification des fondations permanentes en bois pour les habitations et les petits bâtiments

CSA O322 Procédure de certification des matériaux en bois traité sous pression destinés à être utilisés dans des fondations permanentes en bois

CSA O86 Conception technique en bois

Code national du bâtiment du Canada

Province : Manitoba
Ville : Winnipeg
Catégorie de projet : Commercial
Classification majeure : A2 - Salles communautaires
Hauteur : 2 étages
Zone de construction : 18 000 pieds2

Description :

WoodWorks Alberta a aidé l'équipe de conception à utiliser le bois massif dans le projet Buffalo Crossing, un nouveau bâtiment polyvalent de deux étages en bois massif en cours de construction qui deviendra la porte d'entrée sud de la propriété de FortWhyte Alive. Le programme du bâtiment comprend l'accueil des visiteurs, un espace de vente au détail et un petit service de café ; toutefois, la majeure partie de l'espace sera consacrée à la programmation des écoles et des jeunes, y compris les camps de jour et les événements de plus grande envergure. Le bâtiment CLT est conçu selon les normes Passive House, ce qui témoigne d'un leadership et d'un engagement en faveur d'une conception respectueuse du climat. Buffalo Crossing sera le premier bâtiment commercial du Manitoba à obtenir la certification Passive House.

Province : Colombie-Britannique
Ville : Vancouver
Catégorie de projet : Institutionnel
Classification majeure : A2 - Amphithéâtres
Hauteur : 5 étages
Zone de construction : 266,041 ft2

Description :

Le projet UBC Gateway (nom officiel à déterminer) regroupera l'école de soins infirmiers, l'école de kinésiologie, les services de santé intégrés pour les étudiants et les composantes de UBC Health dans un bâtiment qui facilitera l'interaction entre les programmes et contribuera à la santé et au bien-être des étudiants. Le bâtiment utilise largement le CLT et le GLT locaux dans son système structurel hybride et ses caractéristiques architecturales qui reflètent le cadre du projet dans le nord-ouest du Pacifique et le contexte immédiat du campus. Les éléments préfabriqués accélèrent la construction et créent un espace ouvert et flexible qui peut s'adapter aux changements de programmation futurs. Les panneaux de plancher en bois composite de longue portée ont été préassemblés hors site et acheminés par grue, et l'enveloppe du bâtiment est entièrement préfabriquée sous forme de panneaux de trois mètres de large qui s'intègrent au module structurel en bois au niveau du périmètre du bâtiment. Le bâtiment sera achevé et occupé en 2024.

 

Province : Ontario
Ville : Toronto
Catégorie de projet : Institutionnel
Classification majeure : D  – Offices
Hauteur : 14 étages
Zone de construction : 176,549 ft2

Description :

La nouvelle tour universitaire de l'Université de Toronto est un bâtiment de 14 étages en bois massif, actuellement en construction, construit avec des composants GLT. La réalisation d'un bâtiment innovant de cette taille et de cette complexité, qui va au-delà de la limite de hauteur prescrite par le Code du bâtiment de l'Ontario, a nécessité un soutien important et une équipe de projet compétente et expérimentée dans le domaine du bois. Les interactions techniques du projet avec le personnel de WoodWorks remontent à 2016 et nous avons suivi 21 interactions directes liées à ce projet. Un examen plus approfondi de nos données de projet révèle que l'équipe de projet a eu 23 interactions indirectes supplémentaires avec l'équipe de WoodWorks (participation à des événements, demande de documents techniques, etc.) L'équipe de projet compte 28 projets dans son portefeuille d'expériences combinées, ce qui indique qu'une équipe de conception expérimentée et soutenue a été en mesure de faire avancer un étage de réussite de solutions alternatives et l'un des plus hauts bâtiments en bois d'Amérique du Nord.

 

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône Persona
Persona
Tags Icône
Tags
Rapports annuels Icône Plus
Livre des prix Icône Plus
Études de cas Icône Plus
Publications gratuites Icône Plus
Revue Icône Plus
Systèmes de construction Icône Plus
Codes et normes Icône Plus
Nouvelles de l'industrie Icône Plus
Pourquoi le bois (FAQ) Icône Plus
Produits du bois Icône Plus
Acoustique Icône Plus
Exemples de conception Icône Plus
Ingénierie Icône Plus
Résistance au feu Icône Plus
Assurance Icône Plus
Bois massif Icône Plus
Icône de date
Date
Séparateur de ligne