Welcome to the new CWC Digital Resource Hub (BETA)

en-ca

Articles

Stay updated with our latest insights and trends. Explore articles that inspire and inform.

98 results found...
Sort By Dropdown Icon

Structural Composite Lumber (SCL)

Structural composite lumber (SCL) is a term used to encompass the family of engineered wood products that includes laminated veneer lumber (LVL), parallel strand lumber (PSL), laminated strand lumber (LSL) and oriented strand lumber (OSL).

With its ability to be manufactured using small, fast-grow and underutilized trees, SCL products represent an efficient use of forest resources as they help to meet the increasing demand for structural lumber products that have highly reliable strength and stiffness properties.

SCL consists of dried and graded wood veneers, strands or flakes that are layered upon one another and bonded together with a moisture resistant adhesive into large blocks known as billets. The grain of each layer of veneer or flakes run primarily in the same direction. These SCL billets are subsequently resawn into specified dimensions and lengths.

SCL has been successfully used in a variety of applications, such as rafters, headers, beams, joists, truss chords, I-joist flanges, columns and wall studs.

SCL is produced in a number of standard sizes. Some SCL products are available in a number of thicknesses while others are available in the 45 mm (1-3/4 in) thickness only. Typical depths of SCL members range from 241 to 606 mm (9-1/2 to 24 in). Single SCL members may be nailed or bolted together to form built-up beams. Generally, SCL is available in lengths of up to 20 m (65 ft).

SCL is produced at a low moisture content so that very little shrinkage will occur after installation. This low moisture content also allows for SCL to be virtually free from checking, splitting or warping while in service.

SCL products are proprietary products and therefore, the specific engineering properties and sizes are unique to each manufacturer. Thus, SCL products do not have a common standard of production and common design values. Design values are derived from test results analysed in accordance with CSA O86 and ASTM D5456 and the design values are reviewed and approved by the Canadian Construction Materials Centre (CCMC). Products meeting the CCMC guidelines receive an Evaluation Number and Evaluation Report that includes the specified design strengths for the SCL product, which are subsequently listed in CCMC’s Registry of Product Evaluations. The manufacturer’s name or product identification and the stress grade is marked on the material at various intervals, but due to end cutting it may not be present on every piece.

 

For further information, refer to the following resources:

APA – The Engineered Wood Association

Canadian Construction Materials Centre (CCMC), Institute for Research in Construction

CSA O86 Engineering design in wood

ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products

 

A structure must be designed to resist all the loads expected to act on the structure during its service life. Under the effects of the expected applied loads, the structure must remain intact and perform satisfactorily. In addition, a structure must not require an inordinate amount of resources to construct. Thus, the design of a structure is a balance of necessary reliability and reasonable economy.

Wood products are frequently used to provide the principal means of structural support for buildings. Economy and soundness of construction can be achieved by using wood products as members for structural applications such as joists, wall studs, rafters, beams, girders, and trusses. In addition, wood sheathing and decking products perform both a structural role by transferring wind, snow, occupant and content loads to the main structural members, as well as the function of building enclosure. Wood can be used in many structural forms such as light-frame housing and small buildings that utilize repetitive small dimension members or within larger and heavier structural framing systems, such as mass timber construction, which is often utilized for commercial, institutional or industrial projects. The engineered design of wood structural components and systems is based on the CSA O86 standard.

During the 1980s, the design of wood structures in Canada, as directed by the National Building Code of Canada (NBC) and CSA O86, changed from working stress design (WSD) to limit states design (LSD), making the structural design approach for wood similar to those of other major building materials.

All structural design approaches require the following for both strength and serviceability:

Member resistance = Effects of design loads

Using the LSD method, the structure and its individual components are characterized by their resistance to the effects of the applied loads. The NBC applies factors of safety to both the resistance side and the load side of the design equation:

Factored resistance = Factored load effect

The factored resistance is the product of a resistance factor (f) and the nominal resistance (specified strength), both of which are provided in CSA O86 for wood materials and connections. The resistance factor takes into account the variability of dimensions and material properties, workmanship, type of failure, and uncertainty in the prediction of resistance. The factored load effect is calculated in accordance with the NBC by multiplying the actual loads on the structure (specified loads) by load factors that account for the variability of the load.

No two samples of wood or any other material are exactly the same strength. In any manufacturing process, it is necessary to recognize that each manufactured piece will be unique. Loads, such as snow and wind, are also variable. Therefore, structural design must recognize that loads and resistances are really groups of data rather than single values. Like any group of data, there are statistical attributes such as mean, standard deviation, and coefficient of variation. The goal of design is to find a reasonable balance between reliability and factors such as economy and practicality.

The reliability of a structure depends on a variety of factors that can be categorized as follows:

  • external influences such as loads and temperature change;
  • modelling and analysis of the structure, code interpretations, design assumptions and other judgements which make up the design process;
  • strength and consistency of materials used in construction; and
  • quality of the construction process.

The LSD approach is to provide adequate resistance to certain limit states, namely strength and serviceability. Strength limit states refer to the maximum load-carrying capacity of the structure. Serviceability limit states are those that restrict the normal use and occupancy of the structure such as excessive deflection or vibration. A structure is considered to have failed or to be unfit for use when it reaches a limit state, beyond which its performance or use is impaired.

The limit states for wood design are classified into the following two categories:

  • Ultimate limit states (ULS) are concerned with life safety and correspond to the maximum load-carrying capacity and include such failures as loss of equilibrium, loss of load-carrying capacity, instability and fracture; and
  • Serviceability limit states (SLS) concern restrictions on the normal use of a structure.

Examples of SLS include deflection, vibration and localized damage.

Due to the unique natural properties of wood such as the presence of knots, wane or slope of grain, the design approach for wood requires the use of modification factors specific to the structural behaviour. These modification factors are used to adjust the specified strengths provided in CSA O86 in order to account for material characteristics specific to wood. Common modification factors used in structural wood design include duration of load effects, system effects related to repetitive members acting together, wet or dry service condition factors, effects of member size on strength, and influence of chemicals and pressure treatment

Wood building systems have high strength-to-weight ratios and light-frame wood construction contains many small connectors, most commonly nails, which provide significant ductility and capacity when resisting lateral loads, such as earthquake and wind.

Light-frame shearwalls and diaphragms are a very common and practical lateral bracing solution for wood buildings. Typically, the wood sheathing, most commonly plywood or oriented strand board (OSB), that is specified to resist the gravity loading can also act as the lateral force resisting system. This means that the sheathing serves a number of purposes including distributing loads to the floor or roof joists, bracing beams and studs from buckling out of plane, and providing the lateral resistance to wind and earthquake loads. Other lateral load resisting systems that are used in wood buildings include rigid frames or portal frames, knee bracing and cross-bracing.

A table of typical spans is presented below to aid the designer in selecting an appropriate wood structural system.

Estimated span capabilities of wood members in structural design for decking joists, beams, trusses and arches. 

 

For further information, refer to the following resources:

Introduction to Wood Design (Canadian Wood Council)

Wood Design Manual (Canadian Wood Council)

CSA O86 Engineering design in wood

National Building Code of Canada

www.woodworks-software.com

Supplementary treatment may be added wherever on-site cutting or drilling of wood is unavoidable, or where it is suspected the original protection measures may be inadequate. This is most commonly done in applications such as wood foundations, agricultural buildings, or non-residential long-life applications such as utility poles and bridge timbers.

For wood foundations and agricultural buildings, it is normal to expect some end cutting and boring for bolts, pipes or electrical wiring. Typically copper naphthenate is brushed on the cut ends or holes in the treated wood to protect the exposed surfaces. Experience has shown that this is adequate for the limited exposure resulting from such cases.

For cases such as poles or bridge timbers, the original preservative protection can be lost over time due to degradation or depletion of the active ingredients. A need for supplementary treatment may be indicated by damage to similar structures in the same area. Or there may be evidence that the risk of damage has increased, for example, if new termites move into the area.

In cases like utility poles, where these are part of the physical infrastructure of an organization, inspection, maintenance and remediation are regularly practiced to ensure continued safety in use and to schedule replacement. Often the cost of supplementary treatment is relatively small compared to the cost of inspection, and is a very small fraction of the cost of premature failure. Supplementary treatment may also be prudent in terms of due diligence (reducing legal liability). During inspection of these structures, drills or increment borers may be used to determine the condition of the interior of the wood members. It is advised to treat these holes, to avoid infection from non-sterilized drills and borers. In addition, as holes are typically drilled where decay is suspected or anticipated, treating the holes is wise to supplement protection at that site.

Solids

Borate, copper/borate and fluoride rods have seen increasingly widespread use as supplementary treatments for internal decay due to their convenience in handling and very low toxicity. Copper moves more slowly in the wood than borate, providing protection to the zone around the rod if the borate is removed over time through mass flow of water. This is mainly of concern for utility poles in wet climates, where moisture moves into the pole from the soil, wicks up the pole and evaporates above ground, moving the borate up the pole with it – this leaves the borate in a part of the pole not especially at risk for decay. The rate of water flow may be relatively slow in Douglas fir (an impermeable wood species) treated with an oil-borne preservative having some water repellency. It may be more rapid in southern pine (a very permeable wood species) treated with a waterborne preservative.

Liquids, Pastes and Gels

Spray and foam application of liquids and gels are increasingly used for supplementary treatment of wood frame buildings against termites and wood boring beetles. Holes are drilled into each stud space and the liquids or gels are pumped in under pressure. Coverage cannot be expected to be as effective as that achieved by spray treatment during construction. Liquids can be poured or pumped into drilled holes to treat internal decay in utility poles or timbers. Typically the loading of preservative that can be achieved is limited in the first case by the size and location of the holes and the solubility of the chemical, and in the second case by the permeability of the wood. Another approach is to leave a pressurized device attached to the pole below ground, which pushes a larger amount of liquid into the pole over a longer time period. Care must be taken to ensure that drilled holes do not intersect voids or checks leading to the surface of the wood; otherwise, the liquids can flow out. Pastes can be packed into drilled holes to treat internal decay. Alternatively, they can be brushed or trowelled on or applied on bandages to treat external decay.

Fumigants

Fumigant treatments have been used successfully for decades on utility poles and timber structures. The gas moves rapidly through the wood, adsorbing to the lignocellulose and providing several years of residual protection.

Liquid application: Dip diffusion treatment of green (wet) lumber

Dip-diffusion treatment involves immersion of freshly cut lumber, still wet from the tree, in a concentrated solution of preservative. The preservative may be thickened to increase the amount of solution retained on the surface. The lumber is stacked, covered and stored for periods of weeks to allow the preservative to diffuse deep into the wood. In New Zealand, framing lumber has been treated with borates using this process since the 1950s. Dip-diffusion works well with wood species that are mostly sapwood or have wet heartwood. The ratio of the surface area to the volume, the amount of solution retained on the surface, and the solubility of the preservative limit the amount of chemical that can be delivered deep into the wood using this process. For example, a boric acid loading of 0.5% by weight of the wood, sufficient to prevent decay and beetle attack, can be applied to nominal 2 inch lumber using this process. However, a boric acid loading of 2.0% by weight, sufficient to prevent attack by Formosan termites, cannot be achieved without multiple dips and months of storage.

Liquid application: Spray treatment of framing

Since this type of treatment is typically done during the construction phase, it can be applied to the whole structure or to selected parts of the structure that are anticipated to be at risk from fungal decay or insect attack. Solids and fumigants are not appropriate for these applications, and the only widely used formulations are based on borates. Because the wood is dry at this stage, and because borates require moisture for diffusion, it helps if such treatments are formulated to improve penetration in dry wood. This is usually achieved by adding glycols. Nevertheless, the initial preservative penetration cannot be expected to be as good as that provided by a pressure treatment process. Spray applications of borate are becoming popular in certain regions of the USA as part of termite management systems. Typically, whole house superficial treatments are used to protect against drywood termites and wood boring beetles. This replaces regular fumigation. For subterranean termite protection, concentrated glycol borates may be applied to the bottom two feet of all wood in contact with the slab or, for crawl space construction, two feet up and inwards from the foundation. This replaces a soil barrier.

Brush Application

Brush applications for surface pre-treatment are basically limited to field-cut preservatives for pressure treated wood and homeowner treatment of structures, presumably with limited life expectancy. Copper naphthenate works well above ground or in ground contact, but its dark green colour (fading to brown after a year or so) is not very appealing. Zinc naphthenate is colourless and can be tinted to suit, but does not work as well in ground contact. Borates are typically used for field cuts on interior sill plates. In addition, borate/glycol mixtures are available for domestic use.

With advanced construction technologies and modern mass timber products such as glued-laminated timber, cross-laminated timber and structural composite lumber, building tall with wood is not only achievable but already underway – with completed contemporary buildings in Australia, Austria, Switzerland, Germany, Norway and the United Kingdom at 9 storeys and taller. Increasingly recognized by the construction sector as an important, new, and safe construction choice, the reduced carbon footprint and embodied / operational energy performance of these buildings is appealing to communities that are committed to sustainable development and climate change mitigation.

Tall wood buildings, built with renewable wood products from sustainably managed forests, have the potential to revolutionize a construction industry increasingly focused on being part of the solution when it comes to urban intensification and environmental impact reduction. The Canadian wood product industry is committed to building on its natural advantage, through the development and demonstration of continuously improving wood-based building products and building systems.

A tall wood building is a building over six-storeys in height (top floor is higher than 18 m above grade) that utilizes mass timber elements as a functional component of its structural support system. With advanced construction technologies and modern mass timber products such as glued-laminated timber (glulam), cross-laminated timber (CLT) and structural composite lumber (SCL), building tall with wood is not only achievable but already underway – with completed contemporary buildings in Canada, US, Australia, Austria, Switzerland, Germany, Norway, Sweden, Italy and the United Kingdom at seven-storeys and taller.

Tall wood buildings incorporate modern fire suppression and protection systems, along with new technologies for acoustic and thermal performance. Tall wood buildings are commonly employed for residential, commercial and institutional occupancies.

Mass timber offers advantages such as improved dimensional stability and better fire performance during construction and occupancy. These new products are also prefabricated and offer tremendous opportunities to improve the speed of erection and quality of construction.

Some significant advantages of tall wood buildings include:

  • the ability to build higher in areas of poor soils, as the super structure and foundations are lighter compared to other building materials;
  • quieter to build on site, which means neighbours are less likely to complain and workers are not exposed to high levels of noise;
  • worker safety during construction can be improved with the ability to work off large mass timber floor plates;
  • prefabricated components manufactured to tight tolerances can reduce the duration of construction;
  • tight tolerances in the building structure and building envelope coupled with energy modelling can produce buildings with high operational energy performance, increased air tightness, better indoor air quality and improved human comfort

Design criteria for tall wood buildings that should be considered include: an integrated design, approvals and construction strategy, differential shrinkage between dissimilar materials, acoustic performance, behaviour under wind and seismic loads, fire performance (e.g., encapsulating the mass timber elements using gypsum), durability, and construction sequencing to reduce the exposure of wood to the elements.

It is important to ensure early involvement by a mass timber supplier that can provide design assistance services that can further reduce manufacturing costs through the optimization of the entire building system and not just individual elements. Even small contributions, in connection designs for example, can make a difference to the speed of erection and overall cost. In addition, mechanical and electrical trades should be invited in a design-assist role at the outset of the project. This allows for a more complete virtual model, additional prefabrication opportunities and quicker installation.

Recent case studies of modern tall wood buildings in Canada and around the world showcase the fact that wood is a viable solution for attaining a safe, cost-effective and high-performance tall building.

For more information, refer to the following case studies and references:

Brock Commons Tall Wood House (Canadian Wood Council)

Origine Point-aux-Lievres Ecocondos,Quebec City (Cecobois)

Wood Innovation and Design Centre (Canadian Wood Council)

Technical Guide for the Design and Construction of Tall Wood Buildings in Canada (FPInnovations)

Ontario’s Tall Wood Building Reference (Ministry of Natural Resources and Forestry & Ministry of Municipal Affairs)

Summary Report: Survey of International Tall Wood Buildings (Forestry Innovation Investment & Binational Softwood Lumber Council)

www.thinkwood.com/building-better/taller-buildings

Tests

Current research includes the World’s largest mass timber fire test – click here for updates on the test results currently being conducted https://firetests.cwc.ca/

Studies

Reports

Fire Research

Acoustics Research and Guides

Tall Wood Building Demonstration Initiative Test Reports
(funding provided by Natural Resources Canada)

Visit Think Wood’s Research Library for additional resources

Termites, sometimes called “white ants” are a social insect, more closely related to cockroaches than ants. They can be distinguished from ants by the absence of a narrow waist on the body and their typically white colour. Under a hand lens, termite antennae are straight whereas those of ants have an elbow. Flying reproductive termites (alates) can be distinguished from flying ants by the equal size of all four termite wings. Three types of termites can be distinguished on the basis of their moisture requirements:

  • Damp-wood termites
  • Dry-wood termites
  • Subterranean termites

Termites

Damp-wood termites are particularly prevalent in coastal British Columbia and the Pacific Northwest of the USA. They only attack and help physically break down decaying trees in forest ecosystems and can be controlled by eliminating the moisture source which has led to decay. They are rarely a problem in buildings.

Termites2

Dry-wood termites on the other hand pose significant hazards to exposed, accessible wooden infrastructure, since they need no significant moisture source, and mated pairs can fly into buildings and start up a nest in dry wood. Consequently, control measures designed to separate wood from soil or moisture are ineffective. On the North American Continent, dry-wood termites are found only from the extreme south of the USA into Mexico.

Subterranean termites do need a reliable source of moisture, normally the soil, but they have the capability to carry their required moisture needs into dry wood in buildings. Although satellite nests can occur in buildings, their main nests are normally in soil or wood in contact with soil. Subterranean termites build characteristic shelter-tubes (tunnels) of mud, wood fragments and bodily secretions, which allow them to pass from the soil to wood above ground without being exposed to drying air or predators. These shelter tubes can extend for several metres over inert substrates, such as concrete foundation walls. Termites can also pass through cracks in concrete as narrow as 1.5 mm. Within the subterranean group, one particular species: the Formosan termite (Coptotermes formosanus Shiraki), is the most problematic for wooden infrastructure. Although individuals are smaller than the species mentioned above, because of sheer numbers Formosan termite colonies can be nine times more aggressive in terms of wood consumption. This species is particularly problematic in parts of Southeastern USA, particularly Florida, where it was introduced after WWII. It is unlikely to spread north into Canada although Canada does have other, less-aggressive species of subterranean termites. Subterranean termites are the most economically important group worldwide.

More Information

Click here for a termite map of Canada.

Click here for a termite map of SW Ontario.

Click here for a termite map of British Columbia. 

 

Additional Sources of Information on Termites

Louisiana State University Agricultural Center

City of Guelph

Municipality of Kincardine

 

Many historic structures in North America were built at a time when metal fasteners were not readily available. Instead, wood members were joined by shaping the adjoining wood members to interlock with one another. Timber joinery is a traditional post and beam wood construction technique used to connect wood members without the use of metal fasteners.

Timber joinery requires that the ends of timbers are carved out so that they fit together like puzzle pieces. The variations and configurations of wood-to-wood joints is quite large and complex. Some common wood-to-wood timber joints include mortise and tenon, dovetail, tying joint, scarf joint, bevelled shoulder joint, and lap joint. There are many variations and combinations of these and other types of timber joinery. Refer to Figure 5.18, below, for some examples of timber joinery.

For load transfer, timber joinery relies upon the interlocking of adjoining wood members. The mated joints are restrained by inserting wooden pegs into holes bored through the interlocked members. A hole about an inch in diameter is drilled right through the joint, and a wooden peg is pounded in to hold the joint together.

Metal fasteners require only minimal removal of wood fibre in the area of the fasteners and therefore, the capacity of the system is often governed by the moderate sized wood members to carry horizontal and vertical loads. Timber joinery, on the contrary, requires the removal of a significant volume of wood fibre where joints occur. For this reason, the capacity of traditional timber joinery construction is usually governed by the connections and not by the capacity of the members themselves. To accommodate for the removal of wood fibre at the connection locations, member sizes of wood construction systems that employ timber joinery, such as post and beam construction, are often larger than wood construction systems that make use of metal fasteners.

Wood engineering design standards in Canada do not provide specific load transfer information for timber joinery due to their sensitivity to workmanship and material quality. As a result, engineering design must be conservative, often resulting in larger member sizes.

The amount of skill and time required for measuring, fitting, cutting, and trial assembly is far greater for timber joinery than for other types of wood construction. Therefore, it is not the most economical means of connecting the members of wood buildings. Timber joinery is not used where economy is the overriding design criteria. Instead, it is used to provide a unique structural appearance which portrays the natural beauty of wood without distraction. Timber joinery offers a unique visual appearance exhibiting a high degree of craftmanship.

 

For further information, refer to the following resources:

Timber Framers Guild

 

Articles

Treatability of Major North American Softwoods

Some wood is easier to treat than others. The particular structure of the cells for a given piece of wood will determine how permeable the wood is to chemicals. This table describes the permeability of common softwoods used in North America. The permeability ratings are:

1 – Permeable
2 – Moderately Impermeable
3 – Impermeable
4 – Extremely Impermeable

Tree Permeability Permeability Predominant in the Tree
  Sapwood Heartwood  
Douglas Fir 2 4 Heartwood 
Western Hemlock 2 3 Heartwood
Eastern Hemlock 2 4 Heartwood
White Spruce 2 3-4 Heartwood
Engelmann Spruce 2 3-4 Heartwood
Black Spruce 2 4 Heartwood
Red Spruce 2 4 Heartwood
Sitka Spruce 2 3 Heartwood
Lodgepole Pine 1 3-4 Heartwood
Jack Pine 1 3 Heartwood
Red Pine 1 3 Sapwood
Southern Pine 1 3 Sapwood
Ponderosa Pine 1 3 Sapwood
Amabilis Fir (Pacific silver fir) 2 2-3 Heartwood
Alpine Fir 2 3 Heartwood
Balsam Fir 2 4 Heartwood
Western Red Cedar 2 3-4 Heartwood
Eastern White Cedar 2 3-4 Heartwood
Yellow Cypress 1 3 Heartwood
Western S-P-F 2 3-4 Heartwood
Eastern S-P-F 2 4 Heartwood
Hem-Fir 2 3 Heartwood
Western Larch 2 4 Heartwood
Tamarack 2 4 Heartwood

Incising

We can improve the penetration of preservative into impermeable wood by making little cuts in the wood. A series of small, shallow slits are cut into the wood by an incising machine. This is an effective way of increasing the treatability of lumber pieces which are predominantly heartwood. Species with heartwood permeability ratings of higher than 3 require high density incising (over 7,500 incisions per square meter). Incising does reduce the strength of lumber and this effect must be taken into account in engineering calculations.

Drying to Maximise Treatabilty

Unless the purchaser can be assured that lumber for treatment will be air dried to less than 30% moisture content, the specification of KD lumber for preservative treatment is strongly recommended. The problem with treating lumber which is not kiln dried is that the practicalities of production and delivery lead to the potential for poor product quality. The durability of treated Canadian lumber relies on a shell of preservative treatment preventing access by wood-rotting fungi to the untreated core. If the treated shell fails to prevent penetration by checks or abrasion or if the wood-rotting fungus is already in the untreated core, premature failure can result. There are four major pitfalls in treating green lumber: saturated sapwood, frozen lumber, check development and pre-treatment infection.

Saturated Sapwood

In order for the preservative to penetrate the wood cells, they must be empty of water, that is, the wood must be below 30% moisture content. In green lumber the sapwood cells may be too full of sap to accept any preservative. The sapwood is the part most susceptible to decay and most in need of preservative penetration. Partial air or kiln drying to between 20 and 30% moisture content is ideal, but there is seldom the time or the conditions necessary to do this. Purchasing commercial KD material (maximum 20%) is normally the only option to ensure the sapwood will accept treatment.

Frozen Lumber

The overwhelming majority of production is treated over the winter to prepare for the spring and summer outdoor construction season. With the exception of coastal British Columbia, most regions of Canada will be dealing with frozen wood at this time. Many treating plants do not have dry kilns, thus material is treated in the condition it is delivered to the plant. Preservative will not penetrate through ice until it is fully thawed. This typically occurs in contact with the treating solution. Frozen green lumber contains a lot of ice and there is insufficient time for this to thaw during typical commercial treating cycles. The residual moisture (12 – 20%) in kiln-dried lumber is in the cell walls and will not impede preservative penetration even if it is frozen.

Check Development

Checks only develop when the moisture content of wood drops below about 28%. If lumber is treated green and then dries, checks will penetrate the treated zone exposing the untreated core. If lumber is kiln-dried to the in-service moisture content, typically around 16% in exterior exposure, the checks will be largely developed prior to treatment. This means that the checks will be lined with a treated zone and the shell of treatment will remain intact.

Pre-treatment Infection

A lesser problem than the above three, but still of some concern, is the potential for survival through the manufacturing process of wood-rotting fungi that may have infected in the tree, log or lumber storage stages. At worst, this might only apply to 10% or fewer of pieces. Nevertheless, we have seen examples where treatment of green lumber without application of heat (60°C or more) fails to kill wood-rotting fungi already in the product, leading to premature failure in service. This can occur in as little as 4 years. CCA treatment is a cool process, but most kiln-drying schedules will kill all wood-rotting fungi.

Some engineered wood panel products, such as plywood and laminated veneer lumber (LVL) are able to be treated after manufacture with preservative solutions, whereas thin strand based products (OSB, OSL) and small particulate and fibre-based panels (particleboard, MDF) are not. The preservatives must be added to the wood elements before they are bonded together, either as a spray on, mist or powder.

Products such as OSB are manufactured from small, thin strands of wood. Powdered preservatives can be mixed in with the strands and resins during the blending process just prior to mat forming and pressing. Zinc borate is commonly used in this application. By adding preservatives to the manufacturing process it’s possible to obtain uniform treatment throughout the thickness of the product.

In North America, plywood is normally protected against decay and termites by pressure treatment processes. However, in other parts of the world insecticides are often formulated with adhesives to protect plywood against termites. 

Wood is resistant to some of the chemicals destructive to steel and concrete. For example, wood is often the material of choice when exposed to: organic compounds, hot or cold solutions of acids or neutral salts, dilute acids, industrial stack gases, sea air and high relative humidity. Because of its resistance to chemicals wood is often used in the following applications:

  • Potash storage buildings
  • Salt storage domes
  • Cooling towers
  • Industrial tanks for various types of chemicals

With thoughtful design and careful workmanship wood bridges prove to be remarkably durable. Throughout the world, there are numerous examples of long lasting wooden bridges – both historic and modern. Modern bridge decks are subjected to relentless attack of de-icing chemicals, and wood is gaining acceptance as a viable option for these applications.

Pilings that are constantly submerged in fresh water have been known to last for centuries. Foundation piles under structures will not decay if the water table remains higher than the pile tops. Many of the world’s important structures are built on wood piles including much of the city of Venice and the Empire State Building in New York.

The current edition of the National Building Code of Canada (NBC) is published in an objective-based format intended to allow more flexibility when evaluating non-traditional or alternative solutions. The objective-based format currently in use provides additional information that helps proponents and regulators determine what minimum performance level must be achieved to facilitate evaluation of new alternatives. Although the NBC helps users understand the intent of the requirements, it is understood that proponents and regulators will still have a challenge in terms of demonstrating compliance. In any case, objective-based codes are expected to foster a spirit of innovation and create new opportunities for Canadian manufacturers.

Requirements related to the specification of structural wood products and wood building systems that relates to health, safety, accessibility and the protection of buildings from fire or structural damage is set forth in the NBC. The NBC applies mainly to new construction, but also aspects of demolition, relocation, renovation and change of building use. The current NBC was published in 2015, and is usually updated on a five-year cycle. The next update is expected in 2020.

In terms of structural design, the NBC specifies loads, while material resistance is referenced through the use of material standards. In the case of engineering design in wood, CSA O86 provides the designer with the means of calculating the resistance values of structural wood products to resist gravity and lateral loads. Additional design information is found in the companion documents to the NBC; Structural Commentaries (User’s Guide – NBC 2015: Part 4 of Division B) and the Illustrated User’s Guide – NBC 2015: Part 9 of Division B, Housing and Small Buildings.

In Canada, structural wood products are specified prescriptively or through engineered design, depending on the application and occupancy. Design professionals, such as architects and engineers, are generally required for structures that exceed three-storeys in height or are greater than 600 m2 or if occupancies are not covered by Part 9 ‘Housing and Small Buildings’ of the NBC.

Housing and small buildings can be built without a full structural design using prescriptive requirements found in Part 9 of the Code. Some Part 9 requirements are based on calculations, others are based on construction practices that have a proven performance history. Generally prescriptive use is allowed if the following conditions are met:

  • three-stories or less
  • 600m2 or less
  • uses repetitive wood members spaced within 600 mm
  • spans are less than 12.2 meters
  • floor live loads do not exceed 2.4 kPa
  • residential, office, mercantile or medium-to low-hazard industrial occupancy

The rationale for not basing all Part 9 requirements on calculations comes from the fact that there has been historical performance and experience with small wood-frame buildings in Canada, in addition to the notion that many of the non-structural elements actually contribute to the structural performance of a wood-frame system. Quantifying the ‘system’ effects on overall behaviour of a wood-frame building cannot be done adequately using typical design assumptions, such as two-dimensional load paths and single member engineering mechanics. In these instances, the requirements for houses and small buildings is based on alternative criteria of a prescriptive nature. These prescriptive criteria are based on an extensive performance history of wood-frame housing and small buildings that meet current day code objectives and requirements.

Buildings that fall outside of prescriptive boundaries or are intended for major occupancy or post disaster situations must be designed by design professionals in accordance with Part 4 of the NBC. Structural resistance of wood products and building systems are engineered according to the requirements of CSA O86 in order to resist the loadings described in Part 4 of the NBC.

 

The following CWC publications are reference in the NBC:

Moisture and Wood-Frame Buildings

Introduction to Wood Building Technology

Wood Reference Handbook

The Span Book

Engineering Guide for Wood Frame Construction

 

For further information, refer to the following resources:

Fire Safety Design in Buildings (Canadian Wood Council)

Codes Canada – National Research Council of Canada

National Building Code of Canada

CSA O86 Engineering design in wood

1 2 3 4 5 6 7 8 9

Get Access to Our Resources

Stay in the loop and don’t miss a thing!

1
2
3

Get Access to Our Resources

Stay in the loop and don’t miss a thing!

What’s Your Occupation?

Help us personalize the content for you.

What Interests You the Most?

Help us personalize the content for you.

Filters

Persona Icon
Persona
Tags Icon
Tags
Annual Reports Plus Icon
Award Book Plus Icon
Case Studies Plus Icon
Free Publications Plus Icon
Magazine Plus Icon
Building Systems Plus Icon
Codes & Standards Plus Icon
Industry News Plus Icon
Why Wood (FAQ) Plus Icon
Wood Products Plus Icon
Acoustics Plus Icon
Design Examples Plus Icon
Engineering Plus Icon
Fire Resistance Plus Icon
Insurance Plus Icon
Mass Timber Plus Icon
Date Icon
Date
Line Separator