CSA O86 Conception technique du bois

CSA O86 Conception technique du bois Le Code national du bâtiment du Canada (CNB) contient des exigences relatives à la conception technique des produits et systèmes structuraux en bois. La norme CSA O86 est citée en référence dans la partie 4 du CNB et dans les codes du bâtiment provinciaux pour la conception technique des produits structuraux en bois. La première édition de la norme CSA O86 a été publiée en 1959. La norme CSA O86 fournit des critères pour la conception structurale et l'évaluation des structures ou des éléments structuraux en bois. Elle est rédigée dans le format du calcul aux états limites et fournit des équations de résistance et des valeurs de résistance spécifiées pour les produits structuraux en bois, y compris : le bois d'œuvre classé, le bois lamellé-collé, le bois lamellé-croisé (CLT), le contreplaqué sans sable, les panneaux de particules orientées (OSB), les éléments de construction composites, les murs de cisaillement et les diaphragmes à ossature légère, les pilotis en bois, les constructions sur poteaux, les solives en I préfabriquées en bois, les produits en bois composite structural (SCL), les fondations permanentes en bois (PWF) et leurs assemblages structuraux. La norme CSA O86 fournit des approches rationnelles pour les vérifications de conception structurale liées aux états limites ultimes, tels que la flexion, le cisaillement et les appuis, ainsi qu'aux états limites d'aptitude au service, tels que la déflexion et la vibration. La norme CSA O86 contient également des facteurs de modification de la résistance pour les comportements liés à la durée de la charge, aux effets de taille, aux conditions de service, à la stabilité latérale, aux effets de système, aux traitements de préservation et ignifuges, aux entailles, à l'élancement et à la longueur de l'appui. La conception structurelle des bâtiments et des éléments en bois est réalisée à l'aide des charges définies dans la partie 4 du CNB et des valeurs de résistance des matériaux obtenues à l'aide de la norme CSA O86. Les habitations et autres petits bâtiments peuvent être construits sans conception structurelle complète en utilisant les exigences normatives décrites dans la partie 9 "Habitations et petits bâtiments" du CNB. Pour de plus amples informations, veuillez consulter les ressources suivantes : Manuel de conception en bois (Conseil canadien du bois) Introduction à la conception en bois (Conseil canadien du bois) Code national du bâtiment du Canada CSA O86 Conception technique en bois
Glulam

Le bois lamellé-collé est un produit structurel en bois d'ingénierie constitué de plusieurs couches individuelles de bois de dimension qui sont collées ensemble dans des conditions contrôlées. Tous les bois lamellés-collés canadiens sont fabriqués à l'aide d'adhésifs imperméables pour l'assemblage des extrémités et pour le collage des faces, et conviennent donc aussi bien aux applications extérieures qu'intérieures. Le bois lamellé-collé possède une grande capacité structurelle et constitue également un matériau de construction architectural attrayant. Le bois lamellé-collé est couramment utilisé dans les structures à poteaux et à poutres, les structures en bois lourd et en bois de masse, ainsi que dans les ponts en bois. Le bois lamellé-collé est un produit structurel en bois d'ingénierie utilisé pour les chevêtres, les poutres, les poutrelles, les pannes, les colonnes et les fermes lourdes. Le bois lamellé-collé est également fabriqué sous forme d'éléments courbes, qui sont généralement soumis à des charges combinées de flexion et de compression. Il peut également être façonné pour créer des poutres coniques inclinées et une variété de configurations d'arcs et de fermes portantes. Le bois lamellé-collé est souvent utilisé lorsque les éléments structurels sont laissés apparents, ce qui constitue un élément architectural. Dimensions disponibles pour le bois lamellé-collé Des dimensions standard ont été mises au point pour le bois lamellé-collé canadien afin de permettre une utilisation optimale du bois d'œuvre, dont les dimensions sont multiples de celles du lamstock utilisé pour la fabrication du bois lamellé-collé. Adaptées à la plupart des applications, les dimensions standard permettent au concepteur de réaliser des économies et de bénéficier d'une livraison rapide. D'autres dimensions non standard peuvent être commandées spécialement, moyennant un coût supplémentaire en raison de l'éboutage supplémentaire nécessaire pour produire des dimensions non standard. Les largeurs et profondeurs standard du bois lamellé-collé sont indiquées dans le tableau 6.7 ci-dessous. La profondeur du bois lamellé-collé est fonction du nombre de lamelles multiplié par l'épaisseur de la lamelle. Par souci d'économie, des lamelles de 38 mm sont utilisées dans la mesure du possible, et des lamelles de 19 mm sont utilisées lorsque des degrés de courbure plus importants sont requis. Largeurs standard du bois lamellé-collé Les largeurs finies standard des éléments en bois lamellé-collé et les largeurs courantes des laminés à partir desquels ils sont fabriqués sont indiquées dans le tableau 4 ci-dessous. Pour les éléments d'une largeur inférieure à 275 mm (10-7/8″), une seule largeur est utilisée pour la dimension complète de la largeur. Toutefois, les éléments d'une largeur supérieure à 175 mm (6-7/8″) peuvent être constitués de deux planches posées côte à côte. Tous les éléments d'une largeur supérieure à 275 mm (10-7/8″) sont constitués de deux pièces de bois placées côte à côte, les joints de bordures étant décalés dans la profondeur de l'élément. Les éléments d'une largeur supérieure à 365 mm (14-1/4″) sont fabriqués par incréments de 50 mm (2″), mais sont plus chers que les largeurs standard. Les fabricants doivent être consultés pour obtenir des conseils. Largeur initiale du bois lamellé-collé Largeur finale du bois lamellé-collé mm. in. mm. in. 89 3-1/2 80 3 140 5-1/2 130 5 184 7-1/4 175 6-7/8 235 (ou 89 + 140) 9-1/4 (ou 3-1/2 + 5-1/2) 225 (ou 215) 8-7/8 (ou 8-1/2) 286 (ou 89 + 184) 11-1/4 (ou 3-1/2 + 7-1/4) 275 (ou 265) 10-7/8 (ou 10-1/4) 140 + 184 5-1/2 + 7-1/4 315 12-1/4 140 + 235 5-1/2 + 9-1/4 365 14-1/4 Remarques : Les éléments d'une largeur supérieure à 365 mm (14-1/4″) sont disponibles par incréments de 50 mm (2″) mais nécessitent une commande spéciale. Les éléments d'une largeur supérieure à 175 mm (6-7/8″) peuvent être constitués de deux panneaux posés côte à côte avec des joints logitudinaux décalés dans les lamelles adjacentes. Profondeurs standard du bois lamellé-collé Les profondeurs standard des éléments en bois lamellé-collé vont de 114 mm (4-1/2″) à 2128 mm (7′) ou plus, par incréments de 38 mm (1-1/2″) et 19 mm (3/4″). Un élément fabriqué à partir de lamelles de 38 mm (1-1/2″) coûte nettement moins cher qu'un élément équivalent fabriqué à partir de lamelles de l9 mm (3/4″). Cependant, les laminés de 19 mm (3/4″) permettent une plus grande courbure que les laminés de 38 mm (1-1/2″). Largeur mm in. Profondeur mm po 80 3 114 à 570 4-1/2 à 22-1/2 130 5 152 à 950 6 à 37-1/2 175 6-7/8 190 à 1254 7-1/2 à 49-1/2 215 8-1/2 266 à 1596 10-1/2 à 62-3/4 265 10-1/4 342 à 1976 13-1/2 à 77-3/4 315 12-1/4 380 à 2128 15 à 83-3/4 365 14-1/4 380 à 2128 15 à 83-3/4 Note : 1. Les profondeurs intermédiaires sont des multiples de l'épaisseur de la stratification, qui est de 38 mm (1-1/2″ nom.), sauf pour certains éléments courbes qui nécessitent des stratifications de 19 mm (3/4″ nom.). Les laminés peuvent être assemblés en bout pour obtenir des longueurs allant jusqu'à 40 m (130′), mais la limite pratique peut dépendre des restrictions de transport. Par conséquent, les restrictions de transport pour une région donnée doivent être déterminées avant de spécifier la longueur, la largeur ou la hauteur d'expédition. Classes d'aspect du bois lamellé-collé Lors de la spécification des produits canadiens en bois lamellé-collé, il est nécessaire d'indiquer à la fois la classe de contrainte et la classe d'aspect requises. L'aspect du bois lamellé-collé est déterminé par le degré de finition effectué après le laminage et non par l'aspect des pièces individuelles de laminage. Le bois lamellé-collé est disponible dans les qualités d'aspect suivantes : Industriel Commercial Qualité La qualité de l'aspect définit l'importance des travaux de réparation et de finition effectués sur les surfaces exposées après le laminage (tableau 6.8) et n'a pas d'incidence sur la résistance. La qualité offre le plus haut degré de finition et est destinée aux applications où l'aspect est important. La qualité industrielle est celle qui présente le moins de finition. Grade Description Grade industriel Destiné à être utilisé lorsque l'aspect n'est pas une préoccupation majeure, par exemple dans les bâtiments industriels ; le bois stratifié peut contenir des caractéristiques naturelles autorisées pour le grade de contrainte spécifié ; les faces sont rabotées aux dimensions spécifiées, mais des manques et des aspérités occasionnels sont autorisés ; la surface peut présenter des nœuds cassés, des trous de nœuds, un grain déchiré, des carreaux, des flaches et d'autres irrégularités. Qualité commerciale Destinée aux surfaces peintes ou vernies à brillant plat ; le bois stratifié peut contenir des caractéristiques naturelles autorisées pour la qualité de contrainte spécifiée ; les faces sont rabotées aux dimensions spécifiées et toute la colle expulsée est enlevée de la surface ; les trous de nœuds, les nœuds détachés, les vides, les flaches ou les poches de poix ne sont pas remplacés par des inserts de bois ou du mastic sur la surface exposée. Qualité Destinée aux surfaces transparentes ou polies très brillantes, elle met en valeur la beauté naturelle du bois pour un meilleur attrait esthétique ; le bois stratifié peut présenter les caractéristiques naturelles autorisées pour la catégorie de contrainte spécifiée ; les côtés sont rabotés aux dimensions spécifiées et toute la colle éliminée de la surface ; il peut y avoir des nœuds serrés, une tache de cœur ferme et une tache de sève moyenne sur les côtés ; les nœuds légèrement cassés ou fendus, les éclats, les veines déchirées ou les carreaux sur la surface sont remplis ; les nœuds lâches, les trous de nœuds, les vides et les poches d'inclinaison sont éliminés et remplacés par des inserts en bois non rétrécissants.
CSA S-6 Code canadien de conception des ponts routiers

Comme l'indique la philosophie de conception de la norme CSA S-6, la sécurité est la principale préoccupation dans la conception des ponts routiers au Canada. Pour les produits en bois, la norme CSA S-6 traite des critères de conception associés aux états limites ultimes et aux états limites d'aptitude au service (principalement la déflexion, la fissuration et les vibrations). Les états limites de fatigue doivent également être pris en compte pour les éléments de connexion en acier des ponts en bois. La durée de vie de la structure dans la norme CSA S-6 a été fixée à 75 ans pour tous les types de ponts, y compris les ponts en bois. La norme CSA S-6 s'applique aux types de structures et de composants en bois susceptibles d'être utilisés sur les autoroutes, notamment le bois lamellé-collé, le bois de sciage, le bois de charpente composite (SCL), les tabliers en bois lamellé-collé, les tabliers en bois lamellé-béton, les tabliers en bois lamellé précontraint, les fermes, les pieux en bois, les caissons en bois et les tréteaux en bois. La norme ne s'applique pas aux faux-planchers ni aux coffrages. La norme CSA S-6 traite de la conception des éléments en bois soumis à la flexion, au cisaillement, à la compression et aux appuis. De plus, la norme fournit des conseils et des exigences concernant la cambrure et la courbure des éléments en bois. D'autres informations sur la durabilité, le drainage et le traitement de préservation du bois dans les ponts sont également abordées.
Bois lourd à sciage massif

Les éléments en bois massif sont principalement utilisés comme éléments structurels principaux dans les constructions à poteaux et à poutres. Le terme "bois lourd" est utilisé pour décrire le bois massif scié dont la plus petite dimension transversale est égale ou supérieure à 140 mm (5-1/2 in). Les bois de grande dimension offrent une meilleure résistance au feu que les bois de construction et peuvent être utilisés pour répondre aux exigences de construction en bois lourd énoncées dans la partie 3 du Code national du bâtiment du Canada. Les bois sciés sont produits conformément à la norme CSA O141 Canadian Standard Lumber et classés conformément aux NLGA Standard Grading Rules for Canadian Lumber. Il existe deux catégories de bois : les "poutres et longerons" rectangulaires et les "poteaux et poutres" carrés. Les poutres et les longerons, dont la plus grande dimension dépasse la plus petite de plus de 51 mm, sont généralement utilisés comme éléments de flexion, tandis que les poteaux et les poutres, dont la plus grande dimension dépasse la plus petite de 51 mm ou moins, sont généralement utilisés comme colonnes. Les dimensions des bois sciés varient de 140 à 394 mm (5-1/2 à 15-1/2 in). Les dimensions les plus courantes vont de 140 x 140 mm (5-1/2 x 5-1/2 in) à 292 x 495 mm (11-1/2 x 19-1/2 in) en longueurs de 5 à 9 m (16 à 30 ft). Des dimensions allant jusqu'à 394 x 394 mm (15-1/2 x 15-1/2 in) sont généralement disponibles dans l'ouest du Canada dans les combinaisons d'essences Douglas Fir-Larch et Hem-Fir. Les bois des combinaisons épicéa-pin-sapin (S-P-F) et des essences nordiques ne sont disponibles qu'en petites dimensions. Les bois peuvent être obtenus dans des longueurs allant jusqu'à 9,1 m (30 ft), mais la disponibilité des bois de grande taille et de grande longueur doit toujours être confirmée auprès des fournisseurs avant la spécification. Un tableau des dimensions de bois disponibles est présenté ci-dessous. Les deux catégories de bois, poutres et limons, et poteaux et poutres, comportent trois degrés de contrainte : Select Structural, No.1, et No.2, et deux qualités sans contrainte (Standard et Utility). Les catégories de contraintes sont assorties de valeurs de calcul pour l'utilisation en tant qu'éléments de structure. Aucune valeur de calcul n'a été attribuée aux qualités non soumises à des contraintes. Les qualités No.1 et No.2 sont les plus couramment spécifiées à des fins structurelles. La qualité No.1 peut contenir des quantités variables de Select Structural, selon le fabricant. Contrairement au bois de construction canadien, il existe une différence entre les valeurs de calcul pour les qualités No.1 et No.2 du bois d'œuvre. Select Structural est spécifié lorsque l'aspect et la résistance de la plus haute qualité sont souhaités. Aucune valeur de calcul n'a été attribuée aux qualités Standard et Utility. Les bois de ces qualités peuvent être utilisés dans des applications spécifiques des codes de construction où une résistance élevée n'est pas importante, comme le blocage ou le contreventement court. Les coupes transversales peuvent affecter la qualité du bois dans la catégorie des poutres et des longerons parce que la taille autorisée du nœud varie sur la longueur de la pièce (un nœud plus grand est autorisé près des extrémités qu'au milieu). Les bois doivent être reclassés s'ils sont recoupés. Les bois ne sont généralement pas marqués (estampillés) et un certificat de l'usine peut être obtenu pour certifier la qualité. La grande taille des grumes rend le séchage au four peu pratique en raison des contraintes de séchage qui résulteraient des différences d'humidité entre l'intérieur et l'extérieur du bois. C'est la raison pour laquelle les bois sont généralement traités verts (taux d'humidité supérieur à 19 %), et le taux d'humidité du bois à la livraison dépend de l'importance du séchage à l'air qui a eu lieu. Comme le bois de construction, le bois d'œuvre commence à rétrécir lorsque son taux d'humidité tombe en dessous de 28 %. Les bois exposés à l'extérieur subissent généralement un retrait de 1,8 à 2,6 % en largeur et en épaisseur, en fonction de l'essence. Les bois utilisés à l'intérieur, où l'air est souvent plus sec, subissent un retrait plus important, de l'ordre de 2,4 à 3,0 % en largeur et en épaisseur. Dans les deux cas, la variation de longueur est négligeable. La conception et la construction doivent tenir compte du retrait anticipé. Le retrait doit également être pris en compte lors de la conception des connexions. Les petits défauts à la surface d'un bois sont fréquents dans les conditions de service humides et sèches. Ces défauts de surface ont été pris en compte dans l'établissement des résistances nominales spécifiées. Les fissures dans les colonnes n'ont pas d'importance structurelle à moins que la fissure ne se transforme en une fente traversante qui divisera la colonne. Pour de plus amples informations, veuillez consulter les ressources suivantes : Timber Framers Guild International Log Builders' Association BC Log & Timber Building Industry Association
CSA S406 Fondations permanentes en bois

CSA S406 Spécification des fondations permanentes en bois pour les habitations et les petits bâtiments La norme CSA S406 est la norme de conception et de construction des fondations permanentes en bois (FPC) qui est citée en référence dans la partie 9 du CNB et dans les codes du bâtiment provinciaux. La première édition de la norme CSA S406 a été publiée en 1983, et les révisions et mises à jour subséquentes de la norme ont été publiées en 1992, 2014 et 2016. La norme CSA S406 s'applique à la sélection des matériaux, à la conception, à la fabrication et à l'installation de la MPO. La norme contient également des renseignements sur la préparation du site, les matériaux, le découpage et l'usinage, les semelles, les produits d'étanchéité, les barrières extérieures contre l'humidité, le remblayage et le nivellement du site. La CSA S406 fournit des détails spécifiques et des exigences normatives pour les bâtiments construits sur des MPO qui relèvent de la partie 9 du Code national du bâtiment du Canada (CNB), c'est-à-dire les bâtiments d'une hauteur maximale de trois étages au-dessus des fondations et dont l'aire de construction ne dépasse pas 600 m2. La norme CSA S406 prévoit l'utilisation facultative de systèmes de traverses en bois, de dalles de béton coulées et de planchers de sous-sol en bois suspendus en tant qu'éléments du CTP, ainsi que l'utilisation de CTP en tant qu'enveloppes de vide sanitaire. La norme n'exclut pas les CPE qui peuvent également être conçus pour des bâtiments plus grands, en utilisant les mêmes principes de conception, à condition que les exigences du code du bâtiment soient respectées. La norme CSA S406 comprend de nombreux tableaux de sélection et figures isométriques visant à améliorer l'efficacité de la conception et la compréhension des détails de construction des coffres-forts. La norme a été élaborée sur la base d'hypothèses de conception technique spécifiques concernant les procédures d'installation, le type de sol, les portées libres pour les planchers et les toits, les charges permanentes et dynamiques, les facteurs de modification, les déflexions et la hauteur de remblayage. Pour les conditions qui dépassent la portée de la norme CSA S406, des détails similaires peuvent être utilisés à condition qu'ils soient fondés sur des principes d'ingénierie reconnus qui garantissent un niveau de performance équivalent à celui énoncé dans la norme CSA S406. Si l'une des conditions de conception est différente ou plus sévère que les hypothèses, le PWF doit être conçu par un ingénieur ou un architecte et installé conformément à la norme. Indépendamment de la taille du bâtiment et de sa conformité aux hypothèses de conception de la norme CSA S406, certaines autorités compétentes exigent le sceau d'un professionnel de la conception pour délivrer un permis de construire. Pour de plus amples informations, veuillez consulter les ressources suivantes : Fondations permanentes en bois (Conseil canadien du bois) Préservation du bois Canada Code national du bâtiment du Canada
Planches de terrasse

Les lames de terrasse peuvent être utilisées pour porter plus loin et supporter des charges plus importantes que les panneaux tels que le contreplaqué et les panneaux à copeaux orientés (OSB). Le platelage en planches est souvent utilisé lorsque l'apparence du platelage est souhaitée en tant qu'élément architectural ou lorsque la performance au feu doit répondre aux exigences de construction en bois lourd décrites dans la partie 3 du Code national du bâtiment du Canada. Le platelage est généralement utilisé dans les structures en bois massif ou en poteaux et poutres et est posé avec la face plate ou large sur les supports afin de fournir un platelage structurel pour les planchers et les toits. Les lames de terrasse peuvent être utilisées dans des conditions humides ou sèches et peuvent être traitées avec des produits de préservation, en fonction de l'essence de bois. Les clous et les pointes de terrasse sont utilisés pour fixer les pièces adjacentes de lames de terrasse les unes aux autres et pour fixer la terrasse à ses supports. Les lames de terrasse sont généralement disponibles dans les essences suivantes : sapin de Douglas (combinaison d'essences D.Fir-L) pruche de la côte pacifique (combinaison d'essences Hem-Fir) diverses essences d'épicéa, de pin et de sapin (combinaison d'essences S-P-F) cèdre rouge de l'Ouest (combinaison d'essences Northern) Pour produire des lames de terrasse, le bois scié est fraisé dans un profil à rainure et languette avec un usinage de surface spécial, tel qu'un joint en V. Les lames de terrasse sont généralement produites dans des matériaux de qualité supérieure, comme le bois d'œuvre. Les lames de terrasse sont normalement produites en trois épaisseurs : 38 mm, 64 mm et 89 mm. Les planches de 38 mm ont une languette et une rainure simples, tandis que les planches plus épaisses ont une double languette et une rainure. Les épaisseurs supérieures à 38 mm comportent également des trous de 6 mm de diamètre, espacés de 760 mm, afin que chaque pièce puisse être clouée à la pièce adjacente à l'aide de pointes de terrasse. Les dimensions et profils standard sont indiqués ci-dessous. Les lames de terrasse sont le plus souvent disponibles en longueurs aléatoires de 1,8 à 6,1 m (6 à 20 ft). Il est possible de commander des planches dans des longueurs spécifiques, mais il faut s'attendre à une disponibilité limitée et à des coûts supplémentaires. Une spécification typique pour les longueurs aléatoires pourrait exiger qu'au moins 90 % des planches soient de 3,0 m (10 pieds) et plus, et qu'au moins 40 % soient de 4,9 m (16 pieds) et plus. Le platelage en planches est disponible en deux qualités : La qualité Select (Sel) La qualité Commercial (Com) La qualité Select a un aspect plus qualitatif et est également plus solide et plus rigide que la qualité Commercial. Les planches de terrasse doivent être fabriquées conformément à la norme CSA O141 et classées selon les règles de classement standard de la NLGA pour le bois d'œuvre canadien. Étant donné que les planches de terrasse ne sont pas estampillées comme le bois de construction, il convient d'obtenir une vérification écrite de la part du fournisseur ou de faire appel à une agence de classement qualifiée pour vérifier le matériau fourni. Pour minimiser le retrait et le gauchissement, les lames de terrasse sont constituées d'éléments de bois sciés qui sont séchés à un taux d'humidité de 19 % ou moins au moment du surfaçage (S-Dry). L'utilisation d'un platelage vert peut entraîner le relâchement du joint à rainure et languette au fil du temps et une réduction de la performance structurelle et de la facilité d'utilisation. Les planches individuelles peuvent s'étendre simplement entre les supports, mais elles sont généralement de longueur aléatoire s'étendant sur plusieurs supports par souci d'économie et pour tirer parti d'une rigidité accrue. Il existe trois méthodes d'installation des terrasses en planches : aléatoire contrôlée, à travée simple et à deux travées continues. Une règle générale de conception pour le platelage aléatoire contrôlé est que les travées ne doivent pas dépasser de plus de 600 mm (2 pieds) la longueur que 40 % de l'expédition du platelage dépasse. Ces deux dernières méthodes d'installation nécessitent des planches de longueur prédéterminée, ce qui peut entraîner un surcoût. Profils et dimensions des lames de terrasse
CSA 080 Préservation du bois

Le Code national du bâtiment du Canada (CNB) contient des exigences relatives à l'utilisation de bois traité dans les bâtiments et la série de normes CSA O80 est citée en référence dans le CNB et dans les codes du bâtiment provinciaux pour la spécification du traitement de préservation d'une vaste gamme de produits du bois utilisés dans différentes applications. La première édition de la norme CSA O80 a été publiée en 1954. Onze révisions et mises à jour de la norme ont suivi, la dernière édition ayant été publiée en 2015. La fabrication et l'application des produits de préservation du bois sont régies par les normes de la série CSA O80. Ces normes consensuelles indiquent les essences de bois qui peuvent être traitées, les agents de préservation autorisés ainsi que la rétention et la pénétration de l'agent de préservation dans le bois qui doivent être atteintes pour la catégorie d'utilisation ou l'application. La série de normes CSA O80 spécifie également les exigences relatives à l'ignifugation du bois par traitement chimique sous pression et par imprégnation thermique du bois. Les sujets généraux couverts par la série de normes CSA O80 comprennent également les matériaux et leur analyse, les procédures d'imprégnation thermique et sous pression, ainsi que la fabrication et l'installation. Les normes canadiennes relatives à la préservation du bois sont basées sur les normes de l'American Wood Protection Association (AWPA), modifiées pour les conditions canadiennes. Seuls les produits de préservation du bois homologués par l'Agence canadienne de réglementation de la lutte antiparasitaire sont répertoriés. Les pénétrations et les charges (rétentions) requises pour les produits de préservation varient en fonction des conditions d'exposition qu'un produit est susceptible de rencontrer au cours de sa durée de vie. Chaque type de produit de préservation présente des avantages distincts et le produit de préservation utilisé doit être déterminé en fonction de l'utilisation finale du matériau. Les exigences de transformation et de traitement de la série CSA O80 sont conçues pour évaluer les conditions d'exposition auxquelles le bois traité sous pression sera soumis pendant la durée de vie d'un produit. Le niveau de protection requis est déterminé par l'exposition au danger (par exemple, les conditions climatiques, le contact direct avec le sol ou l'exposition à l'eau salée), les attentes du produit installé (par exemple, le niveau d'intégrité structurelle tout au long de la durée de vie) et les coûts potentiels de réparation ou de remplacement au cours du cycle de vie. Les exigences techniques de la norme CSA O80 sont organisées dans le système de catégories d'utilisation (SCU). Le SCU est conçu pour faciliter la sélection de l'essence de bois, du produit de préservation, de la pénétration et de la rétention (charge) appropriés par le rédacteur de devis et l'utilisateur de bois traité en faisant correspondre plus précisément l'essence, le produit de préservation, la pénétration et la rétention pour des conditions d'humidité typiques et les agents de biodétérioration du bois à l'utilisation finale prévue. La norme CSA O80.1 spécifie quatre catégories d'utilisation (CU) pour le bois traité utilisé dans la construction : UC1 couvre le bois traité utilisé dans les constructions intérieures sèches ; UC2 couvre le bois traité et les matériaux à base de bois utilisés dans les constructions intérieures sèches qui ne sont pas en contact avec le sol mais qui peuvent être exposés à l'humidité ; UC3 couvre le bois traité utilisé dans les constructions extérieures qui ne sont pas en contact avec le sol ; UC3.1 couvre les constructions extérieures au-dessus du sol avec des produits en bois enduits et un ruissellement rapide de l'eau ; UC3.2 couvre les constructions extérieures en surface avec des produits du bois non enduits ou un faible écoulement de l'eau ; UC4 couvre le bois traité utilisé dans les constructions extérieures en contact avec le sol ou l'eau douce ; UC4.1 couvre les composants non critiques ; UC4.2 couvre les composants structurels critiques ou les composants difficiles à remplacer ; UC5A couvre le bois traité utilisé dans les eaux côtières, y compris l'eau saumâtre, l'eau salée et la zone de boue adjacente. La série de normes CSA O80 comprend les cinq normes suivantes : CSA O80.0 Exigences générales relatives à la préservation du bois ; précise les exigences et fournit des renseignements applicables à l'ensemble de la série de normes. CSA O80.1 Spécification du bois traité ; vise à aider les rédacteurs de devis et les utilisateurs de produits de bois traité à déterminer les exigences appropriées en matière de produits de préservation pour divers produits du bois et environnements d'utilisation finale. CSA O80.2 Transformation et traitement : spécifie les exigences minimales et les limites des procédés de traitement des produits du bois. CSA O80.3 Formulations de produits de préservation ; spécifie les exigences relatives aux produits de préservation qui ne sont pas mentionnées ailleurs. CSA O80.4 a été retirée. CSA O80.5 Additifs CCA - Poteaux utilitaires ; spécifie les exigences relatives à la préparation et à l'utilisation des combinaisons de produits de préservation et d'additifs CCA pour les poteaux utilitaires autorisés par les normes CSA O80.1 et CSA O80.2. Pour de plus amples informations, veuillez consulter les ressources suivantes : www.durable-wood.com CSA O80 Préservation du bois Préservation du bois Canada Code national du bâtiment du Canada Agence de réglementation de la lutte antiparasitaire American Wood Protection Association ISO 21887 Durabilité du bois et des produits à base de bois - Classes d'utilisation
Bâtiments de moyenne hauteur - Recherche

Études générales "The Historical Development of the Building Size Limits in the National Building Code of Canada", par Sereca pour CWC (2015) (17 Mb) Structural & Seismic Vertical Movement in Wood Platform Frame Structures (CWC Fact Sheets) Basics Design and detailing solutions Movement prediction Design of multi-storey wood-based shearwalls : Linear dynamic analysis & mechanics based approach A Mechanics-based approach for Determining Deflections of Stacked Multi-storey Wood-based Shearwalls Design of Stacked Multi-storey Wood Shearwalls using a Mechanics Based Approach Linear Dynamic Analysis for Wood Based Shear Walls and Podium Structures Design of wood frame and podium structures using linear dynamic analysis, by Newfield, G., Ni, C., and Wang, J., Proceedings of the World Conference on Timber Engineering 2014, Quebec City, Canada (2014) Testing Other Reports Final Report - Full-scale Mass Timber Shaft Demonstration Fire (including the National Research Council test report as an Appendix), by FPInnovations (April 2015) Full Scale Exterior Wall Test on Nordic CLT System, by the National Research Council (January 2015) Report No. 101700231SAT-003_Rev.1 - Rapport sur les essais de conformité des panneaux de bois lamellé-croisé avec la norme CAN/ULC-S101 Méthodes d'essai de résistance au feu des constructions et des matériaux de construction : Loadbearing 3-ply CLT Wall with 1 Layer of 5/8″ Type X Gypsum Board - 1 hr FRR, by Intertek for CWC (November 2014) Report No. 100585447SAT-002B - Report of Testing Cross-Laminated Timber Panels for Compliance with CAN/ULC-S101 Standard Methods of Fire Endurance Tests of Building Construction and Materials : Loadbearing 3-ply CLT Wall with 1 Layer of 5/8″ Fire-rated Gypsum Board (60% load) - 1 hr FRR, by Intertek for CWC (December 2013) Report No. 100585447SAT-002A_Rev.1 - Report of Testing Cross-Laminated Timber Panels for Compliance with CAN/ULC-S101 Standard Methods of Fire Endurance Tests of Building Construction and Materials : Loadbearing 3-ply CLT Wall with Attached Wood-frame Partition - 1 hr FRR, par Intertek pour CWC (janvier 2012) Visitez la bibliothèque de recherche de Think Wood pour des ressources supplémentaires.
Vert

Le bois est le seul grand matériau de construction qui pousse naturellement et qui est renouvelable. Avec la pression croissante pour réduire l'empreinte carbone de l'environnement bâti, les concepteurs de bâtiments sont de plus en plus appelés à équilibrer les objectifs de fonction et de coût d'un bâtiment avec un impact réduit sur l'environnement. Le bois peut contribuer à cet équilibre. De nombreuses études d'évaluation du cycle de vie réalisées dans le monde entier ont montré que les produits en bois présentent des avantages environnementaux évidents par rapport à d'autres matériaux de construction, et ce à tous les stades. Les bâtiments en bois permettent de réduire les émissions de gaz à effet de serre, la pollution de l'air, les volumes de déchets solides et l'utilisation des ressources écologiques.
Efficacité énergétique

On estime que 30 à 40 % de l'énergie utilisée en Amérique du Nord est consommée par les bâtiments. Au Canada, la majorité de l'énergie opérationnelle des bâtiments résidentiels est fournie par le gaz naturel, le mazout ou l'électricité, et est consommée pour le chauffage des locaux. Étant donné que les bâtiments sont une source importante de consommation d'énergie et d'émissions de gaz à effet de serre au Canada, l'efficacité énergétique dans le secteur des bâtiments est essentielle pour atteindre les objectifs d'atténuation du changement climatique. Comme le souligne le Cadre pancanadien sur la croissance propre et le changement climatique, les gouvernements fédéral, provinciaux et territoriaux se sont engagés à investir dans des initiatives visant à favoriser l'efficacité énergétique des maisons et des bâtiments, ainsi que dans des programmes d'étalonnage et d'étiquetage énergétique. Malgré le nombre croissant de choix offerts aux consommateurs, la manière la plus rentable d'améliorer la performance énergétique des bâtiments est restée inchangée au fil des décennies : - maximiser la performance thermique de l'enveloppe du bâtiment en ajoutant plus d'isolation et en réduisant les ponts thermiques ; et - augmenter l'étanchéité à l'air de l'enveloppe du bâtiment. L'enveloppe du bâtiment est généralement définie comme l'ensemble des éléments qui séparent l'espace conditionné de l'espace non conditionné (air extérieur ou sol). La performance thermique et l'étanchéité à l'air de l'enveloppe du bâtiment (également connue sous le nom d'enceinte du bâtiment) ont une incidence sur l'efficacité énergétique de l'ensemble du bâtiment et influencent de manière significative la quantité de pertes et de gains de chaleur. Les codes et normes du bâtiment et de l'énergie au Canada ont fait ou font actuellement l'objet de révisions, et les exigences minimales en matière de performance thermique pour les enveloppes de bâtiments à ossature en bois sont désormais plus strictes. Les bâtiments les plus efficaces sur le plan énergétique sont construits avec des matériaux qui résistent au flux de chaleur et sont construits avec précision pour tirer le meilleur parti de l'isolation et des barrières d'air. Pour maximiser l'efficacité énergétique, les murs extérieurs et les toits doivent être conçus avec des matériaux d'ossature qui résistent au flux de chaleur et doivent inclure des pare-air continus, des matériaux d'isolation et des pare-intempéries pour empêcher les fuites d'air à travers l'enveloppe du bâtiment. La résistance au flux de chaleur des assemblages de l'enveloppe du bâtiment dépend des caractéristiques des matériaux utilisés. Les assemblages isolés ne sont généralement pas homogènes dans l'ensemble de l'enveloppe du bâtiment. Dans les murs ou les toits à ossature légère, les éléments d'ossature se trouvent à intervalles réguliers et, à ces endroits, le taux de transfert de chaleur est différent de celui des espaces entre les éléments d'ossature. Les éléments d'ossature réduisent la résistance thermique de l'ensemble du mur ou du plafond. Le taux de transfert de chaleur à l'emplacement des éléments d'ossature dépend des propriétés thermiques ou isolantes du matériau d'ossature. Le taux élevé de transfert de chaleur à l'emplacement des éléments d'ossature est appelé pont thermique. Les éléments d'ossature d'un mur ou d'un toit peuvent représenter 20 % ou plus de la surface d'un mur extérieur ou d'un toit, et comme la performance thermique de l'ensemble dépend de l'effet combiné de l'ossature et de l'isolation, les propriétés thermiques des matériaux d'ossature peuvent avoir un effet significatif sur la résistance thermique globale (effective) de l'ensemble. Le bois est un isolant thermique naturel grâce aux millions de minuscules poches d'air que contient sa structure cellulaire. La conductivité thermique augmentant avec la densité relative, le bois est un meilleur isolant que les matériaux de construction denses. En ce qui concerne les performances thermiques, les bâtiments à ossature bois sont intrinsèquement plus efficaces que les autres matériaux de construction courants, principalement en raison de la réduction des ponts thermiques à travers les éléments structurels en bois, y compris les montants, les colonnes, les poutres et les planchers en bois. Le bois perd moins de chaleur par conduction que les autres matériaux de construction et les techniques de construction à ossature bois permettent une large gamme d'options d'isolation, y compris l'isolation des cavités des montants et l'isolation rigide extérieure. La recherche et le suivi des bâtiments démontrent de plus en plus l'importance de la réduction des ponts thermiques dans les nouvelles constructions et dans les bâtiments existants. L'impact des ponts thermiques peut contribuer de manière significative à la consommation d'énergie de l'ensemble du bâtiment, au risque de condensation sur les surfaces froides et au confort des occupants. Il est logique de se concentrer sur l'enveloppe du bâtiment et la ventilation au moment de la construction, car il est difficile d'apporter des modifications à ces systèmes à l'avenir. Les bâtiments à haute performance coûtent généralement plus cher à construire que les constructions conventionnelles, mais le prix d'achat plus élevé est compensé, du moins en partie, par des coûts de consommation d'énergie plus faibles tout au long du cycle de vie. De plus, les bâtiments à haute performance sont souvent de meilleure qualité et plus confortables à vivre et à travailler. Rendre les bâtiments plus efficaces sur le plan énergétique s'est également avéré être l'une des possibilités les moins coûteuses de contribuer aux objectifs de réduction de la consommation d'énergie et d'atténuation du changement climatique. Plusieurs programmes de certification et d'étiquetage sont à la disposition des constructeurs et des consommateurs pour réduire la consommation d'énergie dans les bâtiments. Ressources naturelles Canada (RNCan) administre le programme R-2000, qui vise à réduire les besoins énergétiques des maisons de 50 % par rapport à une maison construite selon le code. Un autre programme administré par RNCan, ENERGY STAR®, vise à améliorer l'efficacité énergétique de 20 à 25 % par rapport au code. Le système d'évaluation ÉnerGuide estime les performances énergétiques d'une maison et peut être utilisé à la fois pour les maisons existantes et dans la phase de planification d'une nouvelle construction. D'autres programmes de certification et systèmes d'étiquetage ont des objectifs de performance fixes. La maison passive est une norme rigoureuse pour l'efficacité énergétique des bâtiments, qui vise à réduire la consommation d'énergie et à améliorer les performances globales. La charge de chauffage des locaux doit être inférieure à 15 kWh/m2 et l'étanchéité à l'air doit être inférieure à 0,6 renouvellement d'air par heure à 50 Pa, ce qui permet de construire des bâtiments à très faible consommation d'énergie qui nécessitent jusqu'à 90 % d'énergie de chauffage et de refroidissement en moins que les bâtiments conventionnels. Le NetZero Energy Building Certification, un programme géré par l'International Living Future Institute, est un programme basé sur la performance et exige que le bâtiment ait une consommation énergétique nette nulle pendant douze mois consécutifs. Green Globes et Leadership in Energy and Environmental Design (LEED) sont d'autres systèmes d'évaluation des bâtiments qui prévalent sur le marché de la conception et de la construction de bâtiments. Pour plus d'informations, voir les ressources suivantes : Performance thermique des assemblages à ossature légère - IBS No.5 (Conseil canadien du bois) Code national de l'énergie pour les bâtiments Ressources naturelles Canada BC Housing Maison passive Canada Green Globes Conseil canadien du bâtiment durable
Changement climatique

Les préoccupations liées au changement climatique encouragent la décarbonisation du secteur du bâtiment, y compris l'utilisation de matériaux de construction responsables de moins d'émissions de gaz à effet de serre (GES) et l'amélioration des performances opérationnelles tout au long du cycle de vie des bâtiments. Responsable de plus de 10 % des émissions totales de GES au Canada, le secteur du bâtiment joue un rôle important dans l'atténuation du changement climatique et l'adaptation à celui-ci. La réduction de l'impact des bâtiments sur le changement climatique offre un rendement environnemental élevé pour un investissement économique relativement faible. Le gouvernement du Canada, en tant que signataire de l'Accord de Paris, s'est engagé à réduire les émissions de GES du Canada de 30 % par rapport aux niveaux de 2005 d'ici 2030. En outre, le Cadre pancanadien sur la croissance propre et le changement climatique reconnaît que les produits forestiers et ligneux peuvent contribuer à la stratégie nationale de réduction des émissions en renforçant le stockage du carbone dans les forêts, en augmentant l'utilisation du bois dans la construction, en produisant du carburant à partir de la bioénergie et des bioproduits et en favorisant l'innovation dans le développement de produits biologiques et les pratiques de gestion forestière. Le Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC) se fait également l'écho de l'importance du secteur de la sylviculture et des produits du bois en tant que composante essentielle de l'atténuation des effets du changement climatique, en affirmant qu'une stratégie de gestion durable des forêts visant à maintenir ou à augmenter les stocks de carbone forestier tout en produisant du bois, des fibres ou de l'énergie, génère le plus grand bénéfice durable pour atténuer le changement climatique. En outre, le GIEC déclare que "les options d'atténuation du secteur forestier comprennent l'extension de la rétention de carbone dans les produits ligneux récoltés, la substitution de produits et la production de biomasse pour la bioénergie". L'industrie forestière canadienne s'engage à éliminer 30 mégatonnes de dioxyde de carbone (CO2) par an d'ici 2030, ce qui équivaut à 13 % des engagements nationaux du Canada dans le cadre de l'Accord de Paris. Plusieurs mécanismes seront utilisés pour relever ce défi, notamment : le déplacement de produits, en utilisant des produits biosourcés à la place de produits et de sources d'énergie dérivés de combustibles fossiles ; les pratiques de gestion forestière, y compris l'utilisation accrue, l'amélioration de l'utilisation des résidus et de la planification de l'utilisation des terres, et l'amélioration de la croissance et des rendements ; la prise en compte des réservoirs de carbone des produits biosourcés à longue durée de vie ; et une plus grande efficacité dans les processus de fabrication des produits du bois Le Canada abrite 9 pour cent des forêts du monde, qui ont la capacité d'agir comme d'énormes puits de carbone en absorbant et en stockant le carbone. Chaque année, le Canada exploite moins d'un demi pour cent de ses terres forestières, ce qui a permis à la couverture forestière du pays de rester constante au cours du siècle dernier. La gestion durable des forêts et les exigences légales en matière de reboisement permettent de maintenir ce vaste réservoir de carbone. Une forêt est un système naturel considéré comme neutre en carbone tant qu'elle est gérée de manière durable, ce qui signifie qu'elle doit être reboisée après la récolte et ne pas être convertie à d'autres utilisations. Le Canada possède certaines des réglementations les plus strictes au monde en matière de gestion forestière, exigeant une régénération réussie après l'exploitation des forêts publiques. Lorsqu'elles sont gérées de manière responsable, les forêts constituent une ressource renouvelable qui sera disponible pour les générations futures. Le Canada est également un leader mondial en matière de certification forestière volontaire par une tierce partie, ce qui renforce l'assurance d'une gestion durable des forêts. Les programmes de gestion durable des forêts et les systèmes de certification s'efforcent de préserver la quantité et la qualité des forêts pour les générations futures, de respecter la diversité biologique des forêts et l'écologie des espèces qui y vivent, ainsi que les communautés concernées par les forêts. Les entreprises canadiennes ont obtenu la certification d'une tierce partie sur plus de 150 millions d'hectares de forêts, ce qui représente la plus grande superficie de forêts certifiées au monde. La forêt représente un réservoir de carbone, stockant le carbone biogénique dans les sols et les arbres. Le carbone reste stocké jusqu'à ce que les arbres meurent et se décomposent ou brûlent. Lorsqu'un arbre est coupé, 40 à 60 % du carbone biogénique reste dans la forêt ; le reste est retiré sous forme de grumes et une grande partie est transférée dans le réservoir de carbone des produits du bois dans l'environnement bâti. Les produits du bois continuent à stocker ce carbone biogénique, souvent pendant des décennies dans le cas des bâtiments en bois, retardant ou empêchant la libération d'émissions de CO2. Les produits du bois et les systèmes de construction ont la capacité de stocker de grandes quantités de carbone ; 1 m3 de bois d'œuvre S-P-F stocke environ 1 tonne d'équivalent CO2. La quantité de carbone stockée dans un produit en bois est directement proportionnelle à la densité du bois. Au Canada, une maison unifamiliale moyenne stocke près de 30 tonnes d'équivalent CO2 dans les produits du bois utilisés pour sa construction. La plupart des produits de construction biosourcés stockent en fait plus de carbone dans la fibre de bois qu'ils n'en libèrent au cours des phases de récolte, de fabrication et de transport de leur cycle de vie. En général, les produits biosourcés, comme le bois qui pousse naturellement avec l'aide du soleil, ont des émissions intrinsèques plus faibles. Les émissions intrinsèques résultent des processus de production des matériaux de construction, depuis l'extraction ou la récolte des ressources jusqu'à la fin de vie, en passant par la fabrication, le transport et la construction. La bioénergie produite à partir de résidus biosourcés, tels que l'écorce d'arbre et la sciure de bois, est principalement utilisée pour générer de l'énergie pour la fabrication de produits en bois en Amérique du Nord. Les produits de construction en bois ont de faibles émissions de GES intrinsèques parce qu'ils sont cultivés à l'aide d'énergie solaire renouvelable, qu'ils utilisent peu d'énergie fossile pendant la fabrication et qu'ils ont de nombreuses options de fin de vie (réutilisation, recyclage, récupération d'énergie). Les produits du bois peuvent se substituer à d'autres matériaux de construction et sources d'énergie à plus forte intensité de carbone. Les émissions de gaz à effet de serre sont ainsi évitées en utilisant des produits du bois à la place d'autres produits de construction à plus forte intensité de gaz à effet de serre. Des facteurs de déplacement (kg de CO2 évité par kg de bois utilisé) ont été estimés pour calculer la quantité de carbone évitée grâce à l'utilisation de produits du bois dans la construction de bâtiments. Pour de plus amples informations, veuillez consulter les ressources suivantes : Addressing Climate Change in the Building Sector - Carbon Emissions Reductions (Conseil canadien du bois) Resilient and Adaptive Design Using Wood (Conseil canadien du bois) CWC Carbon Calculator Canada's Forest Products Industry "30 by 30" Climate Change Challenge (Association des produits forestiers du Canada) www.naturallywood.com www.thinkwood.com Building with wood = Proactive climate protection (Binational Softwood Lumber Council and State University of New York) Natural Resources Canada Pan-Canadian Framework on Clean Growth and Climate Change (Gouvernement du Canada) Intergovernmental Panel on Climate Change (Groupe d'experts intergouvernemental sur l'évolution du climat)
Analyse du cycle de vie

Les produits de construction et le secteur du bâtiment dans son ensemble ont un impact significatif sur l'environnement. Les instruments politiques et les forces du marché poussent de plus en plus les gouvernements et les entreprises à documenter et à rendre compte des impacts environnementaux et à suivre les améliorations. L'analyse du cycle de vie (ACV) est un outil qui permet de comprendre les aspects environnementaux liés à la construction, à la rénovation et à la modernisation des bâtiments et des ouvrages de génie civil. L'ACV est un outil d'aide à la décision qui permet d'identifier les approches de conception et de construction qui améliorent les performances environnementales. Plusieurs juridictions européennes, dont l'Allemagne, Zurich et Bruxelles, ont fait de l'ACV une exigence obligatoire avant la délivrance d'un permis de construire. En outre, l'application de l'ACV à la conception des bâtiments et à la sélection des matériaux est une composante des systèmes d'évaluation des bâtiments écologiques. L'ACV peut être utile aux fabricants, aux architectes, aux constructeurs et aux agences gouvernementales en fournissant des informations quantitatives sur les impacts environnementaux potentiels et en fournissant des données permettant d'identifier les domaines à améliorer. L'ACV est une approche basée sur la performance pour évaluer les aspects environnementaux liés à la conception et à la construction des bâtiments. L'ACV peut être utilisée pour comprendre les impacts environnementaux potentiels d'un produit ou d'une structure à chaque étape de sa vie, depuis l'extraction des ressources ou l'acquisition des matières premières, le transport, la transformation et la fabrication, la construction, l'exploitation, l'entretien et la rénovation jusqu'à la fin de vie. L'ACV est une méthodologie scientifique internationalement reconnue qui existe sous d'autres formes depuis les années 1960. Les exigences et les orientations relatives à la réalisation d'une ACV ont été établies par le biais de normes internationales consensuelles, à savoir les normes ISO 14040 et ISO 14044. L'ACV prend en compte tous les flux d'entrée et de sortie (matériaux, énergie, ressources) associés à un système de produits donné. Il s'agit d'une procédure itérative qui comprend la définition des objectifs et du champ d'application, l'analyse de l'inventaire, l'évaluation de l'impact et l'interprétation. L'analyse de l'inventaire, également connue sous le nom d'inventaire du cycle de vie (ICV), consiste en la collecte de données et le suivi de tous les flux d'entrée et de sortie au sein d'un système de produits. Des bases de données publiques sur l'ICV, telles que la base de données américaine sur l'inventaire du cycle de vie, sont accessibles gratuitement afin d'obtenir ces données. Au cours de la phase d'évaluation de l'impact de l'ACV, les flux de l'ICV sont traduits en catégories d'impact potentiel sur l'environnement à l'aide de techniques de modélisation environnementale théoriques et empiriques. L'ACV permet de quantifier les impacts environnementaux potentiels et les aspects d'un produit, tels que le potentiel de réchauffement de la planète, le potentiel d'acidification, le potentiel de réduction de la pollution, etc : le potentiel de réchauffement de la planète, le potentiel d'acidification, le potentiel d'eutrophisation, le potentiel d'appauvrissement de la couche d'ozone, le potentiel de smog, la consommation d'énergie primaire, la consommation de ressources matérielles et la production de déchets dangereux et non dangereux. Les concepteurs de bâtiments disposent d'outils d'ACV accessibles au public et faciles à utiliser. Ces outils permettent aux concepteurs d'obtenir rapidement des informations sur l'impact potentiel sur l'environnement d'une large gamme d'assemblages génériques de bâtiments ou d'élaborer eux-mêmes des évaluations complètes du cycle de vie des bâtiments. Les logiciels d'ACV offrent aux professionnels de la construction des outils puissants pour calculer les impacts potentiels du cycle de vie des produits ou des assemblages de construction et effectuer des comparaisons environnementales. Il est également possible d'utiliser l'ACV pour effectuer des comparaisons objectives entre des matériaux alternatifs, des assemblages et des bâtiments entiers, mesurées sur les cycles de vie respectifs et basées sur des indicateurs environnementaux quantifiables. L'ACV permet de comparer les compromis environnementaux associés au choix d'un matériau ou d'une solution de conception par rapport à un autre et, par conséquent, fournit une base efficace pour comparer les implications environnementales relatives de scénarios de conception de bâtiments alternatifs. Une ACV qui examine des options de conception alternatives doit garantir l'équivalence fonctionnelle. Chaque scénario de conception envisagé, y compris l'ensemble du bâtiment, doit répondre aux exigences du code du bâtiment et offrir un niveau minimum de performance technique ou d'équivalence fonctionnelle. Pour quelque chose d'aussi complexe qu'un bâtiment, cela signifie qu'il faut suivre et comptabiliser les intrants et les extrants environnementaux pour la multitude d'assemblages, de sous-assemblages et de composants de chaque option de conception. La longévité d'un système de construction a également un impact sur la performance environnementale. Les bâtiments en bois peuvent rester en service pendant de longues périodes s'ils sont conçus, construits et entretenus correctement. De nombreuses études d'ACV dans le monde ont démontré que les produits et systèmes de construction en bois peuvent présenter des avantages environnementaux par rapport à d'autres matériaux et méthodes de construction. FPInnovations a réalisé une ACV d'un bâtiment de quatre étages au Québec construit en bois lamellé-croisé (CLT). L'étude a évalué comment la conception en CLT se comparerait à un bâtiment fonctionnellement équivalent en béton et en acier de la même surface de plancher, et a révélé une performance environnementale améliorée dans deux des six catégories d'impact, et une performance équivalente dans les autres catégories. En outre, en fin de vie, les produits biosourcés peuvent faire partie d'un système de produits ultérieurs lorsqu'ils sont réutilisés, recyclés ou valorisés énergétiquement, ce qui peut réduire les incidences sur l'environnement et contribuer à l'économie circulaire. Cycle de vie des produits de construction en bois Photo source : CEI-Bois Pour de plus amples informations, veuillez consulter les ressources suivantes : www.naturallywood.com Athena Sustainable Materials Institute Building for Environmental and Economic Sustainability (BEES) FPInnovations. Analyse comparative du cycle de vie de deux bâtiments résidentiels à plusieurs étages : Cross-Laminated Timber vs. Concrete Slab and Column with Light Gauge Steel Walls, 2013. American Wood Council U.S. Life Cycle Inventory Database ISO 14040 Management environnemental - Analyse du cycle de vie - Principes et cadre ISO 14044 Management environnemental - Analyse du cycle de vie - Exigences et lignes directrices
