Bienvenue sur le nouveau Hub de Ressources Numériques du CCB (BETA)

en-ca

Construire avec du bois

Explorez notre large éventail de sujets liés à la construction en bois.

54 résultats trouvés...
Trier par Icône de la liste déroulante

L'aspect du bois peut être modifié par l'application d'un produit d'entretien. revêtement architectural. Les revêtements architecturaux sont des revêtements de surface tels que des peintures et des teintures appliquées à un bâtiment ou à des structures extérieures telles qu'une terrasse. Les revêtements sont multifonctionnels : ils sont décoratifs, réduisent les efforts nécessaires pour nettoyer les bâtiments et les structures, et offrent une protection contre l'absorption d'humidité, ce qui contribue à prolonger la durée de vie du bois. Cependant, les revêtements ne peuvent pas être considérés comme des substituts aux traitements de préservation. Sur cette page, nous expliquons les bases des différents types de revêtements extérieurs pour le bois, et ce qu'ils peuvent et ne peuvent pas faire pour le bois.

Types de revêtements - Opacité

Les revêtements architecturaux disponibles pour le bois comprennent généralement des peintures, des teintures, des vernis et des hydrofuges. Il existe plusieurs façons de classer les revêtements. L'une des méthodes les plus courantes consiste à les différencier en fonction de leur aspect. Les revêtements sont souvent identifiés comme suit 1) opaques ; 2) semi-transparents ou 3) transparents. Ces termes indiquent dans quelle mesure les caractéristiques naturelles du bois seront visibles à travers la finition. 

Un opaque Le revêtement ne laisse transparaître aucune des couleurs naturelles du bois et, en fonction de l'épaisseur, peut également masquer une grande partie ou la totalité de la texture de sa surface. Il protège efficacement le bois des dommages causés par la lumière du soleil. Il peut également contribuer à empêcher l'humidité de pénétrer dans le bois. Ces revêtements ont tendance à durer plus longtemps. Les revêtements opaques comprennent les peintures et les teintures de couleur unie.

transparent ou semi-transparent finition comme un tache ou hydrofuge peut modifier la couleur du bois, mais comme elle laisse apparaître le grain et la texture, le bois conserve un aspect "naturel". Ces finitions aident à empêcher l'humidité de pénétrer dans le bois dans une certaine mesure, mais la capacité des teintures à limiter la pénétration de l'humidité varie considérablement d'une teinture à l'autre. Elles protègent également le bois des dommages causés par la lumière du soleil à des degrés divers, en fonction de leur teneur en absorbeurs organiques d'UV ou en pigments inorganiques. La différence entre les revêtements transparents et semi-transparents n'est pas toujours claire. Les revêtements transparents laissent apparaître davantage de grain et de texture. Les revêtements extérieurs transparents étiquetés comme "clairs" peuvent encore contenir des pigments pour rehausser la couleur naturelle du bois et fournir une distinction visuelle entre les zones peintes et non peintes pendant l'application. Toutefois, il est important de noter que les produits transparents destinés à un usage intérieur ne conviennent PAS à un usage extérieur, car ils se dégradent rapidement et s'abîment s'ils sont exposés à la lumière du soleil et aux intempéries.

Il existe de nombreux produits transparents commercialisés pour protéger le bois contre l'eau (hydrofuges) - ces produits pourraient techniquement être considérés comme des "traitements" du bois plutôt que comme des revêtements du bois, car ils assurent principalement une protection contre l'eau et aident à réduire le fendillement, et n'offrent qu'une protection UV très limitée, voire inexistante. Cela signifie qu'ils tombent généralement en panne plus tôt que les finitions pigmentées, mais ils contribuent à ralentir le processus d'altération en limitant la pénétration de l'eau. Il convient de noter que les hydrofuges sont souvent en phase solvant et contiennent de la cire qui affecte l'adhérence des revêtements ultérieurs, ce qui signifie que la plupart de ces produits ne doivent pas être utilisés comme prétraitement sous la peinture. Toutefois, les produits transparents les hydrofuges ont l'avantage unique d'être le traitement le plus respectueux de l'esthétique en cas de manque d'entretien. En d'autres termes, ces produits ne modifient pas la couleur du bois, de sorte que les parties dénudées du bois ne sont pas aussi visibles si le revêtement s'use.

Types de revêtements - Supports

Une autre façon courante de classer les revêtements est de tenir compte du type de support (la base) - les produits sont soit à base d'eau ou à base de solvant. Lorsqu'il est important d'avoir peu de composés organiques volatils (COV) et de pouvoir nettoyer facilement, un produit à base d'eau est le meilleur choix. Les revêtements en phase aqueuse dominent désormais le marché en raison des exigences réglementaires environnementales croissantes en matière de qualité de l'air et de santé, et de la demande des clients. Par rapport aux finitions à base de solvants, les finitions à base d'eau ont généralement moins d'odeur et peuvent être nettoyées avec de l'eau au lieu d'utiliser des essences minérales. Les revêtements en phase aqueuse sont généralement plus souples (moins susceptibles de se fissurer lorsque le bois sous-jacent se rétracte et gonfle sous l'effet de l'humidité) et plus perméables à la vapeur d'eau. 

Les peintures à l'eau sont souvent appelées latex. Les peintures à base de solvants sont communément appelées huile peintures. De même, les peintures étiquetées comme alkydes sont généralement à base de solvant (mais pas toujours). Bien qu'il soit courant de qualifier les peintures de latex ou d'huile/alkyde, il est plus utile de les considérer comme étant à base d'eau ou de solvant. Les revêtements en phase aqueuse, en particulier les acryliques, sont généralement moins sujets à la décoloration et au farinage que les alkydes. La technologie des peintures et des finitions en phase aqueuse a considérablement progressé ces dernières années et est aujourd'hui suffisamment au point pour égaler, voire dépasser, les propriétés des produits en phase solvant.

Types de revêtements - Épaisseur du film
Les revêtements pour le bois sont parfois classés en fonction de l'épaisseur de la couche. film Ils se forment à la surface du bois. Les peintures, les teintures unies et les vernis sont souvent qualifiés de filmogènes, car ils créent une couche de matière continue sur le bois. Les teintures semi-transparentes, les teintures transparentes, les hydrofuges et les huiles naturelles sont souvent appelées "agents filmogènes". finitions pénétrantesLes produits "pénétrants" sont plus efficaces que les autres, car ils pénètrent dans les pores du bois, laissant visibles la texture et les pores de sa surface, plutôt que de laisser une pellicule épaisse sur le bois. Cependant, tous les revêtements laissent un film en surface - épais pour certains, fin pour d'autres - et les produits "pénétrants" ne pénètrent que sur une très courte distance dans le bois. Il est néanmoins utile de savoir si un produit laisse un film épais, car ce type de produit peut être plus difficile à enlever s'il est dégradé et nécessite une remise à neuf. En effet, les modes de défaillance sont différents : un revêtement épais et cohérent comme une peinture se fissure et s'écaille, tandis qu'un produit "pénétrant" en couche mince comme une lasure se dégrade par érosion.

Les revêtements peuvent-ils protéger le bois ?
Les revêtements peuvent protéger temporairement la surface du bois contre le soleil, l'humidité et les intempéries, mais ils ne protègent pas activement contre la pourriture. Leur objectif est avant tout esthétique. Ils ralentissent toutefois les effets néfastes des intempéries et offrent une certaine protection contre l'humidité, qui est un facteur de pourriture. Les revêtements contribuent également à préserver la durabilité naturelle d'essences telles que le Western Red Cedar, en empêchant les agents protecteurs naturels de ce bois de se dégrader. Les avantages protecteurs de tous les revêtements dépendent, bien entendu, d'un entretien adéquat du revêtement. Aucun revêtement ne dure indéfiniment et tous doivent être réappliqués périodiquement.

L'altération
L'altération est la lente dégradation superficielle qui se produit lorsque le bois est exposé aux intempéries. Il ne faut pas confondre l'altération superficielle avec la décomposition (pourriture) causée par les champignons de décomposition, qui peuvent pénétrer profondément dans le bois et en réduire considérablement la résistance dans un laps de temps relativement court. En revanche, l'altération du bois est causée par les UV, l'eau, l'oxygène, la lumière visible, la chaleur, les particules transportées par le vent, les polluants atmosphériques, parfois associés à des micro-organismes spécialisés. Sous l'effet de ces facteurs, le bois exposé à l'extérieur en surface sans revêtement change rapidement d'aspect. La couleur change en raison de la photodégradation, de la lixiviation chimique et d'autres réactions chimiques ; les bois clairs s'assombrissent légèrement et les bois foncés s'éclaircissent, mais tous les bois finissent par prendre une couleur gris argenté. La surface devient également rugueuse, se fissure et s'érode sous l'effet répété des rayons ultraviolets, de l'humidification et du séchage, ainsi que de l'abrasion mécanique due aux particules emportées par le vent. C'est pourquoi le bois altéré a un aspect "rustique". Certains micro-organismes et lichens peuvent coloniser le bois, mais l'état de surface du bois ne favorise généralement pas la pourriture. Il convient de noter que l'altération ne se produit qu'à la surface du bois, généralement à une profondeur de 0,05 à 0,5 mm. Tant qu'il n'y a pas de pourriture, le bois altéré de grande dimension reste structurellement sain à l'intérieur et tout à fait utilisable pendant des années. Afin de réduire l'altération et d'améliorer l'aspect esthétique du bois, le bois exposé à l'extérieur en surface peut être protégé par des revêtements.

Lien vers des articles sur l'altération climatique sur le site web de l'USDA FPL :

Vieillissement et protection du bois

L'altération du bois

Remerciements

Sam Williams du laboratoire américain des produits forestiers, Philip Evans de l'université de Colombie britannique et Greg Monaghan, chef du groupe "Specialty Coatings" chez Rohm and Haas, mais le contenu final ne reflète pas nécessairement leurs opinions sur tous les points.

Bois non traité sous pression

Pour la plupart des bois traités, les produits de préservation sont appliqués sous pression dans des installations spéciales. Cependant, il arrive que cela ne soit pas possible ou que la nécessité de traiter le bois ne soit apparue qu'après la construction ou l'occupation du bâtiment. Dans ce cas, les produits de préservation peuvent être appliqués selon des méthodes qui n'impliquent pas de cuves sous pression.

Certains de ces traitements ne peuvent être effectués que par des applicateurs agréés. Lors de l'utilisation de produits de préservation du bois, comme pour tous les pesticides, il convient de respecter les exigences de l'Agence de réglementation de la lutte antiparasitaire (au Canada) ou de l'Agence de protection de l'environnement (aux États-Unis) en matière d'étiquetage.

Cinq catégories de traitements sans pression

Traitement pendant la fabrication des produits en bois d'ingénierie

Certains panneaux en bois d'ingénierie, tels que le contreplaqué et le bois de placage stratifié (LVL), peuvent être traités après fabrication avec des solutions de préservation, ce qui n'est pas le cas des produits à base de fines lamelles (OSB, OSL) et des panneaux à base de petites particules et de fibres (panneaux de particules, MDF). Les produits de préservation doivent être ajoutés aux éléments en bois avant qu'ils ne soient collés ensemble, sous forme de pulvérisation, de brouillard ou de poudre.

Les produits tels que l'OSB sont fabriqués à partir de petites et fines lamelles de bois. Les conservateurs en poudre peuvent être mélangés aux lamelles et aux résines pendant le processus de mélange, juste avant le formage et le pressage du matelas. Le borate de zinc est couramment utilisé dans cette application. En ajoutant des conservateurs au processus de fabrication, il est possible d'obtenir un traitement uniforme sur toute l'épaisseur du produit. 

En Amérique du Nord, le contreplaqué est normalement protégé contre la pourriture et les termites par des procédés de traitement sous pression. Toutefois, dans d'autres parties du monde, des insecticides sont souvent formulés avec des adhésifs pour protéger le contreplaqué contre les termites.

Prétraitement de la surface

Il s'agit d'un traitement de préservation anticipé appliqué par trempage, pulvérisation ou brossage sur toutes les surfaces accessibles de certains produits en bois au cours du processus de construction. L'objectif est de fournir une enveloppe de protection aux produits, composants ou systèmes en bois vulnérables dans leur forme finie. Un exemple serait la pulvérisation de borates sur les charpentes des maisons pour les rendre résistantes aux termites de bois sec et aux coléoptères xylophages dans certains cas. Ces traitements peuvent également être appliqués au bois d'œuvre, au contreplaqué et à l'OSB afin de fournir une protection supplémentaire contre la formation de moisissures.

Prétraitement souterrain (traitement Depot)

Il s'agit d'un traitement de préservation appliqué à des endroits distincts, et non à l'ensemble de la pièce, au cours du processus de fabrication ou de la construction. L'objectif est de protéger de manière proactive uniquement les parties du produit, du composant ou du système en bois susceptibles d'être exposées à des conditions propices à la pourriture. Un exemple serait de placer des tiges de borate dans les trous percés dans les extrémités exposées des poutres en lamellé-collé dépassant la ligne de toit.

Traitement complémentaire

Il s'agit d'un traitement de préservation appliqué à des endroits distincts sur du bois traité en service pour compenser soit une pénétration initiale incomplète de la section transversale, soit une diminution de l'efficacité de la préservation au fil du temps. L'objectif est de renforcer la protection du bois déjà traité ou de traiter les zones exposées par la coupe nécessaire des produits en bois traité. Un exemple serait l'application d'un pansement prêt à l'emploi sur des poteaux électriques dont la charge conservatrice d'origine s'est épuisée. Un autre exemple est celui des matériaux coupés sur place pour les fondations en bois préservé.

Traitement correctif

Il s'agit d'un traitement de préservation appliqué au bois sain résiduel dans les produits, les composants ou les systèmes où l'on sait que la pourriture ou l'attaque d'insectes a commencé. L'objectif est de tuer les champignons ou les insectes existants et/ou d'empêcher la pourriture ou les insectes de se propager au-delà des dommages existants. Un exemple serait l'application au rouleau ou par pulvérisation d'une formulation de borate/glycol sur du bois sain laissé en place à côté d'une charpente pourrie (qui devrait être découpée et remplacée par du bois traité sous pression).

Formats des traitements sans pression

Les traitements sans pression se présentent sous trois formes différentes : les solides, les liquides/pâteux et les fumigants. Contrairement aux produits de préservation traités sous pression, qui dépendent de la pression pour une bonne pénétration, ces produits s'appuient sur la mobilité des ingrédients actifs pour pénétrer suffisamment profondément dans le bois pour être efficaces. Les ingrédients actifs peuvent se déplacer dans le bois par capillarité ou se diffuser dans l'eau et/ou l'air à l'intérieur du bois. Cette mobilité permet non seulement aux substances actives de pénétrer dans le bois, mais aussi de s'en échapper dans certaines conditions. Cela signifie que les conditions à l'intérieur et autour de la structure doivent être comprises afin de minimiser la perte de conservateur et la perte de protection qui en découle. Les borates, les fluorures et les composés de cuivre sont particulièrement adaptés à une utilisation sous forme de solides, de liquides et de pâtes. L'isothiocyanate de méthyle (et ses précurseurs), le bromure de méthyle et le fluorure de sulfuryle sont les seuls traitements par fumigation largement utilisés. Le bromure de méthyle a été supprimé en 2005, sauf pour des utilisations très limitées.

Solides

Le principal avantage des solides dans ces applications est qu'ils maximisent la quantité de matériau soluble dans l'eau qui peut être placée dans un trou foré, en raison du pourcentage élevé d'ingrédients actifs contenus dans les tiges disponibles dans le commerce. L'inconvénient majeur est la nécessité d'une humidité suffisante et le temps nécessaire à la dissolution de la tige. Le système de préservation solide le plus ancien et le plus connu est la tige de borate fondu, développée à l'origine dans les années 1970 pour le traitement complémentaire et correctif des traverses de chemin de fer. Depuis, ils ont été utilisés avec succès sur les poteaux électriques, les bois de construction, les menuiseries (fenêtres) et divers autres produits en bois. Un mélange de borates est fusionné en verre à des températures extrêmement élevées, puis versé dans un moule et laissé à prendre. Placé dans des trous dans le bois, le borate se dissout dans l'eau contenue dans le bois et se diffuse dans toute la région humide. L'écoulement en masse de l'humidité le long du grain peut accélérer la distribution du borate. Des biocides secondaires tels que le cuivre peuvent être ajoutés aux tiges de borate pour compléter l'efficacité des borates contre la pourriture et les insectes. Bien que tous les agents de conservation doivent être traités avec respect, de nombreux utilisateurs se sentent plus à l'aise avec les tiges de borate et de cuivre/borate en raison de leur faible toxicité et de leur faible potentiel de pénétration dans l'organisme.

Les fluorures sont également disponibles sous forme de bâtonnets. Le bâtonnet est produit en comprimant du fluorure de sodium et des liants, ou en l'encapsulant dans un tube perméable à l'eau. Les fluorures se diffusent plus rapidement que les borates dans l'eau et peuvent également se déplacer en phase vapeur sous forme d'acide fluorhydrique.

Le borate de zinc (ZB) est une poudre utilisée pour protéger les produits à base de lamelles. Il est mélangé aux résines et aux supports pendant les processus de fabrication des panneaux OSB et d'autres produits à base de lamelles et devient bien dispersé dans l'ensemble. Le borate de zinc a une très faible solubilité dans l'eau et peut protéger les produits à base de bois contre la pourriture et les termites.

Liquides, pâtes et gels

Les liquides peuvent être pulvérisés ou brossés sur les surfaces, ou versés ou pompés dans des trous percés. Les pâtes sont le plus souvent appliquées au pinceau ou à la truelle, puis recouvertes d'un papier kraft recouvert de polyéthylène pour former un "bandage". Les pâtes peuvent également être emballées dans des trous percés ou incorporées dans des bandages prêts à l'emploi à enrouler autour des poteaux. Les borates et les fluorures sont couramment utilisés dans ces formulations car ils se diffusent très rapidement dans le bois humide. Le cuivre se diffuse plus lentement car il réagit avec le bois. Pour le bois plus sec, des glycols peuvent être ajoutés aux formulations de borates afin d'améliorer la pénétration. Les produits de protection du bois disponibles en vente libre pour l'application au pinceau sont à base de naphténate de cuivre (de couleur verte) ou de naphténate de zinc (transparent). Tous deux sont dissous dans des solvants de type essence minérale. En outre, des formulations de borate/glycol à base d'eau peuvent également être achetées en vente libre sous forme de liquides à appliquer au rouleau.

Fumigants

Ces traitements sont généralement administrés sous forme de liquides ou de solides ; ils se transforment en gaz lors de l'exposition à l'air et deviennent mobiles dans le bois sous forme de gaz. Certains fumigants solides et liquides sont conditionnés dans des capsules perméables ou des tubes en aluminium. L'isothiocyanate de méthyle (MIT) et les produits chimiques qui produisent ce composé en se décomposant sont utilisés pour les poteaux électriques et le bois. Ce composé s'adsorbe au bois et peut fournir une protection résiduelle de plusieurs années. Le fluorure de sulfuryle et le bromure de méthyle sont utilisés pour la fumigation des tentes des maisons afin d'éradiquer les termites de bois sec.

Réparation des coupures dans la coquille traitée

Le bois traité sous pression qui se trouve dans le sol peut subir une décomposition interne importante en l'espace de six ou sept ans seulement si les coupes, les trous de boulons et les entailles ne sont pas traités à la brosse avec un produit de préservation appliqué sur le terrain. Les agents courants en vente libre à cette fin sont les suivants naphténate de cuivre (couleur verte), ou naphténate de zinc (transparent). Tous deux sont dissous dans des solvants de type essence minérale. Il existe d'autres agents à appliquer au pinceau, notamment des formulations à base de borate et de glycol en phase aqueuse, que l'on peut également se procurer dans les magasins de matériaux de construction.

L'oubli de cette étape critique réduira presque à coup sûr la durée de vie du produit et entraînera annuler toute garantie sur le produit. Bien que l'application au pinceau des produits de protection du bois soit loin d'être aussi efficace que le traitement sous pression, les produits de protection coupés sur le terrain sont généralement appliqués sur le fil du bois, ce qui permet à la solution de s'imprégner davantage que si elle est appliquée sur le fil du bois.

Dans les essais sur le terrain de FPInnovations, ces agents de conservation ont été testés, naphténate de cuivre a donné les meilleurs résultats. Le naphténate de zinc (2% zinc), qui est incolore, n'a pas été aussi efficace mais peut convenir pour les applications hors sol où le risque de pourriture est plus faible et si la couleur vert foncé du naphténate de cuivre n'est pas souhaitable. Il est à noter que le vert foncé du produit à base de cuivre s'estompe au bout de quelques années.

Le bois traité avec des produits de conservation est généralement traité sous pression, c'est-à-dire que les produits chimiques sont introduits sur une courte distance dans le bois à l'aide d'un récipient spécial qui combine la pression et le vide. Bien qu'une pénétration en profondeur soit hautement souhaitable, la nature imperméable des cellules de bois mort rend extrêmement difficile l'obtention de quelque chose de plus qu'une mince couche de bois traité. Les principaux résultats du processus de traitement sous pression sont la quantité de produit de conservation imprégnée dans le bois (appelée rétention) et la profondeur de pénétration. Ces caractéristiques du traitement sont spécifiées dans des normes axées sur les résultats. Une plus grande pénétration du produit de conservation peut être obtenue par incision - un procédé qui consiste à percer de petites fentes dans le bois. Ce procédé est souvent nécessaire pour les matériaux de grande taille ou difficiles à traiter afin de respecter les normes de pénétration basées sur les résultats.

Les procédés de traitement sous pression varient en fonction du type de bois traité et du produit de préservation utilisé. En général, le bois est d'abord conditionné pour éliminer l'excès d'eau qu'il contient. Il est ensuite placé dans un récipient sous pression et un vide est fait pour éliminer l'air des cellules du bois. Ensuite, le conservateur est ajouté et une pression est appliquée pour faire pénétrer le conservateur dans le bois. Enfin, la pression est relâchée et un dernier vide est appliqué pour éliminer et réutiliser l'excès de conservateur. Après le traitement, certains systèmes de conservation, tels que le CCA, nécessitent une étape de fixation supplémentaire pour s'assurer que le conservateur a complètement réagi avec le bois.

Des informations sur les différents types de conservateurs utilisés sont disponibles dans les rubriques suivantes Durabilité par traitement

Le Code national du bâtiment du Canada (CNB) définit la sécurité incendie dans l'objectif OS1 : "l'un des objectifs du présent code est de limiter la probabilité qu'en raison de la conception ou de la construction du bâtiment, une personne se trouvant dans le bâtiment ou à proximité de celui-ci soit exposée à un risque inacceptable de blessure due à un incendie".

En termes plus simples, la sécurité incendie est la réduction du risque d'atteinte à la vie du fait d'un incendie dans un bâtiment. Bien que le risque d'être tué ou blessé dans un incendie ne puisse être complètement éliminé, la sécurité incendie dans un bâtiment peut être obtenue grâce à des caractéristiques de conception éprouvées visant à réduire au maximum le risque de dommages causés aux personnes par le feu.

Concevoir un bâtiment pour garantir un risque minimal ou pour atteindre un niveau prescrit de sécurité contre l'incendie est plus complexe que la simple considération des matériaux de construction qui seront utilisés dans la construction du bâtiment, puisque tous les matériaux de construction sont affectés par le feu. De nombreux facteurs doivent être pris en compte, notamment l'utilisation du bâtiment, le nombre d'occupants, la facilité avec laquelle ils peuvent sortir du bâtiment en cas d'incendie et la manière dont un incendie peut être circonscrit.

Même les matériaux qui ne résistent pas au feu ne garantissent pas la sécurité d'une structure. L'acier, par exemple, perd rapidement sa résistance lorsqu'il est chauffé et sa limite d'élasticité diminue considérablement à mesure qu'il absorbe la chaleur, ce qui met en péril la stabilité de la structure. Un système de plancher à poutrelles en acier formé à froid, non protégé, se rompt en moins de 10 minutes selon les méthodes d'essai d'exposition au feu en laboratoire, alors qu'un système de plancher à poutrelles en bois, non protégé, peut durer jusqu'à 15 minutes. Le béton armé n'est pas non plus à l'abri du feu. Le béton s'effrite sous l'effet de températures élevées, exposant l'armature en acier et affaiblissant les éléments structurels. Par conséquent, il est généralement admis qu'il n'existe pas de bâtiment à l'épreuve du feu.

Le CNB ne réglemente que les éléments qui font partie de la construction du bâtiment. Le contenu d'un bâtiment n'est généralement pas réglementé par le CNB, mais dans certains cas, il est réglementé par le Code national de prévention des incendies du Canada (CNPI).

La classification des bâtiments ou parties de bâtiments en fonction de leur utilisation prévue tient compte des éléments suivants :

  • la quantité et le type de contenu combustible susceptible d'être présent (charge d'incendie potentielle) ;
  • le nombre de personnes susceptibles d'être exposées à la menace d'un incendie ;
  • la superficie du bâtiment ; et
  • la hauteur du bâtiment.

Cette classification est le point de départ pour déterminer quelles exigences de sécurité incendie s'appliquent à un bâtiment particulier. La classification de l'occupation d'un bâtiment au sein du CNB est déterminante :

  • le type de construction du bâtiment ;
  • le niveau de protection contre les incendies ; et
  • le degré de protection structurelle contre la propagation du feu entre les parties d'un bâtiment qui sont utilisées à des fins différentes.

Les incendies peuvent survenir dans n'importe quel type de structure. La gravité d'un incendie dépend toutefois de la capacité de la construction à.. :

  • confiner le feu ;
  • limiter les effets d'un incendie sur la structure porteuse ; et
  • contrôler la propagation des fumées et des gaz.

À des degrés divers, tout type de construction peut être conçu comme un système (combinaison d'ensembles de construction) pour limiter les effets du feu. Les occupants disposent ainsi de suffisamment de temps pour évacuer le bâtiment et les pompiers pour accomplir leur mission en toute sécurité.

La sécurité des occupants dépend également d'autres paramètres tels que la détection, les voies d'évacuation et l'utilisation de systèmes d'extinction automatique d'incendie tels que les sprinklers. Ces concepts constituent la base des exigences du CNB.

Pour plus d'informations, consultez les ressources suivantes :

Manuel de conception du bois (Conseil canadien du bois)

Conception de la sécurité incendie dans les bâtiments (Conseil canadien du bois)

Code national du bâtiment du Canada

Code national de prévention des incendies du Canada

CSA O86, Conception technique en bois

Fitzgerald, Robert W., Fundamentals of Fire Safe Building Design, Fire Protection Handbook, National Fire Protection Association, Quincy, MA, 1997.

Watts, J.M. (Jr) ; Systems Approach to Fire-Safe Building Design, Fire Protection Handbook, National Fire Protection Association, Quincy, MA, 2008.

Rowe, W.D. ; Assessing the Risk of Fire Systemically ASTM STP 762, Fire Risk Assessment, American Society for Testing and Materials, West Conshohocken, PA, 1982.

La propagation de la flamme est avant tout une caractéristique de combustion superficielle des matériaux, et l'indice de propagation de la flamme est un moyen de comparer la vitesse de propagation de la flamme à la surface d'un matériau par rapport à un autre.

Les exigences en matière d'indice de propagation de la flamme sont appliquées dans le Code national du bâtiment du Canada (CNB), principalement pour réglementer les finitions intérieures.

Tout matériau faisant partie de l'intérieur du bâtiment et directement exposé est considéré comme une finition intérieure. Cela comprend les revêtements intérieurs, les sols, les moquettes, les portes, les garnitures, les fenêtres et les éléments d'éclairage.

Si aucun revêtement n'est installé du côté intérieur d'un mur extérieur d'un bâtiment, les surfaces intérieures de l'assemblage mural sont considérées comme la finition intérieure, par exemple, une construction à poteaux et à poutres non finie. De même, si aucun plafond n'est installé sous un plancher ou un toit, le tablier et les éléments structurels exposés non finis sont considérés comme la finition intérieure du plafond.

La méthode d'essai normalisée à laquelle le CNB fait référence pour la détermination des indices de propagation de la flamme est la norme CAN/ULC-S102, publiée par ULC Standards.

L'annexe D-3 de la division B du CNB fournit des informations relatives aux indices génériques de propagation de la flamme et aux classifications des fumées de divers matériaux de construction.

Les informations ne sont fournies que pour les matériaux génériques pour lesquels des données d'essai au feu exhaustives sont disponibles (cf. Tableau 1 ci-dessous). Par exemple, le bois d'œuvre, quelle que soit l'essence, et le contreplaqué de sapin de Douglas, de peuplier et d'épicéa, d'une épaisseur au moins égale à celles indiquées, se voient attribuer un indice de propagation de la flamme de 150.

En général, pour les produits en bois d'une épaisseur allant jusqu'à 25 mm (1 po), l'indice de propagation de la flamme diminue avec l'épaisseur. Les valeurs indiquées dans l'annexe D du CNB sont prudentes car elles sont destinées à couvrir une large gamme de matériaux. Des essences et des épaisseurs spécifiques peuvent avoir des valeurs bien inférieures à celles indiquées dans l'annexe D.

Les cotes spécifiques par essence de bois sont indiquées dans Fiche d'information sur l'inflammabilité des surfaces et la propagation des flammesci-dessous. Des informations sur les matériaux exclusifs et ignifuges sont disponibles auprès d'organismes de certification et d'homologation tiers ou auprès des fabricants. Les valeurs indiquées dans Fiche d'information sur l'inflammabilité des surfaces et la propagation des flammes s'applique au bois d'œuvre fini ; toutefois, aucune différence significative n'a été constatée dans l'indice de propagation de la flamme du bois d'œuvre brut de sciage de la même essence.

L'American Wood Council fournit des informations complémentaires dans sa publication Design for Code Acceptance, DCA 1 Flame Spread Performance of Wood Products for the U.S. (Conception pour l'acceptation du code).

Normalement, la finition de la surface et le matériau sur lequel elle est appliquée contribuent tous deux à la performance globale de propagation de la flamme. La plupart des revêtements de surface tels que la peinture et le papier peint ont généralement une épaisseur inférieure à 1 mm et ne contribuent pas de manière significative à l'indice global.

C'est pourquoi le CNB attribue le même indice de propagation de la flamme et de dégagement de fumée aux matériaux courants tels que le contreplaqué, le bois de construction et les plaques de plâtre, qu'ils soient bruts ou recouverts de peinture, de vernis ou de papier peint cellulosique.

Il existe également des peintures et des revêtements ignifuges spéciaux qui peuvent réduire considérablement l'indice de propagation de la flamme d'une surface intérieure. Ces revêtements sont particulièrement utiles lors de la réhabilitation d'un bâtiment ancien pour réduire l'indice de propagation de la flamme des matériaux de finition à des niveaux acceptables, en particulier pour les zones nécessitant un indice de propagation de la flamme inférieur ou égal à 25.

En général, le CNB fixe l'indice maximal de propagation de la flamme pour les finitions intérieures des murs et des plafonds à 150, ce qui peut être respecté par la plupart des produits en bois.

Par exemple, le contreplaqué de sapin Douglas de 6 mm (1/4 po) peut être brut, peint, verni ou recouvert d'un papier peint cellulosique conventionnel. Cette solution a été jugée acceptable sur la base d'une expérience réelle en matière d'incendie.

Cela signifie que dans toutes les zones où un indice de propagation de la flamme de 150 est autorisé, la majorité des produits en bois peuvent être utilisés comme finitions intérieures sans exigences particulières en matière de traitements ou de revêtements ignifuges.

Lors d'un incendie dans une pièce, le revêtement de sol est généralement le dernier élément à s'enflammer, car la couche d'air la plus froide se trouve près du sol. C'est pourquoi le CCNB, comme la plupart des autres codes, ne réglemente pas l'indice de propagation de la flamme des revêtements de sol, à l'exception de certaines zones essentielles dans les bâtiments de grande hauteur :

  • sort ;
  • les couloirs ne se trouvent pas dans les suites ;
  • les cabines d'ascenseurs ; et,
  • les espaces de service.

Les matériaux de revêtement de sol traditionnels, tels que les parquets et les moquettes, peuvent être utilisés presque partout dans les bâtiments, quel que soit leur type de construction.

Pour plus d'informations, consultez les ressources suivantes :

Manuel de conception du bois (Conseil canadien du bois)

Conception de la sécurité incendie dans les bâtiments (Conseil canadien du bois)

Code national du bâtiment du Canada

Code national de prévention des incendies du Canada

CSA O86, Conception technique en bois

CAN/ULC-S102 Méthode normalisée d'essai des caractéristiques de combustion superficielle des matériaux de construction et des assemblages

Conseil américain du bois

Tableau 1 : Indices de propagation de la flamme et classifications de développement de la fumée attribués

Indices d'inflammabilité de surface et de propagation de la flamme

Dans le Code national du bâtiment du Canada (CNB), le " degré de résistance au feu " est défini en partie comme suit : "le temps en minutes ou en heures pendant lequel un matériau ou un assemblage de matériaux résiste au passage des flammes et à la transmission de la chaleur lorsqu'il est exposé au feu dans des conditions d'essai et selon des critères de performance spécifiés..."

Le degré de résistance au feu est la durée, en minutes ou en heures, pendant laquelle un matériau ou un assemblage de matériaux résiste au passage des flammes et à la transmission de la chaleur lorsqu'il est exposé au feu dans des conditions d'essai et selon des critères de performance spécifiés, ou tel que déterminé par extension ou interprétation des informations qui en découlent, comme le prescrit le CNB.

Les critères d'essai et d'acceptation mentionnés dans le CNB sont contenus dans une méthode d'essai au feu normalisée, CAN/ULC-S101, publiée par ULC Standards.

Sous-face du plancher montrant les solives. Le degré de résistance au feu n'est exigé qu'à partir de la face inférieure de l'ensemble.

Les assemblages horizontaux tels que les planchers, les plafonds et les toits sont testés pour l'exposition au feu par le dessous uniquement. Cela s'explique par le fait qu'un incendie dans le compartiment inférieur représente la menace la plus grave. C'est la raison pour laquelle le degré de résistance au feu doit être mesuré uniquement à partir de la face inférieure de l'ensemble. Le degré de résistance au feu de l'ensemble testé indiquera, dans le cadre des limites de conception, les conditions de retenue de l'essai. Lors de la sélection d'un degré de résistance au feu, il est important de s'assurer que les conditions de contrainte de l'essai sont les mêmes que celles de la construction sur le terrain. Les assemblages à ossature bois sont normalement testés sans contrainte d'extrémité afin de correspondre à la pratique normale de la construction.

Début de l'ossature avec les solives de plancher et la poutre porteuse.

Les cloisons ou les murs intérieurs qui doivent avoir un degré de résistance au feu doivent être évalués de la même manière de chaque côté, car un incendie peut se développer de n'importe quel côté de la séparation coupe-feu. Elles sont normalement conçues de manière symétrique. S'ils ne sont pas symétriques, le degré de résistance au feu de l'ensemble est déterminé sur la base d'essais effectués du côté le plus faible. Pour un mur porteur, l'essai exige que la charge maximale autorisée par les normes de conception soit superposée à l'ensemble. La plupart des murs à ossature bois sont testés et répertoriés comme porteurs. Cela leur permet d'être utilisés à la fois dans des applications porteuses et non porteuses.

Les listes pour les murs porteurs à ossature bois peuvent être utilisées pour les cas non porteurs puisque les mêmes ossatures sont utilisées dans les deux cas. Le chargement pendant l'essai est critique car il affecte la capacité de l'assemblage mural à rester en place et à remplir sa fonction de prévention de la propagation du feu. La perte de résistance des montants résultant de températures élevées ou de la combustion réelle d'éléments structurels entraîne une déformation. Cette déformation affecte la capacité des membranes de protection des murs (plaques de plâtre) à rester en place et à contenir le feu. Le degré de résistance au feu des murs porteurs est généralement inférieur à celui d'un mur non porteur de conception similaire.

Les murs extérieurs n'ont besoin d'être classés que pour l'exposition au feu depuis l'intérieur d'un bâtiment. En effet, l'exposition au feu depuis l'extérieur d'un bâtiment ne risque pas d'être aussi grave que celle d'un incendie dans une pièce ou un compartiment intérieur. Comme ce classement n'est exigé que de l'intérieur, les murs extérieurs ne doivent pas être symétriques.

Le CNB permet à l'autorité compétente d'accepter les résultats d'essais au feu effectués selon d'autres normes. Comme les méthodes d'essai ont peu changé au fil des ans, les résultats basés sur des éditions antérieures ou plus récentes de la norme CAN/ULC-S101 sont souvent comparables. La principale norme américaine en matière de résistance au feu, l'ASTM E119, est très similaire à la norme CAN/ULC-S101. Toutes deux utilisent la même courbe temps-température et les mêmes critères de performance. Les taux de résistance au feu établis conformément à la norme ASTM E119 sont généralement acceptés par les autorités canadiennes. L'acceptation par l'autorité compétente des résultats des essais basés sur ces normes dépend principalement de la familiarité de l'autorité avec ces normes.

Les laboratoires d'essais et les fabricants publient également des informations sur des listes exclusives d'assemblages qui décrivent les matériaux utilisés et les méthodes d'assemblage. Une multitude d'essais de résistance au feu ont été réalisés au cours des 70 dernières années par des laboratoires nord-américains. Les résultats sont disponibles sous forme de listes ou de rapports de conception par l'intermédiaire de :

En outre, les fabricants de produits de construction publient les résultats d'essais de résistance au feu sur des assemblages incorporant leurs propres produits (par exemple, le Gypsum Association's GA-600 Manuel de conception de la résistance au feu).

Le CNB contient des informations génériques sur les degrés de résistance au feu des assemblages et éléments en bois. Il s'agit notamment de tableaux de résistance au feu et au bruit décrivant divers assemblages de murs et de planchers constitués de matériaux de construction génériques, auxquels sont attribués des degrés de résistance au feu spécifiques. Au cours des deux dernières décennies, le Conseil national de recherches du Canada (CNRC) a mené un certain nombre de grands projets de recherche sur les murs et les planchers à ossature légère, portant à la fois sur la résistance au feu et sur la transmission du son. Le CNB dispose ainsi de centaines de murs et de planchers différents auxquels sont attribués des degrés de résistance au feu et des indices de transmission du son. Ces résultats sont publiés dans le tableau A-9.10.3.1.A. Résistance au feu et au bruit des murs et le tableau A-9.10.3.1.B Résistance au feu et au bruit des planchers, plafonds et toits du CNB. Les assemblages décrits n'ont pas tous fait l'objet d'essais. Les degrés de résistance au feu de certains assemblages ont été extrapolés à partir d'essais de résistance au feu effectués sur des assemblages de murs similaires. Les listes sont utiles parce qu'elles offrent aux concepteurs des solutions standard. Elles peuvent cependant limiter l'innovation car les concepteurs utilisent des assemblages qui ont déjà été testés plutôt que de payer pour faire évaluer de nouveaux assemblages. Les assemblages répertoriés doivent être utilisés avec les mêmes matériaux et les mêmes méthodes d'installation que ceux qui ont été testés.

La section précédente sur les degrés de résistance au feu traite de la détermination des degrés de résistance au feu à partir d'essais normalisés. D'autres méthodes de détermination des degrés de résistance au feu sont également autorisées. Les méthodes alternatives de détermination des degrés de résistance au feu sont contenues dans le CNB, division B, annexe D, classements des performances en matière de résistance au feu. Ces méthodes de calcul alternatives peuvent remplacer les essais de résistance au feu propriétaires coûteux. Dans certains cas, elles permettent d'appliquer des exigences moins strictes en matière d'installation et de conception, telles que d'autres détails de fixation pour les plaques de plâtre et l'autorisation d'ouvertures dans les membranes de plafond pour les systèmes de ventilation. La section D-2 de l'annexe D de la division B du CNB comprend des méthodes permettant d'attribuer des degrés de résistance au feu aux éléments suivants :

  • les murs, les planchers et les toits à ossature en bois dans l'annexe D-2.3 (méthode des composants additifs) ;
  • les murs, les planchers et les toits en bois massif de l'annexe D-2.4 ; et,
  • poutres et colonnes en bois lamellé-collé à l'annexe D-2.11.

La méthode de calcul alternative la plus pratique comprend des procédures de calcul du degré de résistance au feu des murs, planchers et toits à ossature légère en bois, basées sur des descriptions génériques des matériaux. Cette méthode additive par composants (CAM) peut être utilisée lorsqu'il est clair que le degré de résistance au feu d'un ensemble dépend strictement de la spécification et de la disposition des matériaux pour lesquels il existe des normes reconnues au niveau national. Les ensembles doivent être conformes à toutes les exigences de l'annexe D-2.3 de la division B du CNB. Murs, planchers et toits à ossature bois et acier.

Bien que les informations contenues dans l'annexe D-2.4. portent sur des techniques de construction plus anciennes, l'utilisation de ces assemblages a connu un certain regain et les informations peuvent être particulièrement utiles lors de la réaffectation de bâtiments historiques.

L'annexe D de la division B du CNB comprend également des équations empiriques pour le calcul du degré de résistance au feu des poutres et des poteaux en bois lamellé-collé (glulam), à l'annexe D-2.11. Ces équations ont été élaborées à partir de prévisions théoriques et validées par des résultats d'essais. Les grands éléments en bois ont une résistance au feu inhérente parce que :

  • la lenteur de la combustion des gros bois, qui est d'environ 0,6 mm/minute dans des conditions d'essai au feu standard ; et,
  • les effets isolants de la couche de charbon, qui protège la partie non brûlée du bois.

Ces facteurs font que les éléments non protégés peuvent rester en place pendant une longue période lorsqu'ils sont exposés au feu. Le CNB reconnaît cette caractéristique et autorise l'utilisation d'éléments en bois non protégés, y compris les planchers et les tabliers de toit, qui respectent les dimensions minimales pour les constructions en bois massif, à la fois là où un degré de résistance au feu de 45 minutes est exigé et dans de nombreux bâtiments incombustibles. La méthode de calcul de l'annexe D permet de déterminer le degré de résistance au feu des poutres et des poteaux en lamellé-collé en fonction de l'exposition au feu sur trois ou quatre côtés.

La formule pour les poteaux ou les poutres qui peuvent être exposés sur trois côtés s'applique uniquement lorsque la face non exposée est le plus petit côté d'un poteau ; il n'existe pas de données expérimentales pour vérifier la formule lorsqu'un côté plus grand n'est pas exposé. Si un poteau est encastré dans un mur ou une poutre dans un plancher, les dimensions complètes de l'élément structurel sont utilisées dans la formule pour l'exposition au feu sur trois côtés. La comparaison des degrés de résistance au feu calculés avec les résultats expérimentaux montre que les valeurs calculées sont très souvent conservatrices. Un concepteur peut déterminer la résistance pondérée d'une poutre ou d'un poteau en se référant à la norme CSA O86 du Conseil canadien du bois (Wood Design Manual).

En outre, la norme CSA O86 comprend une annexe B informative qui fournit une méthode de calcul des degrés de résistance au feu pour les éléments en bois de grande section, tels que les poutres et les colonnes en bois lamellé-collé, les bois lourds sciés massifs et les bois composites structuraux.

De plus amples informations sur le calcul de la résistance au feu des éléments en bois lourds sont disponibles dans la publication de l'American Wood Council. Rapport technique 10 : Calcul de la résistance au feu des éléments en bois exposés (TR10).

 

Pour plus d'informations, consultez les ressources suivantes :

Manuel de conception du bois (Conseil canadien du bois)

Conception de la sécurité incendie dans les bâtiments (Conseil canadien du bois)

Code national du bâtiment du Canada

Code national de prévention des incendies du Canada

CSA O86, Conception technique en bois

CAN/ULC-S101 Méthode normalisée d'essai de résistance au feu des constructions et des matériaux de construction

ASTM E119 Méthodes d'essai normalisées pour les essais de résistance au feu des constructions et des matériaux de construction

Conseil américain du bois

Sultan, M.A., Séguin, Y.P., et Leroux, P. ; "IRC-IR-764 : Results of Fire Resistance Tests on Full-Scale Floor Assemblies", Institut de recherche en construction, Conseil national de recherches du Canada, mai 1998.

Sultan, M. A., Latour, J. C., Leroux, P., Monette, R. C., Séguin, Y. P., et Henrie, J. P. ; "RR-184 : Results of Fire Resistance Tests on Full-Scale Floor Assemblies - Phase II ", Institut de recherche en construction, Conseil national de recherches du Canada, mars 2005.

Sultan, M.A., et Lougheed, G.D. ; "IRC-IR-833 : Results of Fire Resistance Tests on Full-Scale Gypsum Board Assemblies", Institut de recherche en construction, Conseil national de recherches du Canada, août 2002.

Construction en bois lourd

Performance des adhésifs dans le bois abouté dans les assemblages muraux résistants au feu

Séparations coupe-feu et indices de résistance au feu

 

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône Persona
Persona
Tags Icône
Tags
Rapports annuels Icône Plus
Livre des prix Icône Plus
Études de cas Icône Plus
Publications gratuites Icône Plus
Revue Icône Plus
Systèmes de construction Icône Plus
Codes et normes Icône Plus
Nouvelles de l'industrie Icône Plus
Pourquoi le bois (FAQ) Icône Plus
Produits du bois Icône Plus
Acoustique Icône Plus
Exemples de conception Icône Plus
Ingénierie Icône Plus
Résistance au feu Icône Plus
Assurance Icône Plus
Bois massif Icône Plus
Icône de date
Date
Séparateur de ligne