en-ca

Bois massif

Bois massif

Les progrès de la technologie et des systèmes de produits du bois sont à l'origine de la dynamique des bâtiments innovants au Canada. Des produits tels que le bois lamellé-croisé (CLT), le bois lamellé-cloué (NLT), le bois lamellé-collé (GLT), le bois lamellé-collé (LSL), le bois de placage stratifié (LVL) et d'autres produits composites structurels de grande dimension (SCL) font partie d'une classification plus large connue sous le nom de "bois de masse". Bien que le bois de masse soit un terme émergent, la construction traditionnelle à poteaux et à poutres (charpente en bois) existe depuis des siècles. Aujourd'hui, les produits de bois de masse peuvent être constitués en fixant mécaniquement et/ou en collant des éléments de bois plus petits tels que du bois de construction ou des placages, des brins ou des fibres de bois pour former de grands éléments de bois préfabriqués utilisés comme poutres, colonnes, arcs, murs, planchers et toits. Les produits en bois de masse ont un volume et des dimensions transversales suffisants pour offrir des avantages significatifs en termes de résistance au feu, d'acoustique et de performance structurelle, en plus de l'efficacité de la construction.

Poutrelles à ossature légère

Poutrelles à ossature légère

Une ferme est une structure qui repose sur une disposition triangulaire des âmes et des membrures pour transférer les charges aux points de réaction. Cette disposition géométrique des éléments confère aux fermes un rapport résistance/poids élevé, ce qui permet des portées plus longues que les charpentes conventionnelles. Les fermes à ossature légère peuvent généralement atteindre une portée de 20 m (60 pieds), bien que des portées plus longues soient également possibles. Les premières fermes à ossature légère ont été construites sur place à l'aide de goussets en contreplaqué cloués. Ces fermes offraient des portées acceptables mais nécessitaient un temps de construction considérable. Développée à l'origine aux États-Unis dans les années 1950, la plaque de connexion métallique a transformé l'industrie des fermes en permettant une préfabrication efficace des fermes de courte et de longue portée. Les plaques d'assemblage en métal léger permettent de transférer la charge entre les éléments adjacents grâce à des dents en acier poinçonnées qui sont encastrées dans les éléments en bois. Aujourd'hui, les fermes en bois à ossature légère sont largement utilisées dans les constructions résidentielles unifamiliales et multifamiliales, institutionnelles, agricoles, commerciales et industrielles. La forme et la taille des fermes à ossature légère ne sont limitées que par les capacités de fabrication, les contraintes d'expédition et les considérations de manutention. Les fermes peuvent être conçues comme simples ou à plusieurs travées, avec ou sans porte-à-faux. L'économie, la facilité de fabrication, la livraison rapide et les procédures de montage simplifiées rendent les fermes en bois à ossature légère compétitives dans de nombreuses applications de toiture et de plancher. Leur grande portée élimine souvent le besoin de murs porteurs intérieurs, ce qui offre au concepteur une grande souplesse dans l'agencement des planchers. Les fermes de toit offrent des configurations en pente, inclinées ou plates, tout en laissant un espace libre entre les membrures pour l'isolation, la ventilation, l'électricité, la plomberie, le chauffage et l'air conditionné. Les fermes en bois à ossature légère sont préfabriquées en pressant les dents saillantes de la plaque d'acier de la ferme dans des éléments de bois de 38 mm (2 po), qui sont prédécoupés et assemblés dans un gabarit. La plupart des fermes sont fabriquées avec du bois de 38 x 64 mm (2 x 3 pouces) à 38 x 184 mm (2 x 8 pouces) classé visuellement et soumis à des contraintes mécaniques (MSR). Pour obtenir différentes valeurs d'adhérence, les plaques d'assemblage des fermes sont estampées à partir de tôles d'acier galvanisé de calibre léger de différentes qualités et épaisseurs. De nombreuses dimensions de plaques sont fabriquées pour s'adapter à toutes les formes et dimensions de fermes ou de charges à supporter. Les fermes à ossature légère sont fabriquées conformément aux normes établies par le Truss Plate Institute of Canada. Les capacités des plaques varient d'un fabricant à l'autre et sont établies par des essais. Les plaques de fermes doivent être conformes aux exigences de la norme CSA O86 et doivent être approuvées par le Centre canadien des matériaux de construction (CCMC). Pour obtenir cette approbation, les plaques de fermes sont testées conformément à la norme CSA S347. Lors de la conception, les fermes à ossature légère sont généralement conçues par le fabricant de plaques de fermes pour le compte du fabricant de fermes. Lorsque les fermes à ossature légère arrivent sur le chantier, il convient de vérifier qu'elles ne présentent pas de dommages permanents tels que des ruptures transversales dans le bois, des plaques de connexion métalliques manquantes ou endommagées, des fissures excessives dans le bois ou tout autre dommage susceptible de nuire à l'intégrité structurelle de la ferme. Dans la mesure du possible, les fermes doivent être déchargées en paquets sur un sol sec et relativement lisse. Elles ne doivent pas être déchargées sur un terrain accidenté ou sur des espaces irréguliers qui pourraient entraîner des tensions latérales excessives susceptibles de déformer les plaques d'assemblage métalliques ou d'endommager des parties des fermes. Les fermes à ossature légère peuvent être stockées horizontalement ou verticalement. Si elles sont stockées en position horizontale, les fermes doivent être soutenues par des cales espacées de 2,4 à 3 m (8 à 10 ft) afin d'éviter les flexions latérales et de réduire l'absorption d'humidité par le sol. Lorsqu'elles sont stockées en position verticale, les fermes doivent être placées sur une surface horizontale stable et contreventées pour éviter qu'elles ne basculent ou ne se renversent. Si les fermes doivent être stockées pendant une période prolongée, des mesures doivent être prises pour les protéger des intempéries, en les gardant sèches et bien ventilées. Les fermes à ossature légère nécessitent un contreventement temporaire pendant le montage, avant l'installation d'un contreventement permanent. Les plaques de fermes ne doivent pas être utilisées avec du bois incisé. Contacter le fabricant de fermes pour obtenir des conseils supplémentaires sur l'utilisation des fermes à ossature légère dans des environnements corrosifs, des conditions de service humides ou lorsqu'elles sont traitées avec un produit ignifuge. Pour plus d'informations, consulter les ressources suivantes : Canadian Wood Truss Association Truss Plate Institute of Canada CSA O86 Engineering design in wood CSA S347 Method of test for evaluation of truss plates used in lumber joints Canadian Construction Materials Centre

Bois d’échantillon

Bois d’échantillon

Le bois de construction est un bois massif scié dont l'épaisseur est inférieure à 89 mm (3,5 pouces). Le bois de construction peut être désigné par sa dimension nominale en pouces, c'est-à-dire la dimension réelle arrondie au pouce supérieur, ou par sa dimension réelle en millimètres. Par exemple, un matériau de 38 × 89 mm (1-1/2 × 3-1/2 in) est désigné nominalement comme du bois d'œuvre 2 × 4. Le bois d'œuvre séché à l'air ou au four (S-Dry), dont le taux d'humidité est inférieur ou égal à 19 %, est facilement disponible dans une épaisseur de 38 mm (1,5 po). Les épaisseurs de 64 et 89 mm (2-1/2 et 3-1/2 in) sont généralement disponibles en vert surfacé (S-Grn) uniquement, c'est-à-dire que le taux d'humidité est supérieur à 19 %. La longueur maximale du bois d'œuvre que l'on peut obtenir est d'environ 7 m (23 ft), mais elle varie d'un bout à l'autre du Canada. Le bois d'œuvre est principalement utilisé dans la construction de bâtiments pour l'ossature des toits, des planchers, des murs de cisaillement, des diaphragmes et des murs porteurs. Le bois d'œuvre peut être utilisé directement comme matériau d'ossature ou peut servir à fabriquer des produits structuraux techniques, tels que des fermes à ossature légère ou des solives en I préfabriquées en bois. Le bois de dimension de qualité spéciale, appelé lamstock (stock de stratification), est fabriqué exclusivement pour le bois lamellé-collé. L'assurance qualité du bois canadien est assurée par un système complexe de normes de produits, de normes de conception technique et de codes de construction, impliquant une surveillance du classement, un soutien technique et un cadre réglementaire. Vérification et fendillement Vérification et fendillement La vérification se produit lorsque le bois est séché rapidement. La surface sèche rapidement, tandis que le cœur du bois reste à un taux d'humidité plus élevé pendant un certain temps. Par conséquent, la surface tente de se rétracter, mais elle est retenue par le cœur du bois. Cette contrainte provoque des tensions à la surface qui, si elles sont suffisamment importantes, peuvent séparer les fibres, créant ainsi une fente. Les fissures sont des fentes de passage qui se produisent généralement à l'extrémité des éléments en bois. Lorsqu'un élément en bois sèche, l'humidité est perdue très rapidement à l'extrémité de l'élément. À mi-longueur, cependant, le bois a encore un taux d'humidité plus élevé. Cette différence de teneur en eau crée des contraintes de traction à l'extrémité de la pièce. Lorsque les contraintes dépassent la résistance du bois, une fente se forme. Les sciages massifs de grande dimension sont susceptibles de se fendre et de se fissurer car ils sont toujours apprêtés en vert (S-Grn). En outre, en raison de leur grande taille, l'âme sèche lentement et les contraintes de traction à la surface et aux extrémités peuvent être importantes. Les petits défauts limités à la surface d'un élément en bois ont très rarement un effet sur la résistance de l'élément. Les fissures profondes peuvent être importantes si elles se produisent à un endroit où les contraintes de cisaillement sont élevées. Les fissures dans les colonnes n'ont pas d'importance structurelle, sauf si elles se transforment en fissures traversantes qui augmentent le coefficient d'élancement de la colonne. Les résistances au cisaillement spécifiées pour les bois de construction et les bois d'œuvre ont été élaborées en tenant compte de la quantité maximale de fissures ou de fentes autorisée par la règle de classement applicable. Il est possible de réduire la possibilité et la gravité des fentes et des gerces en contrôlant la vitesse de séchage. Pour ce faire, le bois doit être maintenu à l'abri de la lumière directe du soleil et à l'écart de toute source de chaleur artificielle. En outre, les extrémités peuvent être enduites d'un produit d'étanchéité pour retarder la perte d'humidité. D'autres mesures permettent de minimiser les changements de dimensions et le risque de fendillement : spécifier des produits du bois dont la teneur en humidité est aussi proche que possible de la teneur en humidité d'équilibre prévue pour l'utilisation finale ; veiller à ce que les produits du bois secs soient protégés par un stockage et une manipulation appropriés. Bois abouté Les produits aboutés sont fabriqués en prenant des pièces plus courtes de bois séché au four, en usinant un profil en forme de "doigt" à chaque extrémité des pièces courtes, en ajoutant un adhésif structurel approprié et en collant les pièces ensemble pour obtenir une pièce de bois plus longue. La longueur d'un bois abouté n'est pas limitée par la longueur de la grume. En fait, le processus de fabrication peut aboutir à la production de solives et de chevrons d'une longueur de 12 m (40 pieds) ou plus. Le procédé d'aboutage est également utilisé dans le processus de fabrication de plusieurs autres produits en bois d'ingénierie, notamment le bois lamellé-collé et les poutrelles en I en bois. Le terme spécifique de "bois abouté" s'applique au bois de construction qui contient des joints à entures multiples. L'aboutage permet de tirer une plus grande valeur de la ressource forestière en utilisant de courtes pièces de bois de qualité inférieure comme intrants pour la fabrication d'un produit en bois d'ingénierie à valeur ajoutée. Le processus d'aboutage utilise de courtes pièces de bois coupées et permet une utilisation plus efficace des fibres de bois récoltées. Le bois abouté peut être fabriqué à partir de n'importe quelle essence ou groupe d'essences commerciales. Le groupe d'essences le plus couramment utilisé pour la production de bois abouté est l'épicéa, le pin et le sapin (S-P-F). Avantages de la conception du bois abouté Le bois abouté est un produit d'ingénierie en bois souhaitable pour plusieurs raisons : rectitude stabilité dimensionnelle interchangeabilité avec le bois non abouté utilisation très efficace des fibres de bois Les avantages de la conception et de la performance de ce produit d'ingénierie en bois sont sa rectitude et sa stabilité dimensionnelle. La rectitude et la stabilité dimensionnelle du bois abouté résultent du fait que des pièces de bois de faible longueur, au fil relativement droit et présentant moins de défauts naturels, sont assemblées pour former une pièce de bois de plus grande longueur. Le grain du bois abouté devient non uniforme et aléatoire lorsque de nombreuses pièces courtes sont assemblées. Le bois abouté est donc moins susceptible de se déformer que le bois de sciage massif. Le processus d'aboutage permet également de réduire ou d'éliminer les défauts qui réduisent la résistance, ce qui donne un produit structurel en bois dont les propriétés techniques sont moins variables que celles du bois de construction massif. L'utilisation la plus courante du bois abouté est celle des montants dans les murs de cisaillement et les murs porteurs verticaux. Le facteur le plus important pour les montants est la rectitude. Les montants assemblés par entures multiples restent plus droits que les montants en bois de construction massif lorsqu'ils sont soumis à des changements de température et d'humidité. Cette caractéristique présente des avantages considérables pour le constructeur et le propriétaire, notamment une construction de qualité supérieure, l'élimination des sauts de clous dans les cloisons sèches et d'autres problèmes liés aux variations dimensionnelles.

Connexions

Connexions

Comme pour tous les autres matériaux de construction, un aspect essentiel des structures en bois est la manière dont les éléments sont reliés. Les produits en bois sont des matériaux de construction faciles à percer, à ciseler ou à façonner pour faciliter l'assemblage des éléments, et il existe un certain nombre de méthodes et une large gamme de produits pour l'assemblage du bois. L'installation d'attaches métalliques est la méthode la plus courante d'assemblage des produits en bois et une large gamme de matériel est disponible. Cela va des clous et des connecteurs légers utilisés pour la construction de charpentes légères aux boulons, plaques latérales et autres pièces de quincaillerie utilisées pour les assemblages de pièces lourdes. Chaque type de fixation est conçu pour être utilisé avec un type de construction particulier. Pour de nombreuses applications, telles que le clouage de murs à ossature légère, les fixations métalliques n'ont qu'une fonction structurelle et seront dissimulées par les finitions intérieures et extérieures. Dans d'autres cas, lorsque les éléments en bois ont une fonction structurelle et sont laissés apparents pour ajouter un intérêt visuel à une conception et donner un aspect robuste à une structure, il faut réfléchir à la disposition des connexions ainsi qu'à la sélection et à la finition des produits en bois eux-mêmes. Dans d'autres cas, lorsque les fixations métalliques sont exposées à la vue, le concepteur peut souhaiter qu'elles soient aussi discrètes que possible. Pour ce faire, il peut choisir des fixations telles que des anneaux fendus et des boulons, réduire l'impact visuel de la quincaillerie en l'encastrant dans les éléments en bois, ou utiliser la peinture pour réduire l'importance d'une connexion.  

i -Joïstes

i -Joïstes

Les solives en I préfabriquées en bois sont des éléments structuraux en bois exclusifs qui consistent en des brides de bois de sciage massif ou de bois de placage stratifié (LVL) assemblées par entures multiples et fixées à une âme de contreplaqué ou de panneau à copeaux orientés (OSB) à l'aide d'un adhésif. Les joints de panneaux en bande sont collés et assemblés selon plusieurs méthodes, telles que l'aboutage des extrémités carrées des panneaux, l'écharpe des extrémités des panneaux, ou la formation d'un joint de type dentelé ou à rainure et languette. Les adhésifs imperméables à l'extérieur, tels que le phénol-formaldéhyde et le phénol-résorcinol, sont principalement utilisés pour les joints de l'âme à l'âme et de l'âme à l'aile. Plusieurs fabricants proposent différentes combinaisons de matériaux pour les ailes et les âmes, ainsi que d'autres types de connexions entre les âmes et les ailes (voir la figure 3.20 ci-dessous). Les solives en I en bois sont disponibles dans une variété de profondeurs standard et dans des longueurs allant jusqu'à 20 m (66 ft). Chaque fabricant produit des solives en I dont les caractéristiques de résistance et de rigidité sont uniques. Pour s'assurer que leurs produits exclusifs ont été fabriqués dans le cadre d'un programme d'assurance qualité supervisé par un organisme de certification tiers indépendant, les fabricants font généralement évaluer et enregistrer leurs produits conformément aux exigences et aux directives du Centre canadien des matériaux de construction (CCMC). La section transversale en forme de "I" de ces produits structuraux en bois offre un rapport résistance/poids plus élevé que le bois de sciage massif traditionnel. La rigidité uniforme, la résistance et la légèreté de ces éléments préfabriqués permettent d'utiliser des solives et des chevrons de plus grande portée dans la construction résidentielle et commerciale. Les solives en I en bois sont généralement fabriquées à partir d'une semelle et d'une âme non traitées et ne sont donc généralement pas utilisées pour les applications extérieures. Les solives en I en bois sont également stables sur le plan dimensionnel car elles sont fabriquées avec un taux d'humidité compris entre 6 et 12 %. Pour l'installation des services mécaniques et électriques, de nombreux fabricants fournissent des exigences et des conseils concernant la forme, la taille et l'emplacement des ouvertures, des encoches, des trous et des coupes. La plupart des fournisseurs de solives en bois en I stockent également des suspensions de solives standard et d'autres éléments de connexion préfabriqués spécialement conçus pour être utilisés avec les solives en bois en I. Pour de plus amples informations sur les solives en I en bois, veuillez consulter les ressources suivantes : APA - The Engineered Wood Association Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction (CNRC) Wood I-Joist Manufacturers Association (WIJMA) CSA O86 Engineering design in wood ASTM D5055 Standard Specification for Establishing and Monitoring Structural Capacities of Prefabricated Wood I-Joists

Produits en panneaux

Produits en panneaux

En utilisant du bois rond qui n'est souvent pas adapté à la production de bois d'œuvre, les panneaux à base de bois permettent d'utiliser efficacement les ressources forestières en fournissant des produits en bois d'ingénierie avec des propriétés de résistance et de rigidité définies. Les panneaux structuraux à base de bois, tels que le contreplaqué et les panneaux à copeaux orientés (OSB), sont largement utilisés dans la construction résidentielle et commerciale. Les panneaux à base de bois sont souvent superposés sur des solives ou des fermes légères et utilisés comme revêtement structurel pour les planchers, les toits et les murs. Ces produits assurent la rigidité des principaux éléments structurels qui les soutiennent, en plus de leur fonction d'élément de l'enveloppe du bâtiment. En outre, ils font souvent partie intégrante du système de résistance aux forces latérales d'un bâtiment en bois. Afin de pouvoir être utilisés pour un usage final particulier, tel que le revêtement structurel, le plancher ou le bardage extérieur, les panneaux à base de bois doivent répondre à des critères de performance portant sur trois aspects : la performance structurelle, les propriétés physiques et la performance d'adhérence. Pour plus d'informations sur le classement des performances et les utilisations finales potentielles des panneaux à base de bois, consultez le site de l'APA - The Engineered Wood Association.

Bois de placage stratifié

Bois de placage stratifié

Utilisé pour la première fois pendant la Seconde Guerre mondiale pour fabriquer des hélices d'avion, le bois de placage stratifié (LVL) est disponible comme produit de construction depuis le milieu des années 1970. Le LVL est le produit de bois composite structurel (SCL) le plus largement utilisé et offre des caractéristiques telles qu'une grande résistance, une grande rigidité et une grande stabilité dimensionnelle. Le processus de fabrication du LVL permet de fabriquer des éléments de grande taille à partir d'arbres relativement petits, ce qui permet une utilisation efficace des ressources forestières. Le LVL est généralement fabriqué à partir d'essences de bois telles que le sapin de Douglas, le mélèze, le pin jaune du Sud et le peuplier. Le LVL est principalement utilisé comme ossature structurelle dans la construction résidentielle et commerciale. Les applications courantes du LVL dans la construction comprennent les chevêtres et les poutres, les chevrons d'arêtiers et de noues, les planches d'échafaudage et le matériau de la bride pour les solives en I préfabriquées en bois. Le LVL peut également être utilisé pour les poteaux de signalisation routière et comme plancher de camion. Le LVL est constitué de placages de bois séchés et calibrés, enduits d'un adhésif imperméable à base de résine phénol-formaldéhyde, assemblés selon un schéma prédéfini et transformés en billettes par durcissement dans une presse chauffée. Les billettes LVL sont ensuite sciées aux dimensions souhaitées en fonction de l'application finale. Le grain de chaque couche de placage est orienté dans le même sens (long), ce qui permet de charger le LVL sur son bord court (axe fort) comme une poutre ou sur sa face large (axe faible) comme une planche. Ce type de stratification est appelé stratification parallèle et produit un matériau plus uniforme et plus prévisible que les produits en bois d'ingénierie fabriqués par stratification croisée, comme le contreplaqué. Le LVL est un produit solide, hautement prévisible et uniforme, car les défauts naturels tels que les nœuds, l'inclinaison du grain et les fentes ont été dispersés dans tout le matériau ou ont été complètement éliminés au cours du processus de fabrication. L'épaisseur la plus courante du LVL est de 45 mm (1-3/4 in), ce qui permet de construire facilement des poutres plus larges en fixant plusieurs plis LVL ensemble sur le chantier. Le LVL peut également être fabriqué dans des épaisseurs allant de 19 mm (3/4 po) à 178 mm (7 po). Les poutres LVL les plus courantes ont une profondeur de 241 mm, 302 mm, 356 mm, 406 mm, 476 mm et 606 mm. D'autres largeurs et profondeurs peuvent également être disponibles auprès de certains fabricants. Les LVL sont disponibles en longueurs allant jusqu'à 24,4 m (80 ft), les longueurs les plus courantes étant 14,6 m (48 ft), 17 m (56 ft), 18,3 m (60 ft) et 20,1 m (66 ft). Le LVL peut facilement être coupé à la longueur voulue sur le chantier. Toutes les coupes, entailles ou perçages spéciaux doivent être effectués conformément aux recommandations du fabricant. Le LVL est un produit à base de bois dont le comportement au feu est similaire à celui d'un bois de sciage massif ou d'une poutre en lamellé-collé de taille comparable. Les catalogues des fabricants et les rapports d'évaluation sont les principales sources d'information pour la conception, les détails d'installation typiques et les caractéristiques de performance. Le LVL est principalement utilisé comme élément structurel, le plus souvent dans des espaces cachés où l'apparence n'est pas importante. Certains fabricants proposent des produits finis ou de qualité architecturale, généralement à un coût supplémentaire. Toutefois, lorsqu'on souhaite utiliser le LVL dans des applications où l'aspect est important, on peut utiliser les techniques courantes de finition du bois pour accentuer le grain et protéger la surface du bois. L'aspect fini du LVL ressemble à celui du contreplaqué ou du bois d'œuvre sur la face large. Comme tout autre produit en bois, le LVL doit être protégé des intempéries pendant l'entreposage sur le chantier et après la pose. Il est important d'emballer le produit avant de l'expédier sur le chantier pour le protéger de l'humidité. Le scellement des extrémités et des bords du produit renforcera sa résistance à la pénétration de l'humidité. Le LVL étant un produit breveté, ses propriétés techniques et ses dimensions sont propres à chaque fabricant. Il n'existe donc pas de normes de production ni de valeurs de conception communes pour le LVL. Les valeurs de calcul sont dérivées des résultats d'essais analysés conformément à la norme CSA O86 et à la norme ASTM D5456, et les valeurs de calcul sont examinées et approuvées par le Centre canadien des matériaux de construction (CCMC). Les produits conformes aux directives du CCMC reçoivent un numéro d'évaluation et un rapport d'évaluation comprenant les résistances nominales spécifiées, qui sont ensuite répertoriées dans le registre des évaluations de produits du CCMC. Le nom du fabricant ou l'identification du produit et la classe de contrainte sont marqués sur le matériau à différents intervalles, mais en raison de la coupe en bout, ils peuvent ne pas être présents sur chaque pièce. Pour de plus amples informations, veuillez consulter les ressources suivantes : APA - The Engineered Wood Association Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction CSA O86 Engineering design in wood ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products

Acoustique

Acoustique

Le bois est composé de nombreux petits tubes cellulaires principalement remplis d'air. La composition naturelle du matériau permet au bois d'agir comme un isolant acoustique efficace et lui confère la capacité d'amortir les vibrations. Ces caractéristiques d'amortissement du son permettent de spécifier des éléments de construction en bois là où l'isolation ou l'amplification du son est nécessaire, comme dans les bibliothèques et les auditoriums. Une autre propriété acoustique importante du bois est sa capacité à limiter la transmission des bruits d'impact, un problème généralement associé aux matériaux et systèmes de construction plus durs et plus denses. L'utilisation d'une chape ou d'un système de plancher flottant superposé à une ossature en bois léger ou à des éléments structurels en bois massif est une approche courante pour assurer la séparation acoustique entre les étages d'un bâtiment. Selon le type de matériaux utilisés dans le système de plancher construit, la chape peut être appliquée directement sur les éléments structurels en bois ou sur une barrière contre l'humidité ou une couche résiliente. L'utilisation de plaques de plâtre, d'isolants absorbants (en matelas ou en vrac) et de profilés souples sont également des éléments essentiels d'un mur ou d'un plancher à ossature bois, qui contribuent également aux performances acoustiques de l'ensemble. La conception acoustique tient compte d'un certain nombre de facteurs, notamment l'emplacement et l'orientation du bâtiment, ainsi que l'isolation ou la séparation des fonctions génératrices de bruit et des éléments du bâtiment. Les indices de transmission du son (STC), de transmission du son apparent (ASTC) et d'isolation contre les chocs (IIC) sont utilisés pour déterminer le niveau de performance acoustique des produits et systèmes de construction. Les différents indices peuvent être déterminés sur la base d'essais normalisés en laboratoire ou, dans le cas des indices ASTC, calculés à l'aide de méthodes décrites dans le CNB. Actuellement, le Code national du bâtiment du Canada (CNB) ne réglemente que la conception acoustique des murs intérieurs et des planchers qui séparent les unités d'habitation (p. ex. appartements, maisons, chambres d'hôtel) d'autres unités ou d'autres espaces dans un bâtiment. Les exigences relatives à l'indice STC pour les murs intérieurs et les planchers visent à limiter la transmission des bruits aériens entre les espaces. Le CNB n'impose aucune exigence en matière de contrôle de la transmission des bruits d'impact par les planchers. Les bruits de pas et autres impacts peuvent être très gênants dans les résidences multifamiliales. Les constructeurs soucieux de la qualité et de la réduction des plaintes des occupants veilleront à ce que les planchers soient conçus de manière à minimiser la transmission des bruits d'impact. En plus de se conformer aux exigences minimales du CNB dans les habitations, les concepteurs peuvent également établir des indices acoustiques pour la conception de projets non résidentiels et spécifier des matériaux et des systèmes pour s'assurer que le bâtiment fonctionne à ce niveau. Outre la limitation de la transmission des bruits aériens par les murs structurels internes et les planchers, la transmission latérale du son par les joints périmétriques et la transmission du son par les cloisons de séparation non structurelles doivent également être prises en compte lors de la conception acoustique. L'annexe A du CNB, aux sections A-9.10.3.1. et A-9.11., contient de plus amples informations et exigences relatives aux indices STC, ASTC et IIC. Cela comprend, entre autres, les tableaux 9.10.3.1-A et 9.10.3.1.-B qui fournissent des données génériques sur les indices STC de différents types de murs à ossature de bois et les indices STC et IIC de différents types d'assemblages de planchers en bois, respectivement. Les tableaux A-9.11.1.4.-A à A-9.11.1.4.-D présentent des options génériques pour la conception et la construction des jonctions entre les assemblages de séparation et les assemblages latéraux. La construction selon ces options est susceptible d'atteindre ou de dépasser la cote ASTC de 47 exigée par le CNB. Tableau A - Le tableau 9.11.1.4. présente des données sur les traitements de plancher génériques qui peuvent être utilisés pour améliorer les performances d'isolation acoustique des planchers à ossature légère, c'est-à-dire des couches supplémentaires de matériau sur le sous-plancher (p. ex. chape de béton, panneaux OSB ou contreplaqué) et le plancher ou les revêtements finis (p. ex. moquette, bois d'ingénierie).

Construction combustible

Construction combustible

La sécurité incendie dans un bâtiment est une question complexe, bien plus complexe que la combustibilité relative des principaux matériaux structurels utilisés dans un bâtiment. Pour élaborer des dispositions de code sûres, la prévention, l'extinction, le déplacement des occupants, la mobilité des occupants, l'utilisation du bâtiment et le contrôle des combustibles ne sont que quelques-uns des facteurs qui doivent être pris en compte en plus de la combustibilité des éléments structurels. L'expérience des pertes dues aux incendies montre que le contenu des bâtiments joue un rôle important en termes de charge de combustible et de potentiel de génération de fumée dans un incendie. La protection passive contre l'incendie assurée par les degrés de résistance au feu des planchers et des murs d'un bâtiment garantit la stabilité de la structure en cas d'incendie. Cependant, le degré de résistance au feu des structures ne contrôle pas nécessairement le mouvement des fumées et de la chaleur, qui peut avoir un impact important sur le niveau de sécurité et les dommages matériels résultant d'un incendie. Le Code national du bâtiment du Canada (CNB) classe les bâtiments en bois dans la catégorie des "constructions combustibles". Bien qu'elles soient qualifiées de combustibles, les techniques de construction courantes peuvent conférer aux constructions à ossature en bois des degrés de résistance au feu allant jusqu'à deux heures. Lorsqu'ils sont conçus et construits conformément aux exigences du code, les bâtiments en bois offrent le même niveau de sécurité des personnes et de protection des biens que les bâtiments de taille comparable définis par le CNB comme des "constructions non combustibles". Le bois a été utilisé pour pratiquement tous les types de bâtiments, y compris les écoles, les entrepôts, les casernes de pompiers, les immeubles d'habitation et les installations de recherche. Le CNB définit des lignes directrices pour l'utilisation du bois dans des applications qui vont bien au-delà du secteur résidentiel traditionnel et des petits bâtiments. Le CNB autorise les constructions en bois d'une hauteur maximale de six étages, ainsi que les bardages en bois pour les bâtiments désignés comme étant de construction incombustible. Lorsqu'elle respecte les limites de surface et de hauteur pour les différentes catégories de bâtiments du CNB, la construction à ossature bois peut répondre aux exigences de sécurité des personnes en utilisant des assemblages à ossature bois (généralement protégés par des plaques de plâtre) dont le degré de résistance au feu a été testé. Les restrictions de hauteur et de surface autorisées peuvent être étendues en utilisant des murs coupe-feu pour diviser une grande surface de bâtiment en plus petites surfaces distinctes. La contribution positive reconnue à la fois à la sécurité des personnes et à la protection des biens qui découle de l'utilisation de systèmes d'extinction automatique peut également être utilisée pour augmenter la surface autorisée des bâtiments en bois. Les sprinkleurs interviennent généralement très tôt dans un incendie, ce qui permet d'en contrôler rapidement les effets dommageables. C'est pourquoi l'installation d'un système d'extinction automatique dans un bâtiment améliore considérablement la sécurité des personnes et la protection des biens dans tous les bâtiments, y compris ceux construits en matériaux incombustibles. Le CNB autorise l'utilisation d'une "construction en bois massif" dans les bâtiments où la construction combustible doit avoir un degré de résistance au feu de 45 minutes. Cette forme de construction en bois massif est également autorisée dans les grands bâtiments incombustibles de certains usages. Pour être acceptés, les éléments doivent répondre à des exigences minimales en matière de dimensions et d'installation. La construction en bois massif bénéficie de cette reconnaissance en raison de ses performances en cas d'exposition réelle au feu et de son acceptation en tant que méthode de construction sûre en cas d'incendie. Dans les bâtiments protégés par sprinklers dont la construction est autorisée à être combustible, aucun degré de résistance au feu n'est requis pour la toiture ou ses supports lorsqu'ils sont construits en bois massif. Dans ce cas, la toiture en bois massif et ses supports n'ont pas à respecter les dimensions minimales des éléments stipulées dans le CNB. Les éléments en bois massif peuvent également être utilisés chaque fois qu'une construction combustible est autorisée. Dans ce cas, cependant, ces éléments en bois massif doivent être spécifiquement conçus pour satisfaire aux degrés de résistance au feu requis. Définitions du CNB : Combustible signifie qu'un matériau ne répond pas aux critères d'acceptation de la norme CAN/ULC-S114, "Essai de détermination de l'incombustibilité des matériaux de construction". On entend par construction combustible le type de construction qui ne répond pas aux exigences de la construction incombustible. Construction en bois lourd : ce type de construction combustible dans laquelle un certain degré de sécurité incendie est atteint en limitant les dimensions des éléments structurels en bois ainsi que l'épaisseur et la composition des planchers et des toits en bois, et en évitant les espaces cachés sous les planchers et les toits. Construction incombustible : type de construction dans lequel un degré de sécurité incendie est atteint par l'utilisation de matériaux incombustibles pour les éléments de structure et autres assemblages de bâtiments. Incombustible signifie qu'un matériau répond aux critères d'acceptation de la norme CAN/ULC-S114, "Essai de détermination de l'incombustibilité des matériaux de construction". Pour de plus amples informations, veuillez consulter les ressources suivantes : Code national du bâtiment du Canada CAN/ULC-S114 Essai de détermination de l'incombustibilité des matériaux de construction Manuel de conception en bois 2017

Construction en bois massif encapsulé

Construction en bois massif encapsulé

En plus des constructions combustibles, des constructions en bois massif et des constructions incombustibles, un nouveau type de construction est actuellement envisagé pour être inclus dans le Code national du bâtiment du Canada (CNB). Il est proposé de définir la construction en bois massif encapsulé (EMTC) comme le "type de construction dans lequel un degré de sécurité incendie est atteint par l'utilisation d'éléments en bois massif encapsulé avec un indice d'encapsulation et des dimensions minimales pour les éléments structuraux en bois et les autres assemblages du bâtiment". L'EMTC n'est ni une "construction combustible", ni une "construction en bois massif", ni une "construction incombustible", telles que définies dans le CNB. L'EMTC doit avoir une cote d'encapsulation. L'indice d'encapsulation est le temps, en minutes, pendant lequel un matériau ou un assemblage de matériaux retardera l'inflammation et la combustion d'éléments en bois massif encapsulés lorsqu'il est exposé au feu dans des conditions d'essai et selon des critères de performance spécifiés, ou selon d'autres prescriptions du CNB. L'indice d'encapsulation de l'EMTC est déterminé par la méthode d'essai ULC S146. Pour que les éléments structuraux en bois soient considérés comme du "bois de masse", ils doivent répondre à des exigences minimales de taille, qui sont différentes pour les éléments porteurs horizontaux (murs, planchers, toits, poutres) et verticaux (colonnes, arcs) et qui dépendent du nombre de côtés où l'élément est exposé au feu. Au Canada, la construction d'un bâtiment EMTC devrait être limitée à une hauteur de douze étages, c'est-à-dire que le niveau le plus élevé peut se situer au maximum à 42 m (137 pieds) au-dessus du premier étage. Un bâtiment EMTC doit être équipé de gicleurs conformément à la norme NFPA 13 et il est probable qu'une partie du bois de charpente puisse être exposée dans les suites. Tous les éléments de l'EMTC doivent avoir une résistance au feu d'au moins deux heures et la surface au sol du bâtiment doit être limitée à 6 000 m2 pour une occupation du groupe C et à 7 200 m2 pour une occupation du groupe D. Il existe des restrictions quant à l'utilisation de l'extérieur du bâtiment. Il existe des restrictions sur l'utilisation d'éléments de revêtement extérieur dans les EMTC, ainsi que d'autres restrictions sur l'utilisation de matériaux de couverture combustibles, de châssis et de cadres de fenêtres combustibles, d'éléments combustibles dans les murs extérieurs, d'éléments de clouage, d'éléments de plancher combustibles, d'escaliers combustibles, de finitions intérieures combustibles, d'éléments combustibles dans les cloisons et d'espaces cachés. Si un matériau d'encapsulation est endommagé ou enlevé, il devra être réparé ou remplacé de manière à ce que l'indice d'encapsulation des matériaux soit maintenu. En outre, les exigences relatives à la sécurité incendie sur le chantier doivent être appliquées à l'accès au chantier, à l'installation de colonnes d'incendie et à l'encapsulation protectrice. L'EMTC et ses dispositions connexes devraient être incluses dans le CNB 2020. Définitions du CNB : Combustible signifie qu'un matériau ne répond pas aux critères d'acceptation de la norme CAN/ULC-S114, " Essai de détermination de l'incombustibilité des matériaux de construction ". On entend par construction combustible le type de construction qui ne répond pas aux exigences de la construction incombustible. Construction en bois lourd : ce type de construction combustible dans laquelle un certain degré de sécurité incendie est atteint en limitant les dimensions des éléments structurels en bois ainsi que l'épaisseur et la composition des planchers et des toits en bois, et en évitant les espaces cachés sous les planchers et les toits. Construction incombustible : type de construction dans lequel un degré de sécurité incendie est atteint par l'utilisation de matériaux incombustibles pour les éléments de structure et autres assemblages de bâtiments. Incombustible signifie qu'un matériau répond aux critères d'acceptation de la norme CAN/ULC-S114, "Essai de détermination de l'incombustibilité des matériaux de construction". Pour de plus amples informations, veuillez consulter les ressources suivantes : Guide to Encapsulated Mass Timber Construction in the Ontario Building Code ULC S146 Standard Method of Test for the Evaluation of Encapsulation Materials and Assemblies of Materials for the Protection of Mass Timber Structural Members and Assemblies Fire performance of mass-timber encapsulation methods and the effect of encapsulation on char rate of cross-laminated timber (Hasburgh et al., 2016) CAN/ULC-S114 Test for Determination of Non-Combustibility in Building Materials NFPA 13 Standard for the Installation of Sprinkler Systems (Norme NFPA 13 pour l'installation de systèmes de gicleurs).

Grands bâtiments en bois

Grands bâtiments en bois

Grâce aux technologies de construction avancées et aux produits modernes en bois de masse tels que le bois lamellé-collé, le bois lamellé-croisé et le bois composite structurel, construire en hauteur avec du bois est non seulement réalisable mais déjà en cours - avec des bâtiments contemporains de 9 étages et plus achevés en Australie, en Autriche, en Suisse, en Allemagne, en Norvège et au Royaume-Uni. De plus en plus reconnu par le secteur de la construction comme un choix de construction important, nouveau et sûr, la réduction de l'empreinte carbone et de la performance énergétique intrinsèque/opérationnelle de ces bâtiments est attrayante pour les communautés qui se sont engagées dans le développement durable et l'atténuation du changement climatique. Les grands immeubles en bois, construits avec des produits du bois renouvelables provenant de forêts gérées durablement, ont le potentiel de révolutionner une industrie de la construction de plus en plus soucieuse de faire partie de la solution en matière d'intensification urbaine et de réduction de l'impact sur l'environnement. L'industrie canadienne des produits du bois s'est engagée à tirer parti de son avantage naturel en développant et en démontrant des produits de construction et des systèmes de construction à base de bois qui s'améliorent constamment. Un grand bâtiment en bois est un bâtiment de plus de six étages (le dernier étage est situé à plus de 18 m au-dessus du sol) qui utilise des éléments en bois de masse comme élément fonctionnel de son système de soutien structurel. Grâce aux technologies de construction avancées et aux produits modernes en bois de masse tels que le bois lamellé-collé (glulam), le bois lamellé-croisé (CLT) et le bois composite structurel (SCL), construire des bâtiments en bois de grande hauteur est non seulement réalisable mais déjà en cours - avec des bâtiments contemporains achevés au Canada, aux États-Unis, en Australie, en Autriche, en Suisse, en Allemagne, en Norvège, en Suède, en Italie et au Royaume-Uni, à sept étages et plus. Les grands bâtiments en bois intègrent des systèmes modernes de protection et d'extinction des incendies, ainsi que de nouvelles technologies pour les performances acoustiques et thermiques. Les bâtiments en bois de grande hauteur sont couramment utilisés pour des usages résidentiels, commerciaux et institutionnels. Le bois massif offre des avantages tels qu'une meilleure stabilité dimensionnelle et une meilleure résistance au feu pendant la construction et l'occupation. Ces nouveaux produits sont également préfabriqués et offrent d'énormes possibilités d'améliorer la vitesse de montage et la qualité de la construction. Parmi les avantages significatifs des grands bâtiments en bois, on peut citer la possibilité de construire plus haut dans des zones où les sols sont pauvres, car la super structure et les fondations sont plus légères que d'autres matériaux de construction ; une construction plus silencieuse sur le site, ce qui signifie que les voisins sont moins susceptibles de se plaindre et que les travailleurs ne sont pas exposés à des niveaux de bruit élevés ; la sécurité des travailleurs pendant la construction peut être améliorée grâce à la possibilité de travailler sur des plaques de plancher en bois de grande masse ; les composants préfabriqués fabriqués avec des tolérances serrées peuvent réduire la durée de la construction ; des tolérances serrées dans la structure et l'enveloppe du bâtiment, associées à une modélisation énergétique, peuvent produire des bâtiments avec une performance énergétique opérationnelle élevée, une étanchéité à l'air accrue, une meilleure qualité de l'air à l'intérieur et un confort humain amélioré Les critères de conception pour les grands bâtiments en bois qui devraient être pris en compte comprennent une stratégie intégrée de conception, d'approbation et de construction, le retrait différentiel entre des matériaux dissemblables, la performance acoustique, le comportement sous l'effet du vent et des charges sismiques, la performance en cas d'incendie (par ex.g., l'encapsulation des éléments en bois massif à l'aide de plâtre), la durabilité et l'ordonnancement de la construction afin de réduire l'exposition du bois aux éléments. Il est important de s'assurer de l'implication précoce d'un fournisseur de bois de masse qui peut fournir des services d'assistance à la conception permettant de réduire davantage les coûts de fabrication grâce à l'optimisation de l'ensemble du système de construction et pas seulement des éléments individuels. Même de petites contributions, dans la conception des connexions par exemple, peuvent faire une différence dans la rapidité du montage et le coût global. En outre, les métiers de la mécanique et de l'électricité devraient être invités à jouer un rôle d'assistance à la conception dès le début du projet. Cela permet d'obtenir un modèle virtuel plus complet, de multiplier les possibilités de préfabrication et d'accélérer l'installation. Des études de cas récentes portant sur de grands bâtiments modernes en bois au Canada et dans le monde entier montrent que le bois est une solution viable pour réaliser un bâtiment de grande hauteur sûr, rentable et performant. Pour plus d'informations, consultez les études de cas et les références suivantes : Brock Commons Tall Wood House (Conseil canadien du bois) Origine Point-aux-Lievres Ecocondos,Québec (Cecobois) Wood Innovation and Design Centre (Conseil canadien du bois) Technical Guide for the Design and Construction of Tall Wood Buildings in Canada (FPInnovations) Ontario's Tall Wood Building Reference (Ministry of Natural Resources and Forestry & Ministry of Municipal Affairs) Summary Report : Survey of International Tall Wood Buildings (Forestry Innovation Investment & Binational Softwood Lumber Council) www.thinkwood.com/building-better/taller-buildings

Immeubles de moyenne hauteur

Immeubles de moyenne hauteur

Lorsqu'il s'agit de construction en bois, de nombreuses personnes pensent à la charpente de base en 2×4, aux panneaux ou aux planchers pour les maisons unifamiliales. Cependant, les progrès de la science du bois et de la technologie du bâtiment ont permis de créer des produits plus solides, plus sophistiqués et plus robustes qui élargissent les possibilités de la construction en bois et offrent plus de choix aux constructeurs et aux architectes. Le soutien du Conseil canadien du bois à la construction d'immeubles de moyenne hauteur n'est pas unique. En Ontario, les constructeurs d'habitations, par l'intermédiaire d'organisations telles que RESCON, BILD et l'Association des constructeurs d'habitations de l'Ontario, mettent également l'accent sur cette opportunité. Les immeubles de moyenne hauteur construits en bois constituent une nouvelle option de construction pour les constructeurs. C'est une bonne nouvelle pour le Canada, où les terrains sont très chers. L'avantage net de la réduction des coûts de construction est l'augmentation de l'accessibilité pour les acheteurs de maisons. En termes de nouvelles opportunités économiques, la possibilité d'aller de l'avant "maintenant" crée de nouveaux emplois dans le secteur de la construction dans les villes et soutient l'emploi dans les communautés forestières. Cela offre également des possibilités d'exportation accrues pour les produits du bois actuels et innovants, dont l'adoption au Canada sert d'exemple à d'autres pays. Cela reflète également une nouvelle norme d'ingénierie dans la mesure où les problèmes structurels, sismiques et d'incendie ont tous été pris en compte par les comités d'experts de la Commission canadienne des codes du bâtiment et de prévention des incendies. En fin de compte, lorsqu'ils sont occupés, les immeubles de moyenne hauteur répondent aux mêmes exigences du code du bâtiment que tout autre type de construction du point de vue de la santé, de la sécurité et de l'accessibilité.  

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône d'expertise
Domaine d'expertise
Icône de la province
Province
Type de membre Icône
Partenaires nationaux de WoodWork
Icône Persona
Persona
Tags Icône
Tags
Rapports annuels Icône Plus
Livre des prix Icône Plus
Études de cas Icône Plus
Publications gratuites Icône Plus
Revue Icône Plus
Systèmes de construction Icône Plus
Codes et normes Icône Plus
Nouvelles de l'industrie Icône Plus
Pourquoi le bois (FAQ) Icône Plus
Produits du bois Icône Plus
Acoustique Icône Plus
Exemples de conception Icône Plus
Ingénierie Icône Plus
Résistance au feu Icône Plus
Assurance Icône Plus
Bois massif Icône Plus
Icône de date
Date
Séparateur de ligne