Bois massif

Les progrès de la technologie et des systèmes de produits du bois sont à l'origine de la dynamique des bâtiments innovants au Canada. Des produits tels que le bois lamellé-croisé (CLT), le bois lamellé-cloué (NLT), le bois lamellé-collé (GLT), le bois lamellé-collé (LSL), le bois de placage stratifié (LVL) et d'autres produits composites structurels de grande dimension (SCL) font partie d'une classification plus large connue sous le nom de "bois de masse". Bien que le bois de masse soit un terme émergent, la construction traditionnelle à poteaux et à poutres (charpente en bois) existe depuis des siècles. Aujourd'hui, les produits de bois de masse peuvent être constitués en fixant mécaniquement et/ou en collant des éléments de bois plus petits tels que du bois de construction ou des placages, des brins ou des fibres de bois pour former de grands éléments de bois préfabriqués utilisés comme poutres, colonnes, arcs, murs, planchers et toits. Les produits en bois de masse ont un volume et des dimensions transversales suffisants pour offrir des avantages significatifs en termes de résistance au feu, d'acoustique et de performance structurelle, en plus de l'efficacité de la construction.
Poutrelles à ossature légère

Une ferme est une structure qui repose sur une disposition triangulaire des âmes et des membrures pour transférer les charges aux points de réaction. Cette disposition géométrique des éléments confère aux fermes un rapport résistance/poids élevé, ce qui permet des portées plus longues que les charpentes conventionnelles. Les fermes à ossature légère peuvent généralement atteindre une portée de 20 m (60 pieds), bien que des portées plus longues soient également possibles. Les premières fermes à ossature légère ont été construites sur place à l'aide de goussets en contreplaqué cloués. Ces fermes offraient des portées acceptables mais nécessitaient un temps de construction considérable. Développée à l'origine aux États-Unis dans les années 1950, la plaque de connexion métallique a transformé l'industrie des fermes en permettant une préfabrication efficace des fermes de courte et de longue portée. Les plaques d'assemblage en métal léger permettent de transférer la charge entre les éléments adjacents grâce à des dents en acier poinçonnées qui sont encastrées dans les éléments en bois. Aujourd'hui, les fermes en bois à ossature légère sont largement utilisées dans les constructions résidentielles unifamiliales et multifamiliales, institutionnelles, agricoles, commerciales et industrielles. La forme et la taille des fermes à ossature légère ne sont limitées que par les capacités de fabrication, les contraintes d'expédition et les considérations de manutention. Les fermes peuvent être conçues comme simples ou à plusieurs travées, avec ou sans porte-à-faux. L'économie, la facilité de fabrication, la livraison rapide et les procédures de montage simplifiées rendent les fermes en bois à ossature légère compétitives dans de nombreuses applications de toiture et de plancher. Leur grande portée élimine souvent le besoin de murs porteurs intérieurs, ce qui offre au concepteur une grande souplesse dans l'agencement des planchers. Les fermes de toit offrent des configurations en pente, inclinées ou plates, tout en laissant un espace libre entre les membrures pour l'isolation, la ventilation, l'électricité, la plomberie, le chauffage et l'air conditionné. Les fermes en bois à ossature légère sont préfabriquées en pressant les dents saillantes de la plaque d'acier de la ferme dans des éléments de bois de 38 mm (2 po), qui sont prédécoupés et assemblés dans un gabarit. La plupart des fermes sont fabriquées avec du bois de 38 x 64 mm (2 x 3 pouces) à 38 x 184 mm (2 x 8 pouces) classé visuellement et soumis à des contraintes mécaniques (MSR). Pour obtenir différentes valeurs d'adhérence, les plaques d'assemblage des fermes sont estampées à partir de tôles d'acier galvanisé de calibre léger de différentes qualités et épaisseurs. De nombreuses dimensions de plaques sont fabriquées pour s'adapter à toutes les formes et dimensions de fermes ou de charges à supporter. Les fermes à ossature légère sont fabriquées conformément aux normes établies par le Truss Plate Institute of Canada. Les capacités des plaques varient d'un fabricant à l'autre et sont établies par des essais. Les plaques de fermes doivent être conformes aux exigences de la norme CSA O86 et doivent être approuvées par le Centre canadien des matériaux de construction (CCMC). Pour obtenir cette approbation, les plaques de fermes sont testées conformément à la norme CSA S347. Lors de la conception, les fermes à ossature légère sont généralement conçues par le fabricant de plaques de fermes pour le compte du fabricant de fermes. Lorsque les fermes à ossature légère arrivent sur le chantier, il convient de vérifier qu'elles ne présentent pas de dommages permanents tels que des ruptures transversales dans le bois, des plaques de connexion métalliques manquantes ou endommagées, des fissures excessives dans le bois ou tout autre dommage susceptible de nuire à l'intégrité structurelle de la ferme. Dans la mesure du possible, les fermes doivent être déchargées en paquets sur un sol sec et relativement lisse. Elles ne doivent pas être déchargées sur un terrain accidenté ou sur des espaces irréguliers qui pourraient entraîner des tensions latérales excessives susceptibles de déformer les plaques d'assemblage métalliques ou d'endommager des parties des fermes. Les fermes à ossature légère peuvent être stockées horizontalement ou verticalement. Si elles sont stockées en position horizontale, les fermes doivent être soutenues par des cales espacées de 2,4 à 3 m (8 à 10 ft) afin d'éviter les flexions latérales et de réduire l'absorption d'humidité par le sol. Lorsqu'elles sont stockées en position verticale, les fermes doivent être placées sur une surface horizontale stable et contreventées pour éviter qu'elles ne basculent ou ne se renversent. Si les fermes doivent être stockées pendant une période prolongée, des mesures doivent être prises pour les protéger des intempéries, en les gardant sèches et bien ventilées. Les fermes à ossature légère nécessitent un contreventement temporaire pendant le montage, avant l'installation d'un contreventement permanent. Les plaques de fermes ne doivent pas être utilisées avec du bois incisé. Contacter le fabricant de fermes pour obtenir des conseils supplémentaires sur l'utilisation des fermes à ossature légère dans des environnements corrosifs, des conditions de service humides ou lorsqu'elles sont traitées avec un produit ignifuge. Pour plus d'informations, consulter les ressources suivantes : Canadian Wood Truss Association Truss Plate Institute of Canada CSA O86 Engineering design in wood CSA S347 Method of test for evaluation of truss plates used in lumber joints Canadian Construction Materials Centre
Bois d’échantillon

Dimension lumber is solid sawn wood that is less than 89 mm (3.5 in) in thickness. Lumber can be referred to by its nominal size in inches, which means the actual size rounded up to the nearest inch or by its actual size in millimeters. For instance, 38 × 89 mm (1-1/2 × 3-1/2 in) material is referred to nominally as 2 × 4 lumber. Air-dried or kiln dried lumber (S-Dry), having a moisture content of 19 percent or less, is readily available in the 38 mm (1.5 in) thickness. Dimension lumber thicknesses of 64 and 89 mm (2-1/2 and 3-1/2 in) are generally available as surfaced green (S-Grn) only, i.e., moisture content is greater than 19 percent. The maximum length of dimension lumber that can be obtained is about 7 m (23 ft), but varies throughout Canada. The predominant use of dimension lumber in building construction is in framing of roofs, floors, shearwalls, diaphragms, and load bearing walls. Lumber can be used directly as framing materials or may be used to manufacture engineered structural products, such as light frame trusses or prefabricated wood I-joists. Special grade dimension lumber called lamstock (laminating stock) is manufactured exclusively for glulam. Quality assurance of Canadian lumber is achieved via a complex system of product standards, engineering design standards and building codes, involving grading oversight, technical support and a regulatory framework. Checking and splitting Checking and splitting Checking occurs when lumber is rapidly dried. The surface dries quickly, while the core remains at a higher moisture content for some time. As a result, the surface attempts to shrink but is restrained by the core. This restraint causes tensile stresses at the surface, which if large enough, can pull the fibres apart, thereby creating a check. Splits are through checks that generally occur at the end of wood members. When a wood member dries, moisture is lost very rapidly from the end of the member. At midlength, however, the wood is still at a higher moisture content. This difference in moisture content creates tensile stresses at the end of the member. When the stresses exceed the strength of the wood, a split is formed. Large dimension solid sawn timbers are susceptible to checking and splitting since they are always dressed green (S-Grn). Furthermore, due to their large size, the core dries slowly and the tensile stresses at the surface and at the ends can be large. Minor checks confined to the surface areas of a wood member very rarely have any effect on the strength of the member. Deep checks could be significant if they occur at a point of high shear stress. Checks in columns are not of structural importance, unless the check develops into a through split that will increase the slenderness ratio of the column. The specified shear strengths of dimension lumber and timbers have been developed to consider the maximum amount of checking or splitting permitted by the applicable grading rule. The possibility and severity of splitting and checking can be reduced by controlling the rate at which drying occurs. This may be done by keeping wood out of direct sunlight and away from any artificial heat sources. Furthermore, the ends may be coated with an end sealer to retard moisture loss. Other actions which will minimize dimension change and the possibility of checking or splitting are: specifying wood products that are as close as possible in moisture content to the expected equilibrium moisture content of the end use ensuring dry wood products are protected by proper storage and handling Fingerjoined lumber Fingerjoined products are manufactured by taking shorter pieces of kiln-dried lumber, machining a ‘finger’ profile in each end of the short-length pieces, adding an appropriate structural adhesive, and end-gluing the pieces together to make a longer length piece of lumber. The length of a fingerjoined lumber is not limited by the length of the log. In fact, the manufacturing process can result in the production of joists and rafters in lengths of 12 m (40 ft) or more. The process of fingerjoining is also used within the manufacturing process for several other engineered wood products, including glued-laminated timber and wood I-joists. The specific term “fingerjoined lumber” applies to dimension lumber that contains finger joints. Fingerjoining derives greater value from the forest resource by using short length pieces of lower grade lumber as input for the manufacture of a value-added engineered wood product. The fingerjoining process utilizes short off cut pieces of lumber and results in more efficient use of the harvested wood fibre. Fingerjoined lumber can be manufactured from any commercial species or species group. The most commonly used species group from which fingerjoined lumber is produced is Spruce-Pine-Fir (S-P-F). Design advantages of fingerjoined lumber Fingerjoined lumber is an engineered wood product that is desirable for several reasons: straightness dimensional stability interchangeability with non-fingerjointed lumber highly efficient use of wood fibre The design and performance advantages of this engineered wood product are its straightness and dimensional stability. The straightness and dimensional stability of fingerjoined lumber is a result of short length pieces of lumber, consisting of relatively straight grain and fewer natural defects, being combined with one another to form a longer length piece of lumber. The grain pattern along fingerjoined lumber becomes non-uniform and random by attaching many short pieces together. This results in fingerjoined lumber being less prone to warping than solid sawn lumber. The fingerjoining process also results in the reduction or removal of strength reducing defects, producing a structural wood product with less variable engineering properties than solid sawn dimensional lumber. The most common use of finger-joined lumber is as studs in shearwalls and vertical load bearing walls. The most important factor for studs is straightness. Fingerjoined studs will stay straighter than solid sawn dimensional lumber studs when subjected to changes in temperature and humidity. This feature results in significant benefits to the builder and homeowner including a superior building, the elimination of nail pops in drywall and other problems related to dimensional changes.
Connexions

Comme pour tous les autres matériaux de construction, un aspect essentiel des structures en bois est la manière dont les éléments sont reliés. Les produits en bois sont des matériaux de construction faciles à percer, à ciseler ou à façonner pour faciliter l'assemblage des éléments, et il existe un certain nombre de méthodes et une large gamme de produits pour l'assemblage du bois. L'installation d'attaches métalliques est la méthode la plus courante d'assemblage des produits en bois et une large gamme de matériel est disponible. Cela va des clous et des connecteurs légers utilisés pour la construction de charpentes légères aux boulons, plaques latérales et autres pièces de quincaillerie utilisées pour les assemblages de pièces lourdes. Chaque type de fixation est conçu pour être utilisé avec un type de construction particulier. Pour de nombreuses applications, telles que le clouage de murs à ossature légère, les fixations métalliques n'ont qu'une fonction structurelle et seront dissimulées par les finitions intérieures et extérieures. Dans d'autres cas, lorsque les éléments en bois ont une fonction structurelle et sont laissés apparents pour ajouter un intérêt visuel à une conception et donner un aspect robuste à une structure, il faut réfléchir à la disposition des connexions ainsi qu'à la sélection et à la finition des produits en bois eux-mêmes. Dans d'autres cas, lorsque les fixations métalliques sont exposées à la vue, le concepteur peut souhaiter qu'elles soient aussi discrètes que possible. Pour ce faire, il peut choisir des fixations telles que des anneaux fendus et des boulons, réduire l'impact visuel de la quincaillerie en l'encastrant dans les éléments en bois, ou utiliser la peinture pour réduire l'importance d'une connexion.
i -Joïstes

Les solives en I préfabriquées en bois sont des éléments structuraux en bois exclusifs qui consistent en des brides de bois de sciage massif ou de bois de placage stratifié (LVL) assemblées par entures multiples et fixées à une âme de contreplaqué ou de panneau à copeaux orientés (OSB) à l'aide d'un adhésif. Les joints de panneaux en bande sont collés et assemblés selon plusieurs méthodes, telles que l'aboutage des extrémités carrées des panneaux, l'écharpe des extrémités des panneaux, ou la formation d'un joint de type dentelé ou à rainure et languette. Les adhésifs imperméables à l'extérieur, tels que le phénol-formaldéhyde et le phénol-résorcinol, sont principalement utilisés pour les joints de l'âme à l'âme et de l'âme à l'aile. Plusieurs fabricants proposent différentes combinaisons de matériaux pour les ailes et les âmes, ainsi que d'autres types de connexions entre les âmes et les ailes (voir la figure 3.20 ci-dessous). Les solives en I en bois sont disponibles dans une variété de profondeurs standard et dans des longueurs allant jusqu'à 20 m (66 ft). Chaque fabricant produit des solives en I dont les caractéristiques de résistance et de rigidité sont uniques. Pour s'assurer que leurs produits exclusifs ont été fabriqués dans le cadre d'un programme d'assurance qualité supervisé par un organisme de certification tiers indépendant, les fabricants font généralement évaluer et enregistrer leurs produits conformément aux exigences et aux directives du Centre canadien des matériaux de construction (CCMC). La section transversale en forme de "I" de ces produits structuraux en bois offre un rapport résistance/poids plus élevé que le bois de sciage massif traditionnel. La rigidité uniforme, la résistance et la légèreté de ces éléments préfabriqués permettent d'utiliser des solives et des chevrons de plus grande portée dans la construction résidentielle et commerciale. Les solives en I en bois sont généralement fabriquées à partir d'une semelle et d'une âme non traitées et ne sont donc généralement pas utilisées pour les applications extérieures. Les solives en I en bois sont également stables sur le plan dimensionnel car elles sont fabriquées avec un taux d'humidité compris entre 6 et 12 %. Pour l'installation des services mécaniques et électriques, de nombreux fabricants fournissent des exigences et des conseils concernant la forme, la taille et l'emplacement des ouvertures, des encoches, des trous et des coupes. La plupart des fournisseurs de solives en bois en I stockent également des suspensions de solives standard et d'autres éléments de connexion préfabriqués spécialement conçus pour être utilisés avec les solives en bois en I. Pour de plus amples informations sur les solives en I en bois, veuillez consulter les ressources suivantes : APA - The Engineered Wood Association Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction (CNRC) Wood I-Joist Manufacturers Association (WIJMA) CSA O86 Engineering design in wood ASTM D5055 Standard Specification for Establishing and Monitoring Structural Capacities of Prefabricated Wood I-Joists
Produits en panneaux

En utilisant du bois rond qui n'est souvent pas adapté à la production de bois d'œuvre, les panneaux à base de bois permettent d'utiliser efficacement les ressources forestières en fournissant des produits en bois d'ingénierie avec des propriétés de résistance et de rigidité définies. Les panneaux structuraux à base de bois, tels que le contreplaqué et les panneaux à copeaux orientés (OSB), sont largement utilisés dans la construction résidentielle et commerciale. Les panneaux à base de bois sont souvent superposés sur des solives ou des fermes légères et utilisés comme revêtement structurel pour les planchers, les toits et les murs. Ces produits assurent la rigidité des principaux éléments structurels qui les soutiennent, en plus de leur fonction d'élément de l'enveloppe du bâtiment. En outre, ils font souvent partie intégrante du système de résistance aux forces latérales d'un bâtiment en bois. Afin de pouvoir être utilisés pour un usage final particulier, tel que le revêtement structurel, le plancher ou le bardage extérieur, les panneaux à base de bois doivent répondre à des critères de performance portant sur trois aspects : la performance structurelle, les propriétés physiques et la performance d'adhérence. Pour plus d'informations sur le classement des performances et les utilisations finales potentielles des panneaux à base de bois, consultez le site de l'APA - The Engineered Wood Association.
Bois de placage stratifié

First used during World War II to make airplane propellers, laminated veneer lumber (LVL) has been available as a construction product since the mid-1970s. LVL is the most widely used structural composite lumber (SCL) product and provides attributes such as high strength, high stiffness and dimensional stability. The manufacturing process of LVL enables large members to be made from relatively small trees, providing efficient utilization of forest resources. LVL is commonly fabricated using wood species such as Douglas fir, Larch, Southern yellow pine and Poplar. LVL is used primarily as structural framing for residential and commercial construction. Common applications of LVL in construction include headers and beams, hip and valley rafters, scaffold planking, and the flange material for prefabricated wood I-joists. LVL can also been used in roadway sign posts and as truck bed decking. LVL is made of dried and graded wood veneer which is coated with a waterproof phenol-formaldehyde resin adhesive, assembled in an arranged pattern, and formed into billets by curing in a heated press. The LVL billet is then sawn to desired dimensions depending on the end use application. The grain of each layer of veneer runs in the same (long) direction with the result that LVL is able to be loaded on its short edge (strong axis) as a beam or on its wide face (weak axis) as a plank. This type of lamination is called parallel-lamination and produces a material with greater uniformity and predictability than engineered wood products fabricated using cross-lamination, such as plywood. LVL is a solid, highly predictable, uniform lumber product due to the fact that natural defects such as knots, slope of grain and splits have been dispersed throughout the material or have been removed altogether during the manufacturing process. The most common thickness of LVL is 45 mm (1-3/4 in), from which wider beams can be easily constructed by fastening multiple LVL plies together on site. LVL can also be manufactured in thicknesses from 19 mm (3/4 in) to 178 mm (7 in). Commonly used LVL beam depths are 241 mm (9-1/2 in), 302 mm (11-7/8 in), 356 mm (14 in), 406 mm (16 in), 476 mm (18-3/4 in) and 606 mm (23-7/8 in). Other widths and depths might also be available from specific manufacturers. LVL is available in lengths up to 24.4 m (80 ft), while more common lengths are 14.6 m (48 ft), 17 m (56 ft), 18.3 m (60 ft) and 20.1 m (66 ft). LVL can easily be cut to length at the jobsite. All special cutting, notching or drilling should be done in accordance with manufacturer’s recommendations. LVL is a wood-based product with similar fire performance to a comparably sized solid sawn lumber or glued-laminated beam. Manufacturer’s catalogues and evaluation reports are the primary sources of information for design, typical installation details and performance characteristics. LVL is mainly used as a structural element, most often in concealed spaces where appearance is not important. Finished or architectural grade appearance is available from some manufacturers, usually at an additional cost. However, when it is desired to use LVL in applications where appearance is important, common wood finishing techniques can be used to accent grain and to protect the wood surface. In finished appearance, LVL resembles plywood or lumber on the wide face. As with any other wood product, LVL should be protected from the weather during jobsite storage and after installation. Wrapping of the product for shipment to the job site is important in providing moisture protection. End and edge sealing of the product will enhance its resistance to moisture penetration. LVL is a proprietary product and therefore, the specific engineering properties and sizes are unique to each manufacturer. Thus, LVL does not have a common standard of production and common design values. Design values are derived from test results analysed in accordance with CSA O86 and ASTM D5456 and the design values are reviewed and approved by the Canadian Construction Materials Centre (CCMC). Products meeting the CCMC guidelines receive an Evaluation Number and Evaluation Report that includes the specified design strengths, which are subsequently listed in CCMC’s Registry of Product Evaluations. The manufacturer’s name or product identification and the stress grade is marked on the material at various intervals, but due to end cutting it may not be present on every piece. For further information, refer to the following resources: APA – The Engineered Wood Association Canadian Construction Materials Centre (CCMC), Institute for Research in Construction CSA O86 Engineering design in wood ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products
Bois de sciage stratifié

Laminated Strand Lumber (LSL) is one of the more recent structural composite lumber (SCL) products to come into widespread use. LSL provides attributes such as high strength, high stiffness and dimensional stability. The manufacturing process of LSL enables large members to be made from relatively small trees, providing efficient utilization of forest resources. LSL is commonly fabricated using fast growing wood species such as Aspen and Poplar. LSL is used primarily as structural framing for residential, commercial and industrial construction. Common applications of LSL in construction include headers and beams, tall wall studs, rim board, sill plates, millwork and window framing. LSL also offers good fastener-holding strength. Similar to parallel strand lumber (PSL) and oriented strand lumber (OSL), LSL is made from flaked wood strands that have a length-to-thickness ratio of approximately 150. Combined with an adhesive, the strands are oriented and formed into a large mat or billet and pressed. LSL resembles oriented strand board (OSB) in appearance as they are both fabricated from the similar wood species and contain flaked wood strands, however, unlike OSB, the strands in LSL are arranged parallel to the longitudinal axis of the member. LSL is a solid, highly predictable, uniform engineered wood product due to the fact that natural defects such as knots, slope of grain and splits have been dispersed throughout the material or have been removed altogether during the manufacturing process. Like other SCL products such as LVL and PSL, LSL offers predictable strength and stiffness properties and dimensional stability that minimize twist and shrinkage. All special cutting, notching or drilling should be done in accordance with manufacturer’s recommendations. Manufacturer’s catalogues and evaluation reports are the primary sources of information for design, typical installation details and performance characteristics. As with any other wood product, LSL should be protected from the weather during jobsite storage and after installation. Wrapping of the product for shipment to the job site is important in providing moisture protection. End and edge sealing of the product will enhance its resistance to moisture penetration. LSL is a proprietary product and therefore, the specific engineering properties and sizes are unique to each manufacturer. Thus, LSL does not have a common standard of production and common design values. Design values are derived from test results analysed in accordance with CSA O86 and ASTM D5456 and the design values are reviewed and approved by the Canadian Construction Materials Centre (CCMC). Products meeting the CCMC guidelines receive an Evaluation Number and Evaluation Report that includes the specified design strengths, which are subsequently listed in CCMC’s Registry of Product Evaluations. The manufacturer’s name or product identification and the stress grade is marked on the material at various intervals, but due to end cutting it may not be present on every piece. For further information, refer to the following resources: APA – The Engineered Wood Association Canadian Construction Materials Centre (CCMC), Institute for Research in Construction CSA O86 Engineering design in wood ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products
Bois de sciage orienté

Oriented Strand Lumber (OSL) Oriented Strand Lumber (OSL) provides attributes such as high strength, high stiffness and dimensional stability. The manufacturing process of OSL enables large members to be made from relatively small trees, providing efficient utilization of forest resources. OSL is used primarily as structural framing for residential, commercial and industrial construction. Common applications of OSL in construction include headers and beams, tall wall studs, rim board, sill plates, millwork and window framing. OSL also offers good fastener-holding strength. Similar to laminated strand lumber (LSL), OSL is made from flaked wood strands that have a length-to-thickness ratio of approximately 75. The wood strands used in OSL are shorter than those in LSL. Combined with an adhesive, the strands are oriented and formed into a large mat or billet and pressed. OSL resembles oriented strand board (OSB) in appearance as they are both fabricated from the similar wood species and contain flaked wood strands, however, unlike OSB, the strands in OSL are arranged parallel to the longitudinal axis of the member. OSL is a solid, highly predictable, uniform engineered wood product due to the fact that natural defects such as knots, slope of grain and splits have been dispersed throughout the material or have been removed altogether during the manufacturing process. Like other SCL products such as LVL and PSL, OSL offers predictable strength and stiffness properties and dimensional stability that minimize twist and shrinkage. All special cutting, notching or drilling should be done in accordance with manufacturer’s recommendations. Manufacturer’s catalogues and evaluation reports are the primary sources of information for design, typical installation details and performance characteristics. As with any other wood product, OSL should be protected from the weather during jobsite storage and after installation. Wrapping of the product for shipment to the job site is important in providing moisture protection. End and edge sealing of the product will enhance its resistance to moisture penetration. OSL is a proprietary product and therefore, the specific engineering properties and sizes are unique to each manufacturer. Thus, OSL does not have a common standard of production and common design values. Design values are derived from test results analysed in accordance with CSA O86 and ASTM D5456 and the design values are reviewed and approved by the Canadian Construction Materials Centre (CCMC). Products meeting the CCMC guidelines receive an Evaluation Number and Evaluation Report that includes the specified design strengths, which are subsequently listed in CCMC’s Registry of Product Evaluations. The manufacturer’s name or product identification and the stress grade is marked on the material at various intervals, but due to end cutting it may not be present on every piece. For further information, refer to the following resources: APA – The Engineered Wood Association Canadian Construction Materials Centre (CCMC), Institute for Research in Construction CSA O86 Engineering design in wood ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products
Bois de sciage à fils parallèles

Parallel Strand Lumber (PSL) Parallel Strand Lumber (PSL) provides attributes such as high strength, high stiffness and dimensional stability. The manufacturing process of OSL enables large members to be made from relatively small trees, providing efficient utilization of forest resources. In Canada, PSL is fabricated using Douglas fir. PSL is employed primarily as structural framing for residential, commercial and industrial construction. Common applications of PSL in construction include headers, beams and lintels in light-frame construction and beams and columns in post and beam construction. PSL is an attractive structural material which is suited to applications where finished appearance is important. Similar to laminated strand lumber (LSL) and oriented strand lumber (OSL), PSL is made from flaked wood strands that are arranged parallel to the longitudinal axis of the member and have a length-to-thickness ratio of approximately 300. The wood strands used in PSL are longer than those used to manufacture LSL and OSL. Combined with an exterior waterproof phenol-formaldehyde adhesive, the strands are oriented and formed into a large billet, then pressed together and cured using microwave radiation. PSL beams are available in thicknesses of 68 mm (2-11/16 in), 89 mm (3-1/2 in), 133 mm (5-1/4 in), and 178 mm (7 in) and a maximum depth of 457 mm (18 in). PSL columns are available in square or rectangular dimensions of 89 mm (3-1/2 in), 133 mm (5-1/4 in), and 178 mm (7 in). The smaller thicknesses can be used individually as single plies or can be combined for multi-ply applications. PSL can be made in long lengths but it is usually limited to 20 m (66 ft) by transportation constraints. PSL is a solid, highly predictable, uniform engineered wood product due to the fact that natural defects such as knots, slope of grain and splits have been dispersed throughout the material or have been removed altogether during the manufacturing process. Like the other SCL products (LVL, LSL and OSL), PSL offers predictable strength and stiffness properties and dimensional stability. Manufactured at a moisture content of 11 percent, PSL is less prone to shrinking, warping , cupping, bowing and splitting. All special cutting, notching or drilling should be done in accordance with manufacturer’s recommendations. Manufacturer’s catalogues and evaluation reports are the primary sources of information for design, typical installation details and performance characteristics. PSL exhibits a rich texture and retains numerous dark glue lines. PSL can be machined, stained, and finished using the techniques applicable to sawn lumber. PSL members readily accept stain to enhance the warmth and texture of the wood. All PSL is sanded at the end of the production process to ensure precise dimensions and to provide a high quality surface for appearance. As with any other wood product, PSL should be protected from the weather during jobsite storage and after installation. Wrapping of the product for shipment to the job site is important in providing moisture protection. End and edge sealing of the product will enhance its resistance to moisture penetration. PSL readily accepts preservative treatment and it is possible to obtain a high degree of preservative penetration. Treated PSL can be specified in high humidity exposures. PSL is a proprietary product and therefore, the specific engineering properties and sizes are unique to each manufacturer. Thus, PSL does not have a common standard of production and common design values. Design values are derived from test results analysed in accordance with CSA O86 and ASTM D5456 and the design values are reviewed and approved by the Canadian Construction Materials Centre (CCMC). Products meeting the CCMC guidelines receive an Evaluation Number and Evaluation Report that includes the specified design strengths, which are subsequently listed in CCMC’s Registry of Product Evaluations. The manufacturer’s name or product identification and the stress grade is marked on the material at various intervals, but due to end cutting it may not be present on every piece. The Canadian Construction Materials Centre (CCMC) has accepted PSL for use as heavy timber construction, as described under the provisions within Part 3 of the National Building Code of Canada. For further information, refer to the following resources: APA – The Engineered Wood Association Canadian Construction Materials Centre (CCMC), Institute for Research in Construction CSA O86 Engineering design in wood ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products
Bois dans les bâtiments incombustibles

The National Building Code of Canada (NBC) requires that some buildings be of ‘noncombustible construction’ under its prescriptive requirements. Noncombustible construction is, however, something of a misnomer, in that it does not exclude the use of ‘combustible’ materials but rather, it limits their use. Some combustible materials can be used since it is neither economical nor practical to construct a building entirely out of ‘noncombustible’ materials. Wood is probably the most prevalent combustible material used in noncombustible buildings and has numerous applications in buildings classified as noncombustible construction under the NBC. This is due to the fact that building regulations do not rely solely on the use of noncombustible materials to achieve an acceptable degree of fire safety. Many combustible materials are allowed in concealed spaces and in areas where, in a fire, they are not likely to seriously affect other fire safety features of the building. For example, there are permissions for use of heavy timber construction for roofs and roof structural supports. It may also be used in partition walls and as wall finishes, as well as furring strips, fascia and canopies, cant strips, roof curbs, fire blocking, roof sheathing and coverings, millwork, cabinets, counters, window sashes, doors, and flooring. Its use in certain types of buildings such as tall buildings is slightly more limited in areas such as exits, corridors and lobbies, but even there, fire-retardant treatments can be used to meet NBC requirements. The NBC also allows the use of wood cladding for buildings designated to be of noncombustible construction. In sprinklered noncombustible buildings not more than two-storeys in height, entire roof assemblies and the roof supports can be heavy timber construction. To be acceptable, the heavy timber components must comply with minimum dimension and installation requirements. Heavy timber construction is afforded this recognition because of its performance record under actual fire exposure and its acceptance as a fire-safe method of construction. Fire loss experience has shown, even in unsprinklered buildings, that heavy timber construction is superior to noncombustible roof assemblies not having any fire-resistance rating. In other noncombustible buildings, heavy timber construction, including the floor assemblies, is permitted without the building being sprinklered. In sprinklered buildings permitted to be of combustible construction, no fire-resistance rating is required for the roof assembly or its supports when constructed from heavy timber. In these cases, a heavy timber roof assembly and its supports would not have to conform to the minimum member dimensions stipulated in the NBC. NBC definitions: Combustible means that a material fails to meet the acceptance criteria of CAN/ULC-S114, “Test for Determination of Non-Combustibility in Building Materials.” Combustible construction means that type of construction that does not meet the requirements for noncombustible construction. Heavy timber construction means that type of combustible construction in which a degree of fire safety is attained by placing limitations on the sizes of wood structural members and on thickness and composition of wood floors and roofs and by the avoidance of concealed spaces under floors and roofs. Noncombustible construction means that type of construction in which a degree of fire safety is attained by the use of noncombustible materials for structural members and other building assemblies. Noncombustible means that a material meets the acceptance criteria of CAN/ULC-S114, “Test for Determination of Non-Combustibility in Building Materials.” For further information, refer to the following resources: Wood Design Manual, Canadian Wood Council National Building Code of Canada CAN/ULC-S114 Test for Determination of Non-Combustibility in Building Materials Stairs and storage lockers in noncombustible buildings Stairs within a dwelling unit can be made of wood, as can storage lockers in residential buildings. These are permitted, as their use is not expected to present a significant fire hazard. Wood roofing materials in noncombustible buildings In the installation of roofing, wood cant strips, roof curbs, nailing strips, and similar components may be used. Wood roofs defined as ‘heavy timber construction’ in the NBC are permitted in any noncombustible building two-storeys or less in height when the building is protected by a sprinkler system. Roof sheathing and sheathing supports of wood are permitted in noncombustible buildings provided: The noncombustible parapets and shafts are required to prevent roof materials igniting from flames projecting from openings in the building face or roof deck.Roof coverings have often been contributing factors in conflagrations. Most roof coverings, even today, are combustible by the very nature of the materials used to make them waterproof. The objective of the NBC is to require that the risks associated with a roof covering be minimized for the type of building, its location and use. The NBC permits roof coverings that meet a Class C rating to be used for any building regulated by Part 3, including any noncombustible building, regardless of height or area. This C rating can be met easily using fire-retardant-treated wood (FRTW) shakes or shingles, asphalt shingles, or roll roofing. In buildings that are required to be of noncombustible construction, the roof coverings must have a fire classification of Class A, B or C. In such cases, the use of FRTW shakes and shingles on sloped roofs is allowed. Small assembly occupancy buildings not more than two-storeys in building height and less than 1000 m2 (10,000 ft2) in building area do not require a classification for the roof covering. In these traditional cases, untreated wood shingles are acceptable if they are underlaid with a noncombustible material to reduce the potential for burn through. Wood partitions in noncombustible buildings Wood framing has many applications in partitions in both low-rise and high-rise buildings required to be of noncombustible construction. The framing can be located in most types of partitions, with or without a fire- resistance rating. Wood framing and sheathing is permitted in partitions, or alternatively, solid lumber partitions at least 38 mm (2 in nominal) thick are permitted, provided: Alternatively, wood framing is permitted in partitions throughout floor areas, and can be used in most fire separations with no limits on compartment size or a need for sprinkler protection provided: Similarly, as a final
Bois lamellé-croisé (CLT)

Le bois lamellé-croisé (CLT) est un produit d'ingénierie en bois breveté qui est préfabriqué à l'aide de plusieurs couches de bois d'œuvre séché au four, posées à plat et collées ensemble sur leurs faces larges. Les panneaux sont généralement constitués de trois, cinq, sept ou neuf couches alternées de bois de construction. L'alternance des directions des lamelles du CLT lui confère une grande stabilité dimensionnelle. Le CLT présente également un rapport résistance/poids élevé, ainsi que des avantages en termes de performances structurelles, thermiques, acoustiques et de résistance au feu. L'épaisseur des panneaux est généralement comprise entre 100 et 300 mm (4 à 12 pouces), mais il est possible de produire des panneaux d'une épaisseur allant jusqu'à 500 mm (20 pouces). Les dimensions des panneaux vont de 1,2 à 3 m de largeur et de 5 à 19,5 m de longueur. La taille maximale des panneaux est limitée par la taille de la presse du fabricant et par les réglementations en matière de transport. Les dispositions de conception du CLT au Canada s'appliquent aux panneaux de bois scié fabriqués conformément à la norme ANSI/APA PRG 320. En règle générale, toutes les lamelles dans une direction sont fabriquées avec la même qualité et la même essence de bois. Toutefois, les couches adjacentes peuvent avoir une épaisseur différente et être fabriquées dans d'autres qualités ou essences. La teneur en humidité des lamelles de bois d'œuvre au moment de la fabrication du CLT est comprise entre 9 et 15%. Il existe cinq catégories principales de contraintes pour le CLT : E1, E2, E3, V1 et V2. La classe de contrainte E1 est la plus facilement disponible. La désignation "E" indique que le bois est soumis à des contraintes mécaniques (MSR ou E) et la désignation "V" indique que le bois est classé visuellement. Les qualités de contrainte E1, E2 et E3 se composent de bois MSR dans toutes les couches longitudinales et de bois classé visuellement dans les couches transversales, tandis que les qualités de contrainte V1 et V2 se composent de bois classé visuellement dans les couches longitudinales et transversales. Les propriétés des qualités de contraintes du CLT sur mesure sont également publiées par les différents fabricants. Comme pour d'autres produits structuraux en bois, le CLT peut être évalué par le Centre canadien des matériaux de construction (CCMC) afin d'établir un rapport d'évaluation du produit. Contrairement aux classes de contraintes primaires et personnalisées du CLT qui sont associées à la capacité structurelle, les classes d'apparence se réfèrent à la finition de la surface des panneaux CLT. Toute classe de contrainte peut généralement être produite dans n'importe quelle finition de surface souhaitée par le concepteur. Il faut tenir compte des réductions de résistance et de rigidité dues au profilage des panneaux ou à d'autres finitions des faces ou des bords. L'annexe de la norme ANSI/APA PRG 320 donne des exemples de classifications de l'aspect du CLT. Les adhésifs structurels utilisés pour coller les laminés doivent être conformes aux normes CSA O112.10 et ASTM D7247 et sont également évalués en termes de résistance à la chaleur lors d'une exposition au feu. Les différentes classes d'adhésifs structuraux généralement utilisées sont les suivantes : Polymère isocyanate en émulsion (EPI) ; polyuréthane monocomposant (PUR) ; types phénoliques tels que le phénol-résorcinol-formaldéhyde (PRF). Étant donné que le traitement sous pression avec des produits de conservation à base d'eau peut avoir un effet négatif sur l'adhérence, il est interdit de traiter le CLT avec des produits de conservation à base d'eau après le collage. Pour le CLT traité avec des produits ignifuges ou d'autres produits chimiques susceptibles de réduire la résistance, la résistance et la rigidité doivent être basées sur des résultats d'essais documentés. Dans le cadre du processus de préfabrication, les panneaux CLT sont découpés sur mesure, y compris les ouvertures de portes et de fenêtres, à l'aide de défonceuses à commande numérique par ordinateur (CNC) ultramodernes, capables de réaliser des coupes complexes avec de faibles tolérances. Les éléments préfabriqués en CLT arrivent sur le chantier prêts à être installés immédiatement. Le CLT offre une grande souplesse de conception et un faible impact sur l'environnement pour les planchers, les toits et les murs des bâtiments innovants en bois de moyenne et grande hauteur. Pour de plus amples informations sur le CLT, veuillez consulter les ressources suivantes : Kalesnikoff Nordic Structures APA - The Engineered Wood Association Centre canadien des matériaux de construction (CCMC) Element5 ANSI/APA PRG 320 Standard for Performance-Rated Cross-Laminated Timber CSA O86 Engineering design in wood CSA O112.10 Evaluation of Adhesives for Structural Wood Products (Limited Moisture Exposure) ASTM D7247 Standard Test Method for Evaluating the Shear Strength of Adhesive Bonds in Laminated Wood Products at Elevated Temperatures