Église presbytérienne coréenne - Edmonton, Alberta
Bois de placage stratifié

First used during World War II to make airplane propellers, laminated veneer lumber (LVL) has been available as a construction product since the mid-1970s. LVL is the most widely used structural composite lumber (SCL) product and provides attributes such as high strength, high stiffness and dimensional stability. The manufacturing process of LVL enables large members to be made from relatively small trees, providing efficient utilization of forest resources. LVL is commonly fabricated using wood species such as Douglas fir, Larch, Southern yellow pine and Poplar. LVL is used primarily as structural framing for residential and commercial construction. Common applications of LVL in construction include headers and beams, hip and valley rafters, scaffold planking, and the flange material for prefabricated wood I-joists. LVL can also been used in roadway sign posts and as truck bed decking. LVL is made of dried and graded wood veneer which is coated with a waterproof phenol-formaldehyde resin adhesive, assembled in an arranged pattern, and formed into billets by curing in a heated press. The LVL billet is then sawn to desired dimensions depending on the end use application. The grain of each layer of veneer runs in the same (long) direction with the result that LVL is able to be loaded on its short edge (strong axis) as a beam or on its wide face (weak axis) as a plank. This type of lamination is called parallel-lamination and produces a material with greater uniformity and predictability than engineered wood products fabricated using cross-lamination, such as plywood. LVL is a solid, highly predictable, uniform lumber product due to the fact that natural defects such as knots, slope of grain and splits have been dispersed throughout the material or have been removed altogether during the manufacturing process. The most common thickness of LVL is 45 mm (1-3/4 in), from which wider beams can be easily constructed by fastening multiple LVL plies together on site. LVL can also be manufactured in thicknesses from 19 mm (3/4 in) to 178 mm (7 in). Commonly used LVL beam depths are 241 mm (9-1/2 in), 302 mm (11-7/8 in), 356 mm (14 in), 406 mm (16 in), 476 mm (18-3/4 in) and 606 mm (23-7/8 in). Other widths and depths might also be available from specific manufacturers. LVL is available in lengths up to 24.4 m (80 ft), while more common lengths are 14.6 m (48 ft), 17 m (56 ft), 18.3 m (60 ft) and 20.1 m (66 ft). LVL can easily be cut to length at the jobsite. All special cutting, notching or drilling should be done in accordance with manufacturer’s recommendations. LVL is a wood-based product with similar fire performance to a comparably sized solid sawn lumber or glued-laminated beam. Manufacturer’s catalogues and evaluation reports are the primary sources of information for design, typical installation details and performance characteristics. LVL is mainly used as a structural element, most often in concealed spaces where appearance is not important. Finished or architectural grade appearance is available from some manufacturers, usually at an additional cost. However, when it is desired to use LVL in applications where appearance is important, common wood finishing techniques can be used to accent grain and to protect the wood surface. In finished appearance, LVL resembles plywood or lumber on the wide face. As with any other wood product, LVL should be protected from the weather during jobsite storage and after installation. Wrapping of the product for shipment to the job site is important in providing moisture protection. End and edge sealing of the product will enhance its resistance to moisture penetration. LVL is a proprietary product and therefore, the specific engineering properties and sizes are unique to each manufacturer. Thus, LVL does not have a common standard of production and common design values. Design values are derived from test results analysed in accordance with CSA O86 and ASTM D5456 and the design values are reviewed and approved by the Canadian Construction Materials Centre (CCMC). Products meeting the CCMC guidelines receive an Evaluation Number and Evaluation Report that includes the specified design strengths, which are subsequently listed in CCMC’s Registry of Product Evaluations. The manufacturer’s name or product identification and the stress grade is marked on the material at various intervals, but due to end cutting it may not be present on every piece. For further information, refer to the following resources: APA – The Engineered Wood Association Canadian Construction Materials Centre (CCMC), Institute for Research in Construction CSA O86 Engineering design in wood ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products
Bois de sciage stratifié

Laminated Strand Lumber (LSL) is one of the more recent structural composite lumber (SCL) products to come into widespread use. LSL provides attributes such as high strength, high stiffness and dimensional stability. The manufacturing process of LSL enables large members to be made from relatively small trees, providing efficient utilization of forest resources. LSL is commonly fabricated using fast growing wood species such as Aspen and Poplar. LSL is used primarily as structural framing for residential, commercial and industrial construction. Common applications of LSL in construction include headers and beams, tall wall studs, rim board, sill plates, millwork and window framing. LSL also offers good fastener-holding strength. Similar to parallel strand lumber (PSL) and oriented strand lumber (OSL), LSL is made from flaked wood strands that have a length-to-thickness ratio of approximately 150. Combined with an adhesive, the strands are oriented and formed into a large mat or billet and pressed. LSL resembles oriented strand board (OSB) in appearance as they are both fabricated from the similar wood species and contain flaked wood strands, however, unlike OSB, the strands in LSL are arranged parallel to the longitudinal axis of the member. LSL is a solid, highly predictable, uniform engineered wood product due to the fact that natural defects such as knots, slope of grain and splits have been dispersed throughout the material or have been removed altogether during the manufacturing process. Like other SCL products such as LVL and PSL, LSL offers predictable strength and stiffness properties and dimensional stability that minimize twist and shrinkage. All special cutting, notching or drilling should be done in accordance with manufacturer’s recommendations. Manufacturer’s catalogues and evaluation reports are the primary sources of information for design, typical installation details and performance characteristics. As with any other wood product, LSL should be protected from the weather during jobsite storage and after installation. Wrapping of the product for shipment to the job site is important in providing moisture protection. End and edge sealing of the product will enhance its resistance to moisture penetration. LSL is a proprietary product and therefore, the specific engineering properties and sizes are unique to each manufacturer. Thus, LSL does not have a common standard of production and common design values. Design values are derived from test results analysed in accordance with CSA O86 and ASTM D5456 and the design values are reviewed and approved by the Canadian Construction Materials Centre (CCMC). Products meeting the CCMC guidelines receive an Evaluation Number and Evaluation Report that includes the specified design strengths, which are subsequently listed in CCMC’s Registry of Product Evaluations. The manufacturer’s name or product identification and the stress grade is marked on the material at various intervals, but due to end cutting it may not be present on every piece. For further information, refer to the following resources: APA – The Engineered Wood Association Canadian Construction Materials Centre (CCMC), Institute for Research in Construction CSA O86 Engineering design in wood ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products
École d'architecture McEwen de l'Université Laurentienne - Sudbury, ON
Poutrelles à ossature légère

Une ferme est une structure qui repose sur une disposition triangulaire des âmes et des membrures pour transférer les charges aux points de réaction. Cette disposition géométrique des éléments confère aux fermes un rapport résistance/poids élevé, ce qui permet des portées plus longues que les charpentes conventionnelles. Les fermes à ossature légère peuvent généralement atteindre une portée de 20 m (60 pieds), bien que des portées plus longues soient également possibles. Les premières fermes à ossature légère ont été construites sur place à l'aide de goussets en contreplaqué cloués. Ces fermes offraient des portées acceptables mais nécessitaient un temps de construction considérable. Développée à l'origine aux États-Unis dans les années 1950, la plaque de connexion métallique a transformé l'industrie des fermes en permettant une préfabrication efficace des fermes de courte et de longue portée. Les plaques d'assemblage en métal léger permettent de transférer la charge entre les éléments adjacents grâce à des dents en acier poinçonnées qui sont encastrées dans les éléments en bois. Aujourd'hui, les fermes en bois à ossature légère sont largement utilisées dans les constructions résidentielles unifamiliales et multifamiliales, institutionnelles, agricoles, commerciales et industrielles. La forme et la taille des fermes à ossature légère ne sont limitées que par les capacités de fabrication, les contraintes d'expédition et les considérations de manutention. Les fermes peuvent être conçues comme simples ou à plusieurs travées, avec ou sans porte-à-faux. L'économie, la facilité de fabrication, la livraison rapide et les procédures de montage simplifiées rendent les fermes en bois à ossature légère compétitives dans de nombreuses applications de toiture et de plancher. Leur grande portée élimine souvent le besoin de murs porteurs intérieurs, ce qui offre au concepteur une grande souplesse dans l'agencement des planchers. Les fermes de toit offrent des configurations en pente, inclinées ou plates, tout en laissant un espace libre entre les membrures pour l'isolation, la ventilation, l'électricité, la plomberie, le chauffage et l'air conditionné. Les fermes en bois à ossature légère sont préfabriquées en pressant les dents saillantes de la plaque d'acier de la ferme dans des éléments de bois de 38 mm (2 po), qui sont prédécoupés et assemblés dans un gabarit. La plupart des fermes sont fabriquées avec du bois de 38 x 64 mm (2 x 3 pouces) à 38 x 184 mm (2 x 8 pouces) classé visuellement et soumis à des contraintes mécaniques (MSR). Pour obtenir différentes valeurs d'adhérence, les plaques d'assemblage des fermes sont estampées à partir de tôles d'acier galvanisé de calibre léger de différentes qualités et épaisseurs. De nombreuses dimensions de plaques sont fabriquées pour s'adapter à toutes les formes et dimensions de fermes ou de charges à supporter. Les fermes à ossature légère sont fabriquées conformément aux normes établies par le Truss Plate Institute of Canada. Les capacités des plaques varient d'un fabricant à l'autre et sont établies par des essais. Les plaques de fermes doivent être conformes aux exigences de la norme CSA O86 et doivent être approuvées par le Centre canadien des matériaux de construction (CCMC). Pour obtenir cette approbation, les plaques de fermes sont testées conformément à la norme CSA S347. Lors de la conception, les fermes à ossature légère sont généralement conçues par le fabricant de plaques de fermes pour le compte du fabricant de fermes. Lorsque les fermes à ossature légère arrivent sur le chantier, il convient de vérifier qu'elles ne présentent pas de dommages permanents tels que des ruptures transversales dans le bois, des plaques de connexion métalliques manquantes ou endommagées, des fissures excessives dans le bois ou tout autre dommage susceptible de nuire à l'intégrité structurelle de la ferme. Dans la mesure du possible, les fermes doivent être déchargées en paquets sur un sol sec et relativement lisse. Elles ne doivent pas être déchargées sur un terrain accidenté ou sur des espaces irréguliers qui pourraient entraîner des tensions latérales excessives susceptibles de déformer les plaques d'assemblage métalliques ou d'endommager des parties des fermes. Les fermes à ossature légère peuvent être stockées horizontalement ou verticalement. Si elles sont stockées en position horizontale, les fermes doivent être soutenues par des cales espacées de 2,4 à 3 m (8 à 10 ft) afin d'éviter les flexions latérales et de réduire l'absorption d'humidité par le sol. Lorsqu'elles sont stockées en position verticale, les fermes doivent être placées sur une surface horizontale stable et contreventées pour éviter qu'elles ne basculent ou ne se renversent. Si les fermes doivent être stockées pendant une période prolongée, des mesures doivent être prises pour les protéger des intempéries, en les gardant sèches et bien ventilées. Les fermes à ossature légère nécessitent un contreventement temporaire pendant le montage, avant l'installation d'un contreventement permanent. Les plaques de fermes ne doivent pas être utilisées avec du bois incisé. Contacter le fabricant de fermes pour obtenir des conseils supplémentaires sur l'utilisation des fermes à ossature légère dans des environnements corrosifs, des conditions de service humides ou lorsqu'elles sont traitées avec un produit ignifuge. Pour plus d'informations, consulter les ressources suivantes : Canadian Wood Truss Association Truss Plate Institute of Canada CSA O86 Engineering design in wood CSA S347 Method of test for evaluation of truss plates used in lumber joints Canadian Construction Materials Centre
Analyse dynamique linéaire des murs de cisaillement et des structures de podium en bois
Vivre avec les lacs
Vivre avec le Centre des lacs
Établissements de soins de longue durée - Norview Lodge & Parkwood Mennonite Home
Établissements de soins de longue durée (Norview Lodge et Parkwood Mennonite Home)
Construction de bâtiments commerciaux de faible hauteur en bois

Bois de construction

Dimension lumber is solid sawn wood that is less than 89 mm (3.5 in) in thickness. Lumber can be referred to by its nominal size in inches, which means the actual size rounded up to the nearest inch or by its actual size in millimeters. For instance, 38 × 89 mm (1-1/2 × 3-1/2 in) material is referred to nominally as 2 × 4 lumber. Air-dried or kiln dried lumber (S-Dry), having a moisture content of 19 percent or less, is readily available in the 38 mm (1.5 in) thickness. Dimension lumber thicknesses of 64 and 89 mm (2-1/2 and 3-1/2 in) are generally available as surfaced green (S-Grn) only, i.e., moisture content is greater than 19 percent. The maximum length of dimension lumber that can be obtained is about 7 m (23 ft), but varies throughout Canada. The predominant use of dimension lumber in building construction is in framing of roofs, floors, shearwalls, diaphragms, and load bearing walls. Lumber can be used directly as framing materials or may be used to manufacture engineered structural products, such as light frame trusses or prefabricated wood I-joists. Special grade dimension lumber called lamstock (laminating stock) is manufactured exclusively for glulam. Quality assurance of Canadian lumber is achieved via a complex system of product standards, engineering design standards and building codes, involving grading oversight, technical support and a regulatory framework. Checking and splitting Checking and splitting Checking occurs when lumber is rapidly dried. The surface dries quickly, while the core remains at a higher moisture content for some time. As a result, the surface attempts to shrink but is restrained by the core. This restraint causes tensile stresses at the surface, which if large enough, can pull the fibres apart, thereby creating a check. Splits are through checks that generally occur at the end of wood members. When a wood member dries, moisture is lost very rapidly from the end of the member. At midlength, however, the wood is still at a higher moisture content. This difference in moisture content creates tensile stresses at the end of the member. When the stresses exceed the strength of the wood, a split is formed. Large dimension solid sawn timbers are susceptible to checking and splitting since they are always dressed green (S-Grn). Furthermore, due to their large size, the core dries slowly and the tensile stresses at the surface and at the ends can be large. Minor checks confined to the surface areas of a wood member very rarely have any effect on the strength of the member. Deep checks could be significant if they occur at a point of high shear stress. Checks in columns are not of structural importance, unless the check develops into a through split that will increase the slenderness ratio of the column. The specified shear strengths of dimension lumber and timbers have been developed to consider the maximum amount of checking or splitting permitted by the applicable grading rule. The possibility and severity of splitting and checking can be reduced by controlling the rate at which drying occurs. This may be done by keeping wood out of direct sunlight and away from any artificial heat sources. Furthermore, the ends may be coated with an end sealer to retard moisture loss. Other actions which will minimize dimension change and the possibility of checking or splitting are: specifying wood products that are as close as possible in moisture content to the expected equilibrium moisture content of the end use ensuring dry wood products are protected by proper storage and handling Fingerjoined lumber Fingerjoined products are manufactured by taking shorter pieces of kiln-dried lumber, machining a ‘finger’ profile in each end of the short-length pieces, adding an appropriate structural adhesive, and end-gluing the pieces together to make a longer length piece of lumber. The length of a fingerjoined lumber is not limited by the length of the log. In fact, the manufacturing process can result in the production of joists and rafters in lengths of 12 m (40 ft) or more. The process of fingerjoining is also used within the manufacturing process for several other engineered wood products, including glued-laminated timber and wood I-joists. The specific term “fingerjoined lumber” applies to dimension lumber that contains finger joints. Fingerjoining derives greater value from the forest resource by using short length pieces of lower grade lumber as input for the manufacture of a value-added engineered wood product. The fingerjoining process utilizes short off cut pieces of lumber and results in more efficient use of the harvested wood fibre. Fingerjoined lumber can be manufactured from any commercial species or species group. The most commonly used species group from which fingerjoined lumber is produced is Spruce-Pine-Fir (S-P-F). Design advantages of fingerjoined lumber Fingerjoined lumber is an engineered wood product that is desirable for several reasons: straightness dimensional stability interchangeability with non-fingerjointed lumber highly efficient use of wood fibre The design and performance advantages of this engineered wood product are its straightness and dimensional stability. The straightness and dimensional stability of fingerjoined lumber is a result of short length pieces of lumber, consisting of relatively straight grain and fewer natural defects, being combined with one another to form a longer length piece of lumber. The grain pattern along fingerjoined lumber becomes non-uniform and random by attaching many short pieces together. This results in fingerjoined lumber being less prone to warping than solid sawn lumber. The fingerjoining process also results in the reduction or removal of strength reducing defects, producing a structural wood product with less variable engineering properties than solid sawn dimensional lumber. The most common use of finger-joined lumber is as studs in shearwalls and vertical load bearing walls. The most important factor for studs is straightness. Fingerjoined studs will stay straighter than solid sawn dimensional lumber studs when subjected to changes in temperature and humidity. This feature results in significant benefits to the builder and homeowner including a superior building, the elimination of nail pops in drywall and other problems related to