Bienvenue sur le nouveau Hub de Ressources Numériques du CCB (BETA)

Construire avec du bois

Explorez notre large éventail de sujets liés à la construction en bois.

54 results found...
Trier par Icône de la liste déroulante

Les ponts en bois sont depuis longtemps des éléments essentiels des réseaux routiers, ferroviaires et forestiers du Canada. Dépendant de la disponibilité des matériaux, de la technologie et de la main-d’œuvre, la conception et la construction des ponts en bois ont évolué de manière significative au cours des 200 dernières années dans toute l’Amérique du Nord. Les ponts en bois prennent de nombreuses formes et utilisent différents systèmes de support, notamment des ponts en rondins à portée simple, différents types de ponts à treillis, ainsi que des tabliers et des éléments de pont en matériaux composites ou stratifiés. Les ponts en bois restent un élément important de notre réseau de transport au Canada.

Les avantages de la construction de ponts en bois modernes sont les suivants :

  • un coût initial réduit, en particulier pour les régions éloignées ;
  • la rapidité de la construction, grâce à l’utilisation de la préfabrication ;
  • avantages en matière de durabilité ;
  • l’esthétique ;
  • des fondations plus légères ;
  • des charges sismiques plus faibles, associées à des connexions moins complexes avec les sous-structures ;
  • les structures temporaires et les grues de plus petite taille ; et
  • des coûts de transport moins élevés associés à des matériaux moins lourds.

Les différents types de matériaux utilisés pour la construction des ponts en bois sont les suivants : bois de sciage, rondins, bois lamellé-collé droit et courbe (lamellé-collé), bois de placage stratifié (LVL), bois à copeaux parallèles (PSL), bois lamellé-croisé (CLT), bois lamellé-cloué (NLT) et systèmes composites tels que les tabliers stratifiés sous contrainte, les tabliers stratifiés bois-béton et les polymères renforcés par des fibres.

Les deux principales essences de bois utilisées pour la construction de ponts en bois au Canada sont le sapin de Douglas et la combinaison d’essences épicéa-pin-sapin. D’autres espèces appartenant aux combinaisons d’espèces Hem-Fir et Northern sont également reconnues par la norme CSA O86, mais elles sont moins couramment utilisées dans la construction de ponts.

Toutes les fixations métalliques utilisées pour les ponts doivent être protégées contre la corrosion. La méthode la plus courante pour assurer cette protection est la galvanisation à chaud, un processus par lequel un métal sacrificiel est ajouté à l’extérieur de la fixation. Les différents types de fixations utilisés dans la construction de ponts en bois comprennent, entre autres, les boulons, les tire-fonds, les anneaux fendus, les plaques de cisaillement et les clous (pour les stratifiés de pont uniquement).

Tous les ponts routiers au Canada doivent être conçus pour répondre aux exigences des normes CSA S6 et CSA O86. La norme CSA S6 exige que les principaux éléments structurels de tout pont au Canada, quel que soit le type de construction, soient capables de résister à un minimum de 75 ans de charge pendant sa durée de vie.

Le style et la portée des ponts varient considérablement en fonction de l’application. Dans les endroits difficiles d’accès et les vallées profondes, les ponts à chevalets en bois étaient courants à la fin des années 19th siècle et au début des années 20th siècle. Historiquement, les ponts à chevalets dépendaient fortement de l’abondance des ressources en bois et, dans certains cas, étaient considérés comme temporaires. La construction initiale des chemins de fer transcontinentaux d’Amérique du Nord n’aurait pas été possible sans l’utilisation de bois pour construire les ponts et les chevalets.

De nombreux exemples de ponts en bois à treillis ont été construits depuis plus d’un siècle. Les ponts à poutres en treillis permettent des portées plus longues que les ponts à poutres simples et, historiquement, leurs portées étaient comprises entre 30 et 60 m (100 et 200 pieds). Les ponts conçus avec des fermes situées au-dessus du tablier offrent une excellente occasion de construire un toit au-dessus de la chaussée. L’installation d’un toit au-dessus de la chaussée est un excellent moyen d’évacuer l’eau de la structure principale du pont et de la protéger du soleil. La présence de ces toits est la principale raison pour laquelle ces ponts couverts centenaires sont encore en service aujourd’hui. Le fait qu’ils fassent toujours partie de notre paysage témoigne autant de leur robustesse que de leur attrait.

Bien que conçue à l’origine comme une mesure de réhabilitation des tabliers de ponts vieillissants, la technique de stratification sous contrainte a été étendue aux nouveaux ponts par l’application de contraintes au moment de la construction initiale. Les tabliers stratifiés sous contrainte offrent un meilleur comportement structurel, grâce à leur excellente résistance aux effets des charges répétées.

Les trois principales considérations liées à la durabilité des ponts en bois sont la protection par la conception, le traitement de préservation du bois et les éléments remplaçables. Un pont peut être conçu de manière à s’auto-protéger en détournant l’eau des éléments structurels. Le bois traité a la capacité de résister aux effets des produits chimiques de déglaçage et aux attaques des agents biotiques. Enfin, le pont doit être conçu de manière à ce que, à un moment donné, un seul élément puisse être remplacé relativement facilement, sans perturbation ni coût importants.

 

Pour plus d’informations, consultez les ressources suivantes :

  • Ponts routiers en bois (Conseil canadien du bois)
  • Guide de référence sur les ponts en bois de l’Ontario (Conseil canadien du bois)
  • CSA S6 Canadian Highway Bridge Design Code
  • CSA O86 Conception technique du bois

Tests

Les recherches en cours comprennent le plus grand essai de feu de bois massif au monde - cliquez ici pour des mises à jour sur les résultats de l'essai en cours. https://firetests.cwc.ca/

Études

Rapports

Recherche sur les incendies

Recherche et guides sur l'acoustique

Initiative de démonstration des grands bâtiments en bois Rapports d'essai
(financement assuré par Ressources naturelles Canada)

Visitez la bibliothèque de recherche de Think Wood pour obtenir des ressources supplémentaires.

Études

Général

Structures et séismes

Mouvement vertical dans les structures à plate-forme en bois (Fiches d'information de la CAC)

Conception de murs de cisaillement à base de bois pour plusieurs étages : Analyse dynamique linéaire et approche basée sur la mécanique

Incendie

Essais

Recherche sur les incendies

Projet de recherche sur les bâtiments de moyenne hauteur en bois et hybrides avec le bois
Conseil national de la recherche du Canada (2011-2015)

Autres rapports

Recherche en acoustique

Projet de recherche sur les bâtiments de moyenne hauteur en bois et hybrides avec le bois
Conseil national de la recherche du Canada (2011-2015)

Autres rapports et guides

Recherche sur l'enveloppe des bâtiments

Projet de recherche sur les bâtiments de moyenne hauteur en bois et hybrides avec le bois
Conseil national de la recherche du Canada (2011-2015)

Visitez la bibliothèque de recherche de Think Wood pour obtenir des ressources supplémentaires.

bannière pour research.thinkwood.com

Le bois est le seul grand matériau de construction qui pousse naturellement et qui est renouvelable. Avec la pression croissante pour réduire l'empreinte carbone de l'environnement bâti, les concepteurs de bâtiments sont de plus en plus appelés à équilibrer les objectifs de fonction et de coût d'un bâtiment avec un impact réduit sur l'environnement. Le bois peut contribuer à cet équilibre. De nombreuses études d'évaluation du cycle de vie réalisées dans le monde entier ont montré que les produits en bois présentent des avantages environnementaux évidents par rapport à d'autres matériaux de construction, et ce à tous les stades. Les bâtiments en bois permettent de réduire les émissions de gaz à effet de serre, la pollution de l'air, les volumes de déchets solides et l'utilisation des ressources écologiques.

Une structure doit être conçue pour résister à toutes les charges qui devraient agir sur elle pendant sa durée de vie. Sous l'effet des charges appliquées prévues, la structure doit rester intacte et fonctionner de manière satisfaisante. En outre, la construction d'une structure ne doit pas nécessiter une quantité démesurée de ressources. La conception d'une structure est donc un équilibre entre la fiabilité nécessaire et l'économie raisonnable.

Les produits du bois sont fréquemment utilisés pour fournir les principaux moyens de soutien structurel des bâtiments. L'économie et la solidité de la construction peuvent être obtenues en utilisant des produits du bois comme éléments d'applications structurelles telles que les solives, les montants muraux, les chevrons, les poutres, les poutrelles et les fermes. En outre, les produits de revêtement et de platelage en bois jouent à la fois un rôle structurel en transférant les charges du vent, de la neige, des occupants et du contenu aux principaux éléments structurels, et une fonction d'enveloppe du bâtiment. Le bois peut être utilisé dans de nombreuses formes structurelles telles que les maisons à ossature légère et les petits bâtiments qui utilisent des éléments répétitifs de petite dimension ou dans des systèmes d'ossature structurelle plus grands et plus lourds, tels que la construction en bois de masse, qui est souvent utilisée pour les projets commerciaux, institutionnels ou industriels. La conception technique des composants et systèmes structuraux en bois est basée sur la norme CSA O86.

Au cours des années 1980, la conception des structures en bois au Canada, conformément au Code national du bâtiment du Canada (CNB) et à la norme CSA O86, est passée de la conception des contraintes de travail (WSD) à la conception des états limites (LSD), rendant l'approche de la conception structurelle pour le bois similaire à celle des autres principaux matériaux de construction.

Toutes les approches de conception structurelle exigent les éléments suivants pour la résistance et l'aptitude au service :

Résistance des éléments = Effets des charges de calcul

En utilisant la méthode LSD, la structure et ses composants individuels sont caractérisés par leur résistance aux effets des charges appliquées. Le CNB applique des facteurs de sécurité à la fois au côté résistance et au côté charge de l'équation de conception :

Résistance pondérée = Effet de charge pondéré

La résistance pondérée est le produit d'un facteur de résistance (f) et de la résistance nominale (résistance spécifiée), tous deux indiqués dans la norme CSA O86 pour les matériaux et les assemblages en bois. Le facteur de résistance tient compte de la variabilité des dimensions et des propriétés des matériaux, de l'exécution, du type de défaillance et de l'incertitude dans la prédiction de la résistance. L'effet de la charge pondérée est calculé conformément au CNB en multipliant les charges réelles sur la structure (charges spécifiées) par des facteurs de charge qui tiennent compte de la variabilité de la charge.

Il n'existe pas deux échantillons de bois ou de tout autre matériau ayant exactement la même résistance. Dans tout processus de fabrication, il est nécessaire de reconnaître que chaque pièce fabriquée sera unique. Les charges, telles que la neige et le vent, sont également variables. Par conséquent, la conception structurelle doit tenir compte du fait que les charges et les résistances sont en réalité des groupes de données plutôt que des valeurs uniques. Comme pour tout groupe de données, il existe des attributs statistiques tels que la moyenne, l'écart-type et le coefficient de variation. L'objectif de la conception est de trouver un équilibre raisonnable entre la fiabilité et des facteurs tels que l'économie et l'aspect pratique.

La fiabilité d'une structure dépend d'une série de facteurs qui peuvent être classés comme suit :

  • les influences externes telles que les charges et les changements de température ;
  • la modélisation et l'analyse de la structure, des interprétations du code, des hypothèses de conception et des autres jugements qui constituent le processus de conception ;
  • la solidité et la consistance des matériaux utilisés dans la construction ; et
  • la qualité du processus de construction.

L'approche LSD consiste à fournir une résistance adéquate à certains états limites, à savoir la résistance et l'aptitude au service. Les états limites de résistance font référence à la capacité de charge maximale de la structure. Les états limites d'aptitude au service sont ceux qui restreignent l'utilisation et l'occupation normales de la structure, comme une déflexion ou des vibrations excessives. Une structure est considérée comme défaillante ou impropre à l'utilisation lorsqu'elle atteint un état limite au-delà duquel ses performances ou son utilisation sont compromises.

Les états limites pour la conception du bois sont classés dans les deux catégories suivantes :

  • Les états limites ultimes (ELU) concernent la sécurité des personnes et correspondent à la capacité de charge maximale. Ils comprennent des défaillances telles que la perte d'équilibre, la perte de capacité de charge, l'instabilité et la rupture ; et
  • Les états limites d'aptitude au service (ELAS) concernent les restrictions à l'utilisation normale d'une structure.

Les exemples de SLS comprennent la déflexion, les vibrations et les dommages localisés.

En raison des propriétés naturelles uniques du bois, telles que la présence de nœuds, la flache ou l'inclinaison du grain, l'approche de la conception pour le bois nécessite l'utilisation de facteurs de modification spécifiques au comportement structurel. Ces facteurs de modification sont utilisés pour ajuster les résistances spécifiées dans la norme CSA O86 afin de tenir compte des caractéristiques du matériau propres au bois. Les facteurs de modification couramment utilisés dans le calcul des structures en bois comprennent les effets de la durée de la charge, les effets de système liés aux éléments répétitifs agissant ensemble, les facteurs de conditions de service humides ou sèches, les effets de la taille des éléments sur la résistance et l'influence des produits chimiques et du traitement sous pression.

Les systèmes de construction en bois ont un rapport résistance/poids élevé et les constructions à ossature légère en bois contiennent de nombreux petits connecteurs, le plus souvent des clous, qui offrent une ductilité et une capacité importantes lorsqu'il s'agit de résister à des charges latérales, telles que les tremblements de terre et le vent.

Les murs de cisaillement et les diaphragmes à ossature légère constituent une solution de contreventement latéral très courante et pratique pour les bâtiments en bois. Généralement, le revêtement en bois, le plus souvent du contreplaqué ou des panneaux à copeaux orientés (OSB), qui est spécifié pour résister à la charge de gravité, peut également faire office de système de résistance aux forces latérales. Cela signifie que le revêtement remplit plusieurs fonctions, notamment la distribution des charges aux solives du plancher ou du toit, le contreventement des poutres et des montants pour éviter qu'ils ne se déforment et la résistance latérale aux charges dues au vent et aux tremblements de terre. D'autres systèmes de résistance aux charges latérales sont utilisés dans les bâtiments en bois, notamment les cadres rigides ou les portiques, les contreventements à genoux et les contreventements transversaux.

Un tableau des portées typiques est présenté ci-dessous pour aider le concepteur à choisir un système structurel en bois approprié.

Estimation de la portée des éléments en bois dans la conception des structures pour les solives, les poutres, les fermes et les arcs. 

 

Pour plus d'informations, consultez les ressources suivantes :

Introduction à la conception en bois (Conseil canadien du bois)

Manuel de conception en bois (Conseil canadien du bois)

CSA O86 Conception technique du bois

Code national du bâtiment du Canada

www.woodworks-software.com

Pendant de nombreuses années, les valeurs de calcul des bois de construction canadiens ont été déterminées en testant de petits échantillons clairs. Bien que cette approche ait bien fonctionné dans le passé, certains éléments indiquaient qu'elle ne reflétait pas toujours avec exactitude le comportement en service d'un élément de taille normale.

À partir des années 1970, de nouvelles données ont été recueillies sur le bois d'œuvre calibré en grandeur réelle, connu sous le nom d'essais en cours de fabrication. Au début des années 1980, l'industrie canadienne du bois a mené un important programme de recherche dans le cadre du Programme des propriétés du bois du Conseil canadien du bois, portant sur les propriétés de résistance à la flexion, à la traction et à la compression parallèle au fil du bois de 38 mm d'épaisseur (2 pouces nominaux) pour tous les groupes d'essences canadiennes commercialement importants. Le Lumber Properties Program a été mené en coopération avec l'industrie américaine dans le but de vérifier la corrélation de la classification des bois d'œuvre d'une usine à l'autre, d'une région à l'autre et entre le Canada et les États-Unis.

Le programme d'essais au sol a consisté à tester des milliers de pièces de bois de construction jusqu'à leur destruction afin de déterminer leurs caractéristiques en service. Il a été convenu que ce programme d'essai devait simuler, aussi fidèlement que possible, les conditions structurelles d'utilisation finale auxquelles le bois serait soumis.

Après avoir été conditionnés à un taux d'humidité d'environ 15 %, les échantillons ont été soumis à une charge à court et à long terme conformément à la norme ASTM D4761. Des échantillons de bois de trois dimensions : 38 x 89 mm, 38 x 184 mm et 38 x 235 mm (2 x 4 po, 2 x 8 po et 2 x 10 po) ont été sélectionnés dans toutes les régions de culture du Canada pour les trois groupes d'essences commerciales les plus importants : épicéa-pin-sapin (S-P-F), sapin de Douglas-mélèze (D.Fir-L) et sapin-épicéa. Les essences Select Structural, No.1, No.2, No.3, ainsi que les essences de charpente légère, ont été échantillonnées en flexion. Les qualités Select Structural, No.1 et No.2 ont été évaluées en traction et en compression parallèlement au fil. Plusieurs essences de moindre volume ont également été évaluées à des intensités d'échantillonnage plus faibles.

Les essais sur le terrain ont permis d'établir de nouvelles relations entre les essences, les dimensions et les qualités. La base de données des résultats du bois de construction a été examinée afin d'établir les tendances des propriétés de flexion, de tension et de compression parallèles au grain, en fonction de la taille et de la qualité de l'élément. Ces études ont servi de base à l'extension des résultats à l'ensemble des qualités de bois d'œuvre et des dimensions des éléments décrits dans la norme CSA O86. Au Canada, la norme CSA O86 et le Code national du bâtiment du Canada (CNB) ont adopté les résultats du Programme des propriétés du bois de sciage. Les données ont également été utilisées pour mettre à jour les valeurs de calcul aux États-Unis.

Les données scientifiques issues du Lumber Properties Program ont démontré :

  • une corrélation étroite entre les propriétés de résistance du bois de dimension n° 1 et n° 2 classé visuellement ;
  • une bonne corrélation dans l'application des règles de classement d'une usine à l'autre et d'une région à l'autre ; et
  • une diminution de la résistance relative à mesure que la taille augmente (effet de taille) - par exemple, la résistance unitaire à la flexion d'un élément de 38 × 89 mm (2 x 4 pouces) est supérieure à celle d'un élément de 38 × 114 mm (2 x 6 pouces).

Suite à ce programme d'essais, la norme ASTM D1990, basée sur un consensus, a été élaborée et publiée. Les données relatives à la flexion, à la traction parallèle au grain, à la compression parallèle au grain et au module d'élasticité continuent d'être analysées conformément à cette norme.

Contrairement au bois d'œuvre classé visuellement, dont les propriétés de résistance anticipées sont déterminées à partir de l'évaluation d'une pièce sur la base de l'aspect visuel et de la présence de défauts tels que les nœuds, les flaches ou l'inclinaison du grain, les caractéristiques de résistance du bois d'œuvre classé par contrainte mécanique (MSR) sont déterminées en appliquant des forces à un élément et en mesurant réellement la rigidité d'une pièce particulière. Lorsque le bois est introduit en continu dans l'équipement d'évaluation mécanique, la rigidité est mesurée et enregistrée par un petit ordinateur, et la résistance est évaluée par des méthodes de corrélation. Le classement MSR peut être effectué à des vitesses allant jusqu'à 365 m (1000 ft) par minute, y compris l'apposition d'une marque de classement MSR. Le bois de MSR fait également l'objet d'un contrôle visuel des propriétés autres que la rigidité qui pourraient affecter l'adéquation d'une pièce donnée. Étant donné que la rigidité de chaque pièce est mesurée individuellement et que la résistance est mesurée sur des pièces sélectionnées dans le cadre d'un programme de contrôle de la qualité, le bois de MSR peut se voir attribuer des résistances de conception spécifiées plus élevées que le bois de dimension classé visuellement.

 

Pour plus d'informations, consultez les ressources suivantes :

Canadian Lumber Properties (Conseil canadien du bois)

ASTM D1990 Standard Practice for Establishing Allowable Properties for Visually-Graded Dimension Lumber from In-Grade Tests of Full-Size Specimens (Pratique standard pour l'établissement des propriétés admissibles pour le bois de dimension à classement visuel à partir d'essais en cours sur des spécimens de taille normale)

ASTM D4761 Standard Test Methods for Mechanical Properties of Lumber and Wood-Based Structural Materials (Méthodes de test standard pour les propriétés mécaniques du bois de construction et des matériaux structuraux à base de bois)

Autorité nationale de classification des bois (NLGA)

Humidité, dégradation et termites

Le bois est un matériau naturel et biodégradable. Cela signifie que certains insectes et champignons peuvent décomposer le bois pour le recycler via la terre en un nouveau matériau végétal.

La décomposition, également appelée pourriture, est la décomposition de la matière organique par l'activité fongique. Quelques espèces spécialisées de champignons peuvent agir sur le bois. Il s'agit d'un processus important dans la forêt. Mais il s'agit évidemment d'un processus à éviter pour les produits en bois en service.

La clé de la lutte contre la pourriture est le contrôle de l'humidité excessive. L'eau en elle-même n'endommage pas le bois, mais elle permet à ces organismes fongiques de se développer. Le bois est en fait assez tolérant à l'eau et pardonne de nombreuses erreurs d'humidité. Mais un excès d'humidité involontaire (par exemple, une fuite importante dans un mur) peut entraîner un risque important de pourriture. Si un produit en bois doit être utilisé dans une application qui sera fréquemment mouillée pendant de longues périodes, des mesures doivent être prises pour protéger le bois contre la pourriture.

Différents types d'insectes peuvent endommager le bois, mais les principaux responsables des problèmes sont les termites. Les termites vivent partout dans le monde où le climat est chaud ou tempéré.

Une fondation permanente en bois (CPB) est un système de construction technique qui utilise des murs porteurs extérieurs en bois à ossature légère dans une application sous le niveau du sol. Une fondation permanente en bois se compose d'un mur à colombages et d'une sous-structure de semelle, construits en contreplaqué et en bois d'œuvre traités avec des produits de préservation approuvés, qui soutiennent une superstructure située au-dessus du niveau du sol. En plus de fournir un support structurel vertical et latéral, le système PWF offre une résistance aux flux de chaleur et d'humidité. Les premiers exemples de PWF ont été construits dès 1950 et nombre d'entre eux sont encore utilisés aujourd'hui.

Le PWF est un système technique solide, durable et éprouvé qui présente un certain nombre d'avantages uniques :

  • les économies d'énergie résultant de niveaux d'isolation élevés, réalisables grâce à l'application d'une isolation des cavités des montants et d'une isolation extérieure rigide (jusqu'à 20% de transfert de chaleur peuvent se produire à travers les fondations) ;
  • un espace de vie sec et confortable grâce à un système de drainage supérieur (qui ne nécessite pas de tuiles pleureuses) ;
  • une augmentation de l'espace habitable puisque les cloisons sèches peuvent être fixées directement sur les montants des murs de fondation ;
  • résistance à la fissuration due aux cycles de gel/dégel ;
  • s'adapte à la plupart des constructions, y compris les vides sanitaires, les annexes et les sous-sols aménagés ;
  • un seul corps de métier pour une planification plus efficace de la construction ;
  • constructible en hiver avec une protection minimale autour des semelles pour les protéger du gel ;
  • une construction rapide, qu'il s'agisse d'une ossature sur place ou d'une préfabrication hors site ;
  • les matériaux sont facilement disponibles et peuvent être expédiés efficacement vers les sites de construction ruraux ou éloignés ; et
  • une longue durée de vie, sur la base de l'expérience acquise sur le terrain et en ingénierie.

Les MPO conviennent à tous les types de construction à ossature légère couverts par la partie 9 "Logements et petits bâtiments" du Code national du bâtiment du Canada (CNB), c'est-à-dire que les MPO peuvent être utilisés pour des bâtiments d'une hauteur maximale de trois étages au-dessus des fondations et dont la surface de construction ne dépasse pas 600 mètres.2. Les MPO peuvent être utilisés comme systèmes de fondation pour les maisons individuelles, les maisons en rangée, les appartements de faible hauteur et les bâtiments institutionnels et commerciaux. Ils peuvent également être conçus pour des projets tels que les vides sanitaires, les ajouts de pièces et les fondations de murs de genoux pour les garages et les maisons préfabriquées.

Il existe trois types différents de PWF : le sous-sol à dalle de béton ou à plancher de bois, le sous-sol à plancher de bois suspendu et le vide sanitaire non excavé ou partiellement excavé. Les montants de bois utilisés dans les CPE sont généralement de 38 x 140 mm (2 x 6 pouces) ou de 38 x 184 mm (2 x 8 pouces), de qualité n° 2 ou supérieure.

Des méthodes améliorées de contrôle de l'humidité autour et sous le PWF permettent d'obtenir un espace de vie confortable et sec sous le niveau du sol. Le PWF est placé sur une couche de drainage granulaire qui s'étend sur 300 mm au-delà des semelles. Un pare-vapeur extérieur, appliqué à l'extérieur des murs, assure la protection contre les infiltrations d'humidité. Les joints calfeutrés entre tous les panneaux muraux extérieurs en contreplaqué et au bas des murs extérieurs ont pour but de contrôler les fuites d'air à travers le PWF, mais aussi d'éliminer les voies de pénétration de l'eau. Le résultat est un sous-sol sec qui peut être facilement isolé et aménagé pour un maximum de confort et d'économies d'énergie.

Tout le bois d'œuvre et le contreplaqué utilisés dans un PWF, à l'exception d'éléments ou de conditions spécifiques, doivent être traités à l'aide d'un produit de préservation du bois à base d'eau et identifiés comme tels par une marque de certification attestant de leur conformité à la norme CSA O322. Les clous résistants à la corrosion, les ancrages d'ossature et les sangles utilisés pour fixer les matériaux traités à l'aide d'un produit de préservation du bois doivent être galvanisés par immersion à chaud ou en acier inoxydable. Les pare-vapeur et les pare-humidité extérieurs doivent avoir une épaisseur d'au moins 0,15 mm (6 mil). Les panneaux de drainage à excroissances sont souvent utilisés comme pare-vapeur extérieur.

 

Pour plus d'informations, voir les références suivantes :

Fondations permanentes en bois (Conseil canadien du bois)

Fondations permanentes en bois 2023 - Durable, confortable, adaptable, économe en énergie, économique (Préservation du bois Canada et Conseil canadien du bois)

Manuel de conception en bois (Conseil canadien du bois)

Préservation du bois Canada

CSA S406 Spécification des fondations permanentes en bois pour les habitations et les petits bâtiments

CSA O322 Procédure de certification des matériaux en bois traité sous pression destinés à être utilisés dans des fondations permanentes en bois

CSA O86 Conception technique en bois

Code national du bâtiment du Canada

La "durabilité par la conception" est l'aspect le plus important des solutions durables. Il s'agit d'abord d'utiliser du bois sec, de le stocker de manière appropriée pour s'assurer qu'il reste sec, puis de concevoir le bâtiment de manière à protéger le bois ou, si le bois est exposé, de le concevoir de manière à ce qu'il n'accumule pas d'humidité. Il faut également veiller à ce que l'enveloppe du bâtiment soit conçue de manière à évacuer l'eau en vrac, à empêcher l'eau et la vapeur de pénétrer dans l'enveloppe et à évacuer l'eau qui s'y infiltre.

Pour les applications extérieures du bois, nous avons une forte tradition, ici en Amérique du Nord, d'utilisation de nos essences naturellement durables : le Western Red Cedar, le Eastern White Cedar, le cyprès jaune et le séquoia. Ce sont des choix familiers pour les terrasses, les clôtures, les bardages et les toitures. Ces essences sont résistantes à la décomposition à l'état naturel, en raison de leur teneur élevée en produits chimiques organiques appelés matières extractibles. Les extractibles sont des substances chimiques qui se déposent dans le bois de cœur de certaines espèces d'arbres lors de la transformation de l'aubier en bois de cœur. Outre le fait qu'elles confèrent au bois une résistance à la pourriture, les substances extractives donnent souvent au bois de cœur une couleur et une odeur.

Seul le bois de cœur présente ces dépôts protecteurs. L'aubier de tous les résineux d'Amérique du Nord est sensible à la pourriture et doit être protégé par d'autres moyens lorsqu'une résistance à la pourriture est nécessaire. L'aubier est la partie la plus récente de l'arbre, plus proche de l'écorce. Il n'a pas besoin d'être protégé contre la pourriture dans l'arbre vivant, car les réactions à la blessure empêchent tout organisme envahissant de pénétrer dans l'arbre. Le bois de cœur est la partie interne, plus ancienne, de l'arbre et n'est plus en vie.

Les couches d'un arbre

Le bois de cœur se distingue souvent visiblement de l'aubier par sa couleur (le bois de cœur est généralement plus foncé), mais ce n'est pas le cas pour toutes les essences. Cependant, même si vous êtes sûr d'avoir du bois de cœur d'une espèce durable, vous n'avez peut-être pas le niveau de résistance que vous pensez. La résistance à la pourriture est souvent très variable et peut être plus faible dans les arbres cultivés en plantation. Il n'existe actuellement aucun moyen d'estimer de manière fiable la durabilité d'un morceau de bois de cœur naturellement durable.

Plus d'informations
Cliquez ici pour un tableau présentant les classements de durabilité naturelle des essences de bois résineux les plus courantes.

Méthodes de traitement

Il existe deux méthodes de base pour le traitement : avec et sans pression. Méthodes sans pression sont l'application d'un produit de conservation par brossage, pulvérisation ou trempage de la pièce à traiter. Il s'agit de traitements superficiels qui n'entraînent pas une pénétration profonde ou une absorption importante du produit de conservation. Il est préférable de limiter leur utilisation aux cas suivants traitement sur le terrain pendant la construction (par exemple, lorsqu'une pièce de bois traitée sous pression doit être coupée sur place), dans les cas où seule une partie d'une pièce doit être traitée, dans les processus de fabrication des produits à base de bois lamellaire, dans la protection de la surface contre les moisissures ou dans les cas où une pièce de bois doit être traitée sur place. traitement correctif du bois en place. Par exemple, des mélanges de borate et de glycols sont utilisés pour traiter le bois sain laissé en place lors de la réparation de problèmes de pourriture. Le glycol aide le borate à pénétrer dans le bois sec, arrêtant l'activité de tout champignon qui entre en contact avec lui. La pénétration du conservateur est encore limitée et la fonction la plus importante est d'empêcher les champignons non détectés laissés sur place de se propager au bois sain.

Une pénétration plus profonde et plus complète est obtenue en faisant pénétrer le produit de préservation dans les cellules du bois par pression. Diverses combinaisons de pression et de vide sont utilisées pour faire pénétrer des niveaux adéquats de produit chimique dans le bois. Les produits de protection sous pression sont des produits chimiques transportés dans un solvant. Le solvant, ou support, est soit de l'eau, soit de l'huile. Les produits de préservation à base d'huile sont largement utilisés pour traiter les produits industriels tels que les traverses de chemin de fer, les poteaux électriques et les poutres de pont, ainsi que pour protéger les coupes dans les champs. Les produits de préservation à base d'eau sont plus largement utilisés sur les marchés résidentiels en raison de l'absence d'odeur, de la surface plus propre du bois et de la possibilité de peindre ou de teindre le produit en bois. Lorsqu'un produit en bois est utilisé dans une application connue pour présenter un risque, par exemple à l'extérieur, traitement sous pression est recommandé.

Types de conservateurs

Les produits de préservation du bois les plus couramment utilisés en Amérique du Nord dans la construction résidentielle sont des systèmes à base de cuivre en phase aqueuse, notamment le cuivre alcalin quaternaire (ACQ), l'azole de cuivre (CA) et l'azole de cuivre micronisé (MCA). Le bois traité avec ces produits de préservation a une teinte verte naturelle, bien que celle-ci puisse être masquée par l'utilisation de colorants qui donnent le plus souvent au bois traité une couleur brun moyen. Le cuivre est le principal biocide de ces systèmes. L'ACQ contient également des composés d'ammonium quaternaire qui agissent comme co-biocide pour protéger contre les organismes tolérants au cuivre. De même, CA et MCA contiennent du tébuconazole pour protéger contre ces organismes. 

L'arséniate de cuivre chromaté (ACC) a été largement utilisé dans la construction résidentielle jusqu'en 2004, date à laquelle son utilisation dans la plupart des applications résidentielles a été progressivement abandonnée. Il est désormais largement limité aux applications industrielles, mais peut encore être utilisé dans quelques applications résidentielles telles que les bardeaux et les fondations permanentes en bois. L'arséniate ammoniacal de cuivre et de zinc (ACZA) peut également être utilisé dans la plupart de ces applications, mais il est surtout utilisé pour le traitement du Douglas taxifolié et pour les applications marines.

Les borates constituent une autre classe de conservateurs en phase aqueuse utilisés en Amérique du Nord. Leur utilisation est actuellement limitée aux applications qui sont protégées de la pluie et d'autres sources persistantes d'eau. Il s'agit notamment des charpentes dans les zones à termites et de la réparation des charpentes pourries dans les bâtiments qui fuient et où la principale source d'humidité a été éliminée. Les borates sont également utilisés dans le cadre d'un double traitement, en association avec une enveloppe de créosote ou de naphténate de cuivre, pour protéger les traverses de chemin de fer.

Les systèmes de préservation à base d'eau sans métal, tels que PTI et EL2, contiennent des fongicides et des insecticides à base de carbone. Le bois traité avec ces systèmes est utilisé dans la construction résidentielle aux États-Unis et est limité aux applications hors sol.

Les conservateurs à base d'huile comprennent la créosote, le pentachlorphénol et le naphténate de cuivre et de zinc. La créosote est le célèbre produit de préservation du bois noir et huileux, le plus ancien type de produit de préservation encore utilisé de nos jours. Au Canada, elle est utilisée presque exclusivement pour les traverses de chemin de fer, où sa résistance aux mouvements de l'humidité est un avantage clé. Le pentachlorophénol dans l'huile est principalement utilisé pour les poteaux électriques, où les caractéristiques d'assouplissement de la surface de l'huile sont utiles pour l'escalade des poteaux. Le naphténate de cuivre et le naphténate de zinc sont deux conservateurs couramment utilisés pour traiter les coupes sur le terrain. Le naphténate de cuivre est également utilisé pour traiter les traverses et le bois de construction aux États-Unis.

Modification thermique

Les propriétés du bois sont modifiées lorsqu'il est exposé à des températures élevées (160-260°C) dans des conditions d'oxygène réduit. Les fours de modification thermique utilisent des températures beaucoup plus élevées que les fours de séchage et utilisent de la vapeur (ou d'autres milieux excluant l'oxygène) pour protéger le bois de la dégradation à ces températures élevées. Le bois modifié thermiquement qui en résulte a généralement une couleur plus foncée, une stabilité dimensionnelle accrue et une meilleure résistance à la pourriture. La modification thermique peut réduire certaines propriétés mécaniques et ne protège pas le bois contre les insectes. Le bois modifié thermiquement est généralement utilisé dans des applications non structurelles, en surface, telles que le bardage, les terrasses et les meubles d'extérieur.

Plus d'informations de la part des producteurs de produits de préservation du bois
Lonza Protection du bois

Spécialités du bois 

Viance LLC 

Genics Inc. 

Kop-Coat  

Rio Tinto Minerals

Nisus  

Conseil de la créosote  

KMG Chemicals  

Préservation du bois Canada

 

L'aspect du bois peut être modifié par l'application d'un produit d'entretien. revêtement architectural. Les revêtements architecturaux sont des revêtements de surface tels que des peintures et des teintures appliquées à un bâtiment ou à des structures extérieures telles qu'une terrasse. Les revêtements sont multifonctionnels : ils sont décoratifs, réduisent les efforts nécessaires pour nettoyer les bâtiments et les structures, et offrent une protection contre l'absorption d'humidité, ce qui contribue à prolonger la durée de vie du bois. Cependant, les revêtements ne peuvent pas être considérés comme des substituts aux traitements de préservation. Sur cette page, nous expliquons les bases des différents types de revêtements extérieurs pour le bois, et ce qu'ils peuvent et ne peuvent pas faire pour le bois.

Types de revêtements - Opacité

Les revêtements architecturaux disponibles pour le bois comprennent généralement des peintures, des teintures, des vernis et des hydrofuges. Il existe plusieurs façons de classer les revêtements. L'une des méthodes les plus courantes consiste à les différencier en fonction de leur aspect. Les revêtements sont souvent identifiés comme suit 1) opaques ; 2) semi-transparents ou 3) transparents. Ces termes indiquent dans quelle mesure les caractéristiques naturelles du bois seront visibles à travers la finition. 

Un opaque Le revêtement ne laisse transparaître aucune des couleurs naturelles du bois et, en fonction de l'épaisseur, peut également masquer une grande partie ou la totalité de la texture de sa surface. Il protège efficacement le bois des dommages causés par la lumière du soleil. Il peut également contribuer à empêcher l'humidité de pénétrer dans le bois. Ces revêtements ont tendance à durer plus longtemps. Les revêtements opaques comprennent les peintures et les teintures de couleur unie.

transparent ou semi-transparent finition comme un tache ou hydrofuge peut modifier la couleur du bois, mais comme elle laisse apparaître le grain et la texture, le bois conserve un aspect "naturel". Ces finitions aident à empêcher l'humidité de pénétrer dans le bois dans une certaine mesure, mais la capacité des teintures à limiter la pénétration de l'humidité varie considérablement d'une teinture à l'autre. Elles protègent également le bois des dommages causés par la lumière du soleil à des degrés divers, en fonction de leur teneur en absorbeurs organiques d'UV ou en pigments inorganiques. La différence entre les revêtements transparents et semi-transparents n'est pas toujours claire. Les revêtements transparents laissent apparaître davantage de grain et de texture. Les revêtements extérieurs transparents étiquetés comme "clairs" peuvent encore contenir des pigments pour rehausser la couleur naturelle du bois et fournir une distinction visuelle entre les zones peintes et non peintes pendant l'application. Toutefois, il est important de noter que les produits transparents destinés à un usage intérieur ne conviennent PAS à un usage extérieur, car ils se dégradent rapidement et s'abîment s'ils sont exposés à la lumière du soleil et aux intempéries.

Il existe de nombreux produits transparents commercialisés pour protéger le bois contre l'eau (hydrofuges) - ces produits pourraient techniquement être considérés comme des "traitements" du bois plutôt que comme des revêtements du bois, car ils assurent principalement une protection contre l'eau et aident à réduire le fendillement, et n'offrent qu'une protection UV très limitée, voire inexistante. Cela signifie qu'ils tombent généralement en panne plus tôt que les finitions pigmentées, mais ils contribuent à ralentir le processus d'altération en limitant la pénétration de l'eau. Il convient de noter que les hydrofuges sont souvent en phase solvant et contiennent de la cire qui affecte l'adhérence des revêtements ultérieurs, ce qui signifie que la plupart de ces produits ne doivent pas être utilisés comme prétraitement sous la peinture. Toutefois, les produits transparents les hydrofuges ont l'avantage unique d'être le traitement le plus respectueux de l'esthétique en cas de manque d'entretien. En d'autres termes, ces produits ne modifient pas la couleur du bois, de sorte que les parties dénudées du bois ne sont pas aussi visibles si le revêtement s'use.

Types de revêtements - Supports

Une autre façon courante de classer les revêtements est de tenir compte du type de support (la base) - les produits sont soit à base d'eau ou à base de solvant. Lorsqu'il est important d'avoir peu de composés organiques volatils (COV) et de pouvoir nettoyer facilement, un produit à base d'eau est le meilleur choix. Les revêtements en phase aqueuse dominent désormais le marché en raison des exigences réglementaires environnementales croissantes en matière de qualité de l'air et de santé, et de la demande des clients. Par rapport aux finitions à base de solvants, les finitions à base d'eau ont généralement moins d'odeur et peuvent être nettoyées avec de l'eau au lieu d'utiliser des essences minérales. Les revêtements en phase aqueuse sont généralement plus souples (moins susceptibles de se fissurer lorsque le bois sous-jacent se rétracte et gonfle sous l'effet de l'humidité) et plus perméables à la vapeur d'eau. 

Les peintures à l'eau sont souvent appelées latex. Les peintures à base de solvants sont communément appelées huile peintures. De même, les peintures étiquetées comme alkydes sont généralement à base de solvant (mais pas toujours). Bien qu'il soit courant de qualifier les peintures de latex ou d'huile/alkyde, il est plus utile de les considérer comme étant à base d'eau ou de solvant. Les revêtements en phase aqueuse, en particulier les acryliques, sont généralement moins sujets à la décoloration et au farinage que les alkydes. La technologie des peintures et des finitions en phase aqueuse a considérablement progressé ces dernières années et est aujourd'hui suffisamment au point pour égaler, voire dépasser, les propriétés des produits en phase solvant.

Types de revêtements - Épaisseur du film
Les revêtements pour le bois sont parfois classés en fonction de l'épaisseur de la couche. film Ils se forment à la surface du bois. Les peintures, les teintures unies et les vernis sont souvent qualifiés de filmogènes, car ils créent une couche de matière continue sur le bois. Les teintures semi-transparentes, les teintures transparentes, les hydrofuges et les huiles naturelles sont souvent appelées "agents filmogènes". finitions pénétrantesLes produits "pénétrants" sont plus efficaces que les autres, car ils pénètrent dans les pores du bois, laissant visibles la texture et les pores de sa surface, plutôt que de laisser une pellicule épaisse sur le bois. Cependant, tous les revêtements laissent un film en surface - épais pour certains, fin pour d'autres - et les produits "pénétrants" ne pénètrent que sur une très courte distance dans le bois. Il est néanmoins utile de savoir si un produit laisse un film épais, car ce type de produit peut être plus difficile à enlever s'il est dégradé et nécessite une remise à neuf. En effet, les modes de défaillance sont différents : un revêtement épais et cohérent comme une peinture se fissure et s'écaille, tandis qu'un produit "pénétrant" en couche mince comme une lasure se dégrade par érosion.

Les revêtements peuvent-ils protéger le bois ?
Les revêtements peuvent protéger temporairement la surface du bois contre le soleil, l'humidité et les intempéries, mais ils ne protègent pas activement contre la pourriture. Leur objectif est avant tout esthétique. Ils ralentissent toutefois les effets néfastes des intempéries et offrent une certaine protection contre l'humidité, qui est un facteur de pourriture. Les revêtements contribuent également à préserver la durabilité naturelle d'essences telles que le Western Red Cedar, en empêchant les agents protecteurs naturels de ce bois de se dégrader. Les avantages protecteurs de tous les revêtements dépendent, bien entendu, d'un entretien adéquat du revêtement. Aucun revêtement ne dure indéfiniment et tous doivent être réappliqués périodiquement.

L'altération
L'altération est la lente dégradation superficielle qui se produit lorsque le bois est exposé aux intempéries. Il ne faut pas confondre l'altération superficielle avec la décomposition (pourriture) causée par les champignons de décomposition, qui peuvent pénétrer profondément dans le bois et en réduire considérablement la résistance dans un laps de temps relativement court. En revanche, l'altération du bois est causée par les UV, l'eau, l'oxygène, la lumière visible, la chaleur, les particules transportées par le vent, les polluants atmosphériques, parfois associés à des micro-organismes spécialisés. Sous l'effet de ces facteurs, le bois exposé à l'extérieur en surface sans revêtement change rapidement d'aspect. La couleur change en raison de la photodégradation, de la lixiviation chimique et d'autres réactions chimiques ; les bois clairs s'assombrissent légèrement et les bois foncés s'éclaircissent, mais tous les bois finissent par prendre une couleur gris argenté. La surface devient également rugueuse, se fissure et s'érode sous l'effet répété des rayons ultraviolets, de l'humidification et du séchage, ainsi que de l'abrasion mécanique due aux particules emportées par le vent. C'est pourquoi le bois altéré a un aspect "rustique". Certains micro-organismes et lichens peuvent coloniser le bois, mais l'état de surface du bois ne favorise généralement pas la pourriture. Il convient de noter que l'altération ne se produit qu'à la surface du bois, généralement à une profondeur de 0,05 à 0,5 mm. Tant qu'il n'y a pas de pourriture, le bois altéré de grande dimension reste structurellement sain à l'intérieur et tout à fait utilisable pendant des années. Afin de réduire l'altération et d'améliorer l'aspect esthétique du bois, le bois exposé à l'extérieur en surface peut être protégé par des revêtements.

Lien vers des articles sur l'altération climatique sur le site web de l'USDA FPL :

Vieillissement et protection du bois

L'altération du bois

Remerciements

Sam Williams du laboratoire américain des produits forestiers, Philip Evans de l'université de Colombie britannique et Greg Monaghan, chef du groupe "Specialty Coatings" chez Rohm and Haas, mais le contenu final ne reflète pas nécessairement leurs opinions sur tous les points.

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône Persona
Persona
Tags Icône
Tags
Rapports annuels Icône Plus
Livre des prix Icône Plus
Études de cas Icône Plus
Publications gratuites Icône Plus
Revue Icône Plus
Systèmes de construction Icône Plus
Codes et normes Icône Plus
Nouvelles de l'industrie Icône Plus
Pourquoi le bois (FAQ) Icône Plus
Produits du bois Icône Plus
Acoustique Icône Plus
Exemples de conception Icône Plus
Ingénierie Icône Plus
Résistance au feu Icône Plus
Assurance Icône Plus
Bois massif Icône Plus
Icône de date
Date
Séparateur de ligne