Bienvenue sur le nouveau Hub de Ressources Numériques du CCB (BETA)

en-ca

Articles

Restez informé de nos dernières idées et tendances. Découvrez des articles qui vous inspirent et vous informent.

98 résultats trouvés...
Trier par Icône de la liste déroulante

Bois de construction composite (SCL)

Le bois composite structurel (SCL) est un terme utilisé pour englober la famille des produits en bois d'ingénierie qui comprend bois de placage stratifié (LVL), bois d'œuvre à fils parallèles (PSL), bois d'œuvre stratifié (LSL) et Bois de construction orienté (OSL).

With its ability to be manufactured using small, fast-grow and underutilized trees, SCL products represent an efficient use of forest resources as they help to meet the increasing demand for structural lumber products that have highly reliable strength and stiffness properties.

Le SCL se compose de placages, de brins ou de flocons de bois séchés et calibrés qui sont superposés et collés à l'aide d'un adhésif résistant à l'humidité pour former de grands blocs appelés billettes. Le grain de chaque couche de placage ou de flocons est principalement orienté dans la même direction. Ces billettes SCL sont ensuite sciées à nouveau dans les dimensions et longueurs spécifiées.

Le SCL a été utilisé avec succès dans une variété d'applications, telles que les chevrons, les chevêtres, les poutres, les solives, les membrures de fermes, les brides de poutrelles en I, les colonnes et les montants de mur.

Le SCL est produit dans un certain nombre de dimensions standard. Certains produits SCL sont disponibles dans un certain nombre d'épaisseurs, tandis que d'autres ne sont disponibles que dans l'épaisseur de 45 mm (1-3/4 in). Les profondeurs typiques des éléments SCL vont de 241 à 606 mm (9-1/2 à 24 in). Les éléments SCL individuels peuvent être cloués ou boulonnés ensemble pour former des poutres construites. En général, le SCL est disponible en longueurs allant jusqu'à 20 m (65 ft).

Le SCL est produit à un faible taux d'humidité, de sorte qu'il y a très peu de retrait après l'installation. Cette faible teneur en humidité permet également au SCL d'être pratiquement exempt de fissures, de fentes ou de gauchissements pendant son utilisation.

Les produits SCL sont des produits propriétaires et, par conséquent, les propriétés techniques et les dimensions spécifiques sont propres à chaque fabricant. Par conséquent, les produits SCL n'ont pas de norme de production commune ni de valeurs de conception communes. Les valeurs de conception sont dérivées des résultats d'essais analysés conformément à la norme CSA O86 et à la norme ASTM D5456 et les valeurs de conception sont examinées et approuvées par le Centre canadien des matériaux de construction (CCMC). Les produits conformes aux directives du CCMC reçoivent un numéro d'évaluation et un rapport d'évaluation comprenant les résistances nominales spécifiées pour le produit SCL, qui sont ensuite répertoriées dans le registre des évaluations de produits du CCMC. Le nom du fabricant ou l'identification du produit et la classe de résistance sont marqués sur le matériau à différents intervalles, mais en raison de la coupe en bout, ils peuvent ne pas être présents sur chaque pièce.

 

Pour plus d'informations, consultez les ressources suivantes :

APA - The Engineered Wood Association (Association du bois d'ingénierie)

Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction

CSA O86 Conception technique en bois

ASTM D5456 Spécification standard pour l'évaluation des produits de bois de charpente composite

 

Une structure doit être conçue pour résister à toutes les charges qui devraient agir sur elle pendant sa durée de vie. Sous l'effet des charges appliquées prévues, la structure doit rester intacte et fonctionner de manière satisfaisante. En outre, la construction d'une structure ne doit pas nécessiter une quantité démesurée de ressources. La conception d'une structure est donc un équilibre entre la fiabilité nécessaire et l'économie raisonnable.

Les produits du bois sont fréquemment utilisés pour fournir les principaux moyens de soutien structurel des bâtiments. L'économie et la solidité de la construction peuvent être obtenues en utilisant des produits du bois comme éléments d'applications structurelles telles que les solives, les montants muraux, les chevrons, les poutres, les poutrelles et les fermes. En outre, les produits de revêtement et de platelage en bois jouent à la fois un rôle structurel en transférant les charges du vent, de la neige, des occupants et du contenu aux principaux éléments structurels, et une fonction d'enveloppe du bâtiment. Le bois peut être utilisé dans de nombreuses formes structurelles telles que les maisons à ossature légère et les petits bâtiments qui utilisent des éléments répétitifs de petite dimension ou dans des systèmes d'ossature structurelle plus grands et plus lourds, tels que la construction en bois de masse, qui est souvent utilisée pour les projets commerciaux, institutionnels ou industriels. La conception technique des composants et systèmes structuraux en bois est basée sur la norme CSA O86.

Au cours des années 1980, la conception des structures en bois au Canada, conformément au Code national du bâtiment du Canada (CNB) et à la norme CSA O86, est passée de la conception des contraintes de travail (WSD) à la conception des états limites (LSD), rendant l'approche de la conception structurelle pour le bois similaire à celle des autres principaux matériaux de construction.

Toutes les approches de conception structurelle exigent les éléments suivants pour la résistance et l'aptitude au service :

Résistance des éléments = Effets des charges de calcul

En utilisant la méthode LSD, la structure et ses composants individuels sont caractérisés par leur résistance aux effets des charges appliquées. Le CNB applique des facteurs de sécurité à la fois au côté résistance et au côté charge de l'équation de conception :

Résistance pondérée = Effet de charge pondéré

La résistance pondérée est le produit d'un facteur de résistance (f) et de la résistance nominale (résistance spécifiée), tous deux indiqués dans la norme CSA O86 pour les matériaux et les assemblages en bois. Le facteur de résistance tient compte de la variabilité des dimensions et des propriétés des matériaux, de l'exécution, du type de défaillance et de l'incertitude dans la prédiction de la résistance. L'effet de la charge pondérée est calculé conformément au CNB en multipliant les charges réelles sur la structure (charges spécifiées) par des facteurs de charge qui tiennent compte de la variabilité de la charge.

Il n'existe pas deux échantillons de bois ou de tout autre matériau ayant exactement la même résistance. Dans tout processus de fabrication, il est nécessaire de reconnaître que chaque pièce fabriquée sera unique. Les charges, telles que la neige et le vent, sont également variables. Par conséquent, la conception structurelle doit tenir compte du fait que les charges et les résistances sont en réalité des groupes de données plutôt que des valeurs uniques. Comme pour tout groupe de données, il existe des attributs statistiques tels que la moyenne, l'écart-type et le coefficient de variation. L'objectif de la conception est de trouver un équilibre raisonnable entre la fiabilité et des facteurs tels que l'économie et l'aspect pratique.

La fiabilité d'une structure dépend d'une série de facteurs qui peuvent être classés comme suit :

  • les influences externes telles que les charges et les changements de température ;
  • la modélisation et l'analyse de la structure, des interprétations du code, des hypothèses de conception et des autres jugements qui constituent le processus de conception ;
  • la solidité et la consistance des matériaux utilisés dans la construction ; et
  • la qualité du processus de construction.

L'approche LSD consiste à fournir une résistance adéquate à certains états limites, à savoir la résistance et l'aptitude au service. Les états limites de résistance font référence à la capacité de charge maximale de la structure. Les états limites d'aptitude au service sont ceux qui restreignent l'utilisation et l'occupation normales de la structure, comme une déflexion ou des vibrations excessives. Une structure est considérée comme défaillante ou impropre à l'utilisation lorsqu'elle atteint un état limite au-delà duquel ses performances ou son utilisation sont compromises.

Les états limites pour la conception du bois sont classés dans les deux catégories suivantes :

  • Les états limites ultimes (ELU) concernent la sécurité des personnes et correspondent à la capacité de charge maximale. Ils comprennent des défaillances telles que la perte d'équilibre, la perte de capacité de charge, l'instabilité et la rupture ; et
  • Les états limites d'aptitude au service (ELAS) concernent les restrictions à l'utilisation normale d'une structure.

Les exemples de SLS comprennent la déflexion, les vibrations et les dommages localisés.

En raison des propriétés naturelles uniques du bois, telles que la présence de nœuds, la flache ou l'inclinaison du grain, l'approche de la conception pour le bois nécessite l'utilisation de facteurs de modification spécifiques au comportement structurel. Ces facteurs de modification sont utilisés pour ajuster les résistances spécifiées dans la norme CSA O86 afin de tenir compte des caractéristiques du matériau propres au bois. Les facteurs de modification couramment utilisés dans le calcul des structures en bois comprennent les effets de la durée de la charge, les effets de système liés aux éléments répétitifs agissant ensemble, les facteurs de conditions de service humides ou sèches, les effets de la taille des éléments sur la résistance et l'influence des produits chimiques et du traitement sous pression.

Les systèmes de construction en bois ont un rapport résistance/poids élevé et les constructions à ossature légère en bois contiennent de nombreux petits connecteurs, le plus souvent des clous, qui offrent une ductilité et une capacité importantes lorsqu'il s'agit de résister à des charges latérales, telles que les tremblements de terre et le vent.

Les murs de cisaillement et les diaphragmes à ossature légère constituent une solution de contreventement latéral très courante et pratique pour les bâtiments en bois. Généralement, le revêtement en bois, le plus souvent du contreplaqué ou des panneaux à copeaux orientés (OSB), qui est spécifié pour résister à la charge de gravité, peut également faire office de système de résistance aux forces latérales. Cela signifie que le revêtement remplit plusieurs fonctions, notamment la distribution des charges aux solives du plancher ou du toit, le contreventement des poutres et des montants pour éviter qu'ils ne se déforment et la résistance latérale aux charges dues au vent et aux tremblements de terre. D'autres systèmes de résistance aux charges latérales sont utilisés dans les bâtiments en bois, notamment les cadres rigides ou les portiques, les contreventements à genoux et les contreventements transversaux.

Un tableau des portées typiques est présenté ci-dessous pour aider le concepteur à choisir un système structurel en bois approprié.

Estimation de la portée des éléments en bois dans la conception des structures pour les solives, les poutres, les fermes et les arcs. 

 

Pour plus d'informations, consultez les ressources suivantes :

Introduction à la conception en bois (Conseil canadien du bois)

Manuel de conception en bois (Conseil canadien du bois)

CSA O86 Conception technique du bois

Code national du bâtiment du Canada

www.woodworks-software.com

Un traitement supplémentaire peut être ajouté lorsque la coupe ou le forage du bois sur place est inévitable, ou lorsque l'on soupçonne que les mesures de protection initiales sont inadéquates. C'est le cas le plus fréquent dans des applications telles que les fondations en bois, les bâtiments agricoles ou les applications non résidentielles à longue durée de vie telles que les poteaux électriques et les poutres de pont.

Pour les fondations en bois et les bâtiments agricoles, il est normal de prévoir des coupes et des trous pour les boulons, les tuyaux ou le câblage électrique. En général, le naphténate de cuivre est badigeonné sur les extrémités coupées ou les trous dans le bois traité pour protéger les surfaces exposées. L'expérience a montré que cela est suffisant pour l'exposition limitée résultant de ces cas.

Dans le cas de poteaux ou de poutres de pont, la protection d'origine peut disparaître avec le temps en raison de la dégradation ou de l'épuisement des ingrédients actifs. La nécessité d'un traitement supplémentaire peut être indiquée par les dommages subis par des structures similaires dans la même zone. Il est également possible que le risque de dommages ait augmenté, par exemple si de nouveaux termites s'installent dans la zone.

Dans le cas des poteaux électriques, qui font partie de l'infrastructure physique d'une organisation, l'inspection, l'entretien et l'assainissement sont pratiqués régulièrement pour garantir la sécurité de l'utilisation et programmer le remplacement des poteaux. Souvent, le coût d'un traitement supplémentaire est relativement faible par rapport au coût de l'inspection et ne représente qu'une infime partie du coût d'une défaillance prématurée. Le traitement supplémentaire peut également s'avérer prudent en termes de diligence raisonnable (réduction de la responsabilité juridique). Lors de l'inspection de ces structures, des perceuses ou des perceuses à incréments peuvent être utilisées pour déterminer l'état de l'intérieur des éléments en bois. Il est conseillé de traiter ces trous afin d'éviter toute infection due à des forets et des perceuses non stérilisés. En outre, comme les trous sont généralement percés là où l'on soupçonne ou prévoit la présence de pourriture, il est judicieux de traiter ces trous pour compléter la protection à cet endroit.

Solides

Les bâtonnets de borate, de cuivre/borate et de fluorure sont de plus en plus utilisés comme traitements complémentaires de la carie interne en raison de leur facilité de manipulation et de leur très faible toxicité. Le cuivre se déplace plus lentement dans le bois que le borate, ce qui permet de protéger la zone autour de la tige si le borate est éliminé au fil du temps par un écoulement massif d'eau. Cela concerne principalement les poteaux électriques dans les climats humides, où l'humidité pénètre dans le poteau à partir du sol, remonte le long du poteau et s'évapore au-dessus du sol, entraînant avec elle le borate vers le haut du poteau - ce qui laisse le borate dans une partie du poteau qui n'est pas particulièrement exposée au risque de pourriture. La vitesse d'écoulement de l'eau peut être relativement lente dans le cas du sapin de Douglas (une essence de bois imperméable) traité avec un produit de préservation à base d'huile ayant un certain pouvoir hydrofuge. Il peut être plus rapide dans le cas du pin du sud (une essence de bois très perméable) traité avec un produit de préservation à base d'eau.

Liquides, pâtes et gels

L'application par pulvérisation et par mousse de liquides et de gels est de plus en plus utilisée pour le traitement complémentaire des bâtiments à ossature en bois contre les termites et les coléoptères xylophages. Des trous sont percés dans chaque espace entre les montants et les liquides ou gels sont pompés sous pression. On ne peut s'attendre à ce que la couverture soit aussi efficace que celle obtenue par pulvérisation pendant la construction. Les liquides peuvent être versés ou pompés dans les trous percés pour traiter la pourriture interne des poteaux électriques ou des poutres. En général, la charge de produit de préservation qui peut être obtenue est limitée, dans le premier cas, par la taille et l'emplacement des trous et la solubilité du produit chimique, et dans le second cas, par la perméabilité du bois. Une autre approche consiste à laisser un dispositif sous pression attaché au poteau sous le sol, ce qui permet de faire pénétrer une plus grande quantité de liquide dans le poteau sur une période plus longue. Il faut veiller à ce que les trous percés ne recoupent pas des vides ou des fentes menant à la surface du bois, faute de quoi les liquides peuvent s'écouler. Les pâtes peuvent être tassées dans les trous percés pour traiter la carie interne. Elles peuvent également être appliquées au pinceau, à la truelle ou sur des bandages pour traiter la carie externe.

Fumigants

Les traitements par fumigation sont utilisés avec succès depuis des décennies sur les poteaux électriques et les structures en bois. Le gaz traverse rapidement le bois, s'adsorbe sur la lignocellulose et assure une protection résiduelle de plusieurs années.

Application liquide : Traitement par diffusion par immersion du bois vert (humide)

Le traitement par trempage-diffusion consiste à immerger le bois fraîchement coupé, encore humide, dans une solution concentrée de produit de préservation. Le conservateur peut être épaissi pour augmenter la quantité de solution retenue à la surface. Le bois est empilé, couvert et stocké pendant plusieurs semaines pour permettre au produit de se diffuser en profondeur dans le bois. En Nouvelle-Zélande, le bois de charpente est traité aux borates selon ce procédé depuis les années 1950. La diffusion par immersion fonctionne bien avec les essences de bois qui sont principalement constituées d'aubier ou dont le bois de cœur est humide. Le rapport entre la surface et le volume, la quantité de solution retenue à la surface et la solubilité du produit de préservation limitent la quantité de produit chimique qui peut être diffusée en profondeur dans le bois par ce procédé. Par exemple, une charge d'acide borique de 0,5% en poids de bois, suffisante pour prévenir la pourriture et les attaques de coléoptères, peut être appliquée à du bois de construction nominal de 2 pouces à l'aide de ce procédé. Cependant, une charge d'acide borique de 2,0% en poids, suffisante pour prévenir les attaques des termites de Formose, ne peut être atteinte sans de multiples trempages et des mois de stockage.

Application liquide : Traitement par pulvérisation de l'encadrement

Comme ce type de traitement est généralement effectué pendant la phase de construction, il peut être appliqué à l'ensemble de la structure ou à des parties sélectionnées de la structure susceptibles d'être menacées par la pourriture fongique ou les attaques d'insectes. Les solides et les fumigants ne sont pas appropriés pour ces applications, et les seules formulations largement utilisées sont à base de borates. Comme le bois est sec à ce stade et que les borates ont besoin d'humidité pour se diffuser, il est utile que ces traitements soient formulés de manière à améliorer la pénétration dans le bois sec. On y parvient généralement en ajoutant des glycols. Néanmoins, on ne peut pas s'attendre à ce que la pénétration initiale du conservateur soit aussi bonne que celle obtenue par un processus de traitement sous pression. Les applications de borate par pulvérisation deviennent populaires dans certaines régions des États-Unis dans le cadre des systèmes de gestion des termites. En règle générale, des traitements superficiels sont utilisés dans toute la maison pour protéger contre les termites de bois sec et les coléoptères xylophages. Ces traitements remplacent les fumigations régulières. Pour la protection contre les termites souterrains, des borates de glycol concentrés peuvent être appliqués sur les deux pieds inférieurs de tout le bois en contact avec la dalle ou, pour la construction d'un vide sanitaire, sur les deux pieds supérieurs et vers l'intérieur de la fondation. Cela remplace une barrière de sol.

Application de la brosse

Les applications de la brosse pour le prétraitement de surface se limitent essentiellement aux produits de préservation pour le bois traité sous pression et au traitement des structures par les propriétaires, dont la durée de vie est vraisemblablement limitée. Le naphténate de cuivre fonctionne bien en surface ou en contact avec le sol, mais sa couleur vert foncé (qui vire au brun au bout d'un an environ) n'est pas très attrayante. Le naphténate de zinc est incolore et peut être teinté à volonté, mais il ne fonctionne pas aussi bien en contact avec le sol. Les borates sont généralement utilisés pour les coupes de terrain sur les seuils intérieurs. En outre, des mélanges borate/glycol sont disponibles pour un usage domestique.

Grâce aux technologies de construction avancées et aux produits modernes en bois de masse tels que le bois lamellé-collé, le bois lamellé-croisé et le bois composite structurel, construire en hauteur avec du bois est non seulement réalisable mais déjà en cours - avec des bâtiments contemporains de 9 étages et plus achevés en Australie, en Autriche, en Suisse, en Allemagne, en Norvège et au Royaume-Uni. De plus en plus reconnu par le secteur de la construction comme un choix de construction important, nouveau et sûr, la réduction de l'empreinte carbone et la performance énergétique intrinsèque/opérationnelle de ces bâtiments séduisent les communautés qui se sont engagées dans le développement durable et l'atténuation du changement climatique.

Les grands immeubles en bois, construits avec des produits du bois renouvelables provenant de forêts gérées durablement, ont le potentiel de révolutionner une industrie de la construction de plus en plus soucieuse de faire partie de la solution en matière d'intensification urbaine et de réduction de l'impact sur l'environnement. L'industrie canadienne des produits du bois s'est engagée à tirer parti de son avantage naturel en développant et en démontrant des produits de construction et des systèmes de construction à base de bois qui s'améliorent constamment.

Un bâtiment de grande hauteur en bois est un bâtiment de plus de six étages (le dernier étage est situé à plus de 18 m au-dessus du sol) qui utilise des éléments en bois massif comme composante fonctionnelle de son système de soutien structurel. Grâce aux technologies de construction avancées et aux produits modernes en bois de masse tels que le bois lamellé-collé (glulam), le bois lamellé-croisé (CLT) et le bois composite structurel (SCL), il est non seulement possible de construire des immeubles de grande hauteur en bois, mais c'est déjà le cas - des immeubles contemporains de sept étages et plus ont été construits au Canada, aux États-Unis, en Australie, en Autriche, en Suisse, en Allemagne, en Norvège, en Suède, en Italie et au Royaume-Uni.

Les grands bâtiments en bois intègrent des systèmes modernes de protection et d'extinction des incendies, ainsi que de nouvelles technologies pour les performances acoustiques et thermiques. Les grands bâtiments en bois sont couramment utilisés pour des usages résidentiels, commerciaux et institutionnels.

Le bois de masse offre des avantages tels qu'une meilleure stabilité dimensionnelle et une meilleure résistance au feu pendant la construction et l'occupation. Ces nouveaux produits sont également préfabriqués et offrent d'énormes possibilités d'améliorer la vitesse de montage et la qualité de la construction.

Parmi les avantages significatifs des grands bâtiments en bois, citons

  • la possibilité de construire plus haut dans les zones où les sols sont pauvres, car la super structure et les fondations sont plus légères que d'autres matériaux de construction ;
  • plus silencieux, ce qui signifie que les voisins sont moins susceptibles de se plaindre et que les travailleurs ne sont pas exposés à des niveaux de bruit élevés ;
  • la sécurité des travailleurs pendant la construction peut être améliorée grâce à la possibilité de travailler à partir de grandes plaques de plancher en bois massif ;
  • Les éléments préfabriqués fabriqués avec des tolérances serrées peuvent réduire la durée de la construction ;
  • des tolérances étroites dans la structure et l'enveloppe du bâtiment, associées à une modélisation énergétique, peuvent produire des bâtiments présentant une performance énergétique opérationnelle élevée, une étanchéité à l'air accrue, une meilleure qualité de l'air à l'intérieur et un confort humain amélioré.

Les critères de conception des grands bâtiments en bois à prendre en compte sont les suivants : une stratégie intégrée de conception, d'approbation et de construction, le retrait différentiel entre des matériaux dissemblables, les performances acoustiques, le comportement sous l'effet du vent et des charges sismiques, les performances en cas d'incendie (par exemple, l'encapsulation des éléments en bois massif à l'aide de gypse), la durabilité et le séquençage de la construction afin de réduire l'exposition du bois aux éléments.

Il est important de s'assurer de l'implication précoce d'un fournisseur de bois de masse qui peut fournir des services d'assistance à la conception permettant de réduire davantage les coûts de fabrication grâce à l'optimisation de l'ensemble du système de construction et pas seulement des éléments individuels. Même de petites contributions, dans la conception des connexions par exemple, peuvent faire la différence en termes de rapidité de montage et de coût global. En outre, les métiers de la mécanique et de l'électricité devraient être invités à jouer un rôle d'assistance à la conception dès le début du projet. Cela permet d'obtenir un modèle virtuel plus complet, de multiplier les possibilités de préfabrication et d'accélérer l'installation.

Des études de cas récentes portant sur de grands bâtiments modernes en bois au Canada et dans le monde entier montrent que le bois est une solution viable pour réaliser des bâtiments de grande taille sûrs, rentables et performants.

Pour plus d'informations, consultez les études de cas et les références suivantes :

Brock Commons Tall Wood House (Conseil canadien du bois)

Origine Point-aux-Lievres Ecocondos,Québec (Cecobois)

Centre d'innovation et de design du bois (Conseil canadien du bois)

Guide technique pour la conception et la construction de grands bâtiments en bois au Canada (FPInnovations)

Ontario's Tall Wood Building Reference (Ministère des ressources naturelles et des forêts et Ministère des affaires municipales)

Rapport de synthèse : Survey of International Tall Wood Buildings (Forestry Innovation Investment & Binational Softwood Lumber Council)

www.thinkwood.com/building-better/taller-buildings

Tests

Les recherches en cours comprennent le plus grand essai de feu de bois massif au monde - cliquez ici pour des mises à jour sur les résultats de l'essai en cours. https://firetests.cwc.ca/

Études

Rapports

Recherche sur les incendies

Recherche et guides sur l'acoustique

Initiative de démonstration des grands bâtiments en bois Rapports d'essai
(financement assuré par Ressources naturelles Canada)

Visitez la bibliothèque de recherche de Think Wood pour obtenir des ressources supplémentaires.

Les termites, parfois appelés "fourmis blanches", sont des insectes sociaux, plus proches des cafards que des fourmis. Ils se distinguent des fourmis par l'absence d'une taille étroite sur le corps et par leur couleur typiquement blanche. Sous la loupe, les antennes des termites sont droites alors que celles des fourmis ont un coude. Les termites reproducteurs volants (alates) se distinguent des fourmis volantes par la taille égale de leurs quatre ailes. Trois types de termites peuvent être distingués en fonction de leurs besoins en humidité :

  • Les termites de bois humide
  • Termites de bois sec
  • Les termites souterrains

Termites

Les termites de bois humide sont particulièrement répandus sur la côte de la Colombie-Britannique et dans le nord-ouest du Pacifique aux États-Unis. Ils s'attaquent uniquement aux arbres en décomposition dans les écosystèmes forestiers et contribuent à les décomposer physiquement. Ils sont rarement un problème dans les bâtiments.

Termites2

En revanche, les termites de bois sec représentent un danger important pour les infrastructures en bois exposées et accessibles, car ils n'ont pas besoin d'une source d'humidité importante, et les couples accouplés peuvent voler dans les bâtiments et créer un nid dans le bois sec. Par conséquent, les mesures de contrôle visant à séparer le bois du sol ou de l'humidité sont inefficaces. Sur le continent nord-américain, les termites de bois sec ne se rencontrent qu'à partir de l'extrême sud des États-Unis jusqu'au Mexique.

Les termites souterrains ont besoin d'une source fiable d'humidité, normalement le sol, mais ils ont la capacité de transporter leurs besoins en humidité dans le bois sec des bâtiments. Bien que des nids satellites puissent se trouver dans les bâtiments, leurs principaux nids se trouvent normalement dans le sol ou dans le bois en contact avec le sol. Les termites souterrains construisent des tubes-abris (tunnels) caractéristiques composés de boue, de fragments de bois et de sécrétions corporelles, qui leur permettent de passer du sol au bois en surface sans être exposés à l'air sec ou aux prédateurs. Ces tubes-abris peuvent s'étendre sur plusieurs mètres au-dessus de substrats inertes, tels que les murs de fondation en béton. Les termites peuvent également passer à travers des fissures dans le béton d'une épaisseur de 1,5 mm. Dans le groupe des termites souterrains, une espèce particulière : le termite de Formose (Coptotermes formosanus Shiraki), est la plus problématique pour les infrastructures en bois. Bien que les individus soient plus petits que les espèces mentionnées ci-dessus, les colonies de termites de Formose peuvent être neuf fois plus agressives en termes de consommation de bois. Cette espèce est particulièrement problématique dans certaines régions du sud-est des États-Unis, notamment en Floride, où elle a été introduite après la Seconde Guerre mondiale. Il est peu probable qu'elle se propage au nord du Canada, bien que le Canada possède d'autres espèces de termites souterrains moins agressives. Les termites souterrains constituent le groupe le plus important sur le plan économique dans le monde.

Plus d'informations

Cliquez ici pour obtenir une carte des termites au Canada.

Cliquez ici pour obtenir une carte des termites dans le sud-ouest de l'Ontario.

Cliquez ici pour obtenir une carte des termites en Colombie-Britannique. 

 

Sources d'information complémentaires sur les termites

Centre agricole de l'université d'État de Louisiane

Ville de Guelph

Municipalité de Kincardine

 

De nombreuses structures historiques en Amérique du Nord ont été construites à une époque où les fixations métalliques n'étaient pas facilement disponibles. Au lieu de cela, les éléments de bois étaient assemblés en façonnant les éléments de bois adjacents pour qu'ils s'emboîtent les uns dans les autres. La menuiserie est une technique traditionnelle de construction de poteaux et de poutres en bois utilisée pour assembler les éléments en bois sans utiliser d'attaches métalliques.

La menuiserie exige que les extrémités des pièces de bois soient sculptées de manière à ce qu'elles s'emboîtent les unes dans les autres comme des pièces de puzzle. Les variations et les configurations des assemblages bois-bois sont assez nombreuses et complexes. Parmi les assemblages bois-bois les plus courants, citons la mortaise et le tenon, la queue d'aronde, l'assemblage par ligature, l'assemblage en écharpe, l'assemblage à épaulement biseauté et l'assemblage à recouvrement. Il existe de nombreuses variantes et combinaisons de ces types d'assemblages et d'autres types d'assemblages. La figure 5.18 ci-dessous présente quelques exemples d'assemblages de bois.

Pour transférer les charges, la menuiserie en bois repose sur l'emboîtement des éléments de bois adjacents. Les assemblages sont retenus en insérant des chevilles en bois dans des trous percés à travers les éléments emboîtés. Un trou d'environ un pouce de diamètre est percé à travers le joint et une cheville en bois est enfoncée pour maintenir le joint.

Les fixations métalliques ne nécessitent qu'une élimination minimale des fibres de bois dans la zone des fixations et, par conséquent, la capacité du système est souvent déterminée par la taille modérée des éléments en bois à supporter les charges horizontales et verticales. La menuiserie en bois, au contraire, nécessite l'enlèvement d'un volume important de fibres de bois à l'endroit des joints. C'est pourquoi la capacité de la construction traditionnelle en bois est généralement régie par les connexions et non par la capacité des éléments eux-mêmes. Pour tenir compte de l'élimination des fibres de bois au niveau des assemblages, les dimensions des éléments des systèmes de construction en bois qui utilisent la menuiserie, tels que les poteaux et les poutres, sont souvent plus grandes que celles des systèmes de construction en bois qui utilisent des attaches métalliques.

Les normes de conception technique du bois au Canada ne fournissent pas d'informations spécifiques sur le transfert de charge pour la menuiserie en bois, en raison de leur sensibilité à la qualité de l'exécution et des matériaux. Par conséquent, la conception technique doit être prudente, ce qui se traduit souvent par des dimensions d'éléments plus importantes.

Les compétences et le temps nécessaires pour mesurer, ajuster, couper et faire des essais d'assemblage sont beaucoup plus importants pour la menuiserie que pour d'autres types de construction en bois. Ce n'est donc pas le moyen le plus économique d'assembler les éléments d'un bâtiment en bois. La menuiserie bois n'est pas utilisée lorsque l'économie est le critère de conception primordial. Elle est plutôt utilisée pour donner un aspect structurel unique qui met en valeur la beauté naturelle du bois sans distraction. La menuiserie en bois offre un aspect visuel unique qui témoigne d'un haut degré de savoir-faire artisanal.

 

Pour plus d'informations, consultez les ressources suivantes :

Guilde des charpentiers de bois

 

Articles

Traitabilité des principaux résineux d'Amérique du Nord

Certains bois sont plus faciles à traiter que d'autres. La structure particulière des cellules d'un morceau de bois donné détermine la perméabilité du bois aux produits chimiques. Ce tableau décrit la perméabilité des bois tendres couramment utilisés en Amérique du Nord. Les indices de perméabilité sont les suivants :

1 - Perméable
2 - Modérément imperméable
3 - Imperméable
4 - Extrêmement imperméable

Arbre Perméabilité Perméabilité Prédominant dans l'arbre
  Aubier Bois de cœur  
Sapin de Douglas 2 4 Bois de cœur 
Pruche occidentale 2 3 Bois de cœur
Pruche orientale 2 4 Bois de cœur
Épicéa blanc 2 3-4 Bois de cœur
Épicéa d'Engelmann 2 3-4 Bois de cœur
Épicéa noir 2 4 Bois de cœur
Épicéa rouge 2 4 Bois de cœur
Épicéa de Sitka 2 3 Bois de cœur
Pin tordu 1 3-4 Bois de cœur
Pin gris 1 3 Bois de cœur
Pin rouge 1 3 Aubier
Pin du Sud 1 3 Aubier
Pin ponderosa 1 3 Aubier
Sapin Amabilis (sapin argenté du Pacifique) 2 2-3 Bois de cœur
Sapin des Alpes 2 3 Bois de cœur
Sapin baumier 2 4 Bois de cœur
Cèdre rouge occidental 2 3-4 Bois de cœur
Cèdre blanc de l'Est 2 3-4 Bois de cœur
Cyprès jaune 1 3 Bois de cœur
Ouest S-P-F 2 3-4 Bois de cœur
Est S-P-F 2 4 Bois de cœur
Hémérocalle 2 3 Bois de cœur
Mélèze occidental 2 4 Bois de cœur
Mélèze 2 4 Bois de cœur

Incision

Il est possible d'améliorer la pénétration du produit de conservation dans le bois imperméable en pratiquant de petites entailles dans le bois. Une série de petites fentes peu profondes sont pratiquées dans le bois à l'aide d'une machine à inciser. Il s'agit d'un moyen efficace d'augmenter la capacité de traitement des pièces de bois qui sont principalement constituées de bois de cœur. Les essences dont la perméabilité du bois de cœur est supérieure à 3 nécessitent une incision à haute densité (plus de 7 500 incisions par mètre carré). L'incision réduit la résistance du bois d'œuvre et cet effet doit être pris en compte dans les calculs d'ingénierie.

Séchage pour maximiser l'efficacité du traitement

À moins que l'acheteur puisse être assuré que le bois à traiter sera séché à l'air jusqu'à un taux d'humidité inférieur à 30%, il est fortement recommandé de spécifier le bois KD pour le traitement de préservation. Le problème du traitement du bois qui n'est pas séché au four est que les aspects pratiques de la production et de la livraison risquent d'entraîner une mauvaise qualité du produit. La durabilité du bois d'œuvre canadien traité repose sur l'existence d'une enveloppe de traitement de préservation qui empêche les champignons de pourriture du bois d'accéder à l'âme non traitée. Si l'enveloppe traitée ne parvient pas à empêcher la pénétration par les trous ou l'abrasion, ou si le champignon de pourriture du bois se trouve déjà dans l'âme non traitée, il peut en résulter une défaillance prématurée. Le traitement du bois vert comporte quatre grands écueils : aubier saturé, bois gelé, développement de chancres et infection avant traitement.

Aubier saturé

Pour que le produit de préservation pénètre dans les cellules du bois, celles-ci doivent être vides d'eau, c'est-à-dire que le taux d'humidité du bois doit être inférieur à 30%. Dans le bois vert, les cellules de l'aubier peuvent être trop pleines de sève pour accepter un produit de conservation. L'aubier est la partie la plus sensible à la pourriture et celle qui a le plus besoin de la pénétration du conservateur. Le séchage partiel à l'air ou au four jusqu'à un taux d'humidité compris entre 20 et 30% est idéal, mais il est rare que l'on dispose du temps ou des conditions nécessaires pour le faire. L'achat de matériel KD commercial (maximum 20%) est normalement la seule option pour s'assurer que l'aubier acceptera le traitement.

Bois congelé

La grande majorité de la production est traitée au cours de l'hiver afin de préparer la saison de construction extérieure du printemps et de l'été. À l'exception de la côte de la Colombie-Britannique, la plupart des régions du Canada auront à faire face à du bois gelé à cette époque. De nombreuses usines de traitement n'ont pas de séchoir, et les matériaux sont donc traités dans l'état où ils sont livrés à l'usine. Les agents de conservation ne pénètrent pas dans la glace tant qu'elle n'est pas complètement dégelée. Cela se produit généralement au contact de la solution de traitement. Le bois vert congelé contient beaucoup de glace et il n'y a pas assez de temps pour qu'elle dégèle au cours des cycles de traitement commerciaux habituels. L'humidité résiduelle (12 - 20%) du bois d'œuvre séché au four se trouve dans les parois cellulaires et n'empêche pas la pénétration du produit de préservation, même s'il est gelé.

Vérifier le développement

Les germes ne se développent que lorsque le taux d'humidité du bois descend en dessous d'environ 28%. Si le bois est traité à l'état vert et qu'il sèche ensuite, les fissures pénètrent dans la zone traitée et exposent le cœur non traité. Si le bois est séché au four jusqu'à ce qu'il atteigne le taux d'humidité en service, généralement autour de 16% en exposition extérieure, les fissures seront largement développées avant le traitement. Cela signifie que les fissures seront doublées d'une zone traitée et que l'enveloppe du traitement restera intacte.

Infection avant traitement

Un problème moins important que les trois précédents, mais tout de même préoccupant, est la possibilité de survie, au cours du processus de fabrication, de champignons de pourriture du bois qui ont pu s'infecter au cours des étapes de stockage des arbres, des grumes ou du bois d'œuvre. Dans le pire des cas, cela ne s'applique qu'à 10% ou moins de pièces. Néanmoins, nous avons vu des exemples où le traitement du bois vert sans application de chaleur (60°C ou plus) n'a pas réussi à tuer les champignons de pourriture du bois déjà présents dans le produit, ce qui a conduit à une défaillance prématurée en service. Ce phénomène peut se produire en l'espace de quatre ans seulement. Le traitement CCA est un processus froid, mais la plupart des programmes de séchage au four tuent tous les champignons de pourriture du bois.

Certains panneaux en bois d'ingénierie, tels que le contreplaqué et le bois de placage stratifié (LVL), peuvent être traités après fabrication avec des solutions de préservation, ce qui n'est pas le cas des produits à base de fines lamelles (OSB, OSL) et des panneaux à base de petites particules et de fibres (panneaux de particules, MDF). Les produits de préservation doivent être ajoutés aux éléments en bois avant qu'ils ne soient collés ensemble, sous forme de pulvérisation, de brouillard ou de poudre.

Les produits tels que l'OSB sont fabriqués à partir de petites et fines lamelles de bois. Les conservateurs en poudre peuvent être mélangés aux lamelles et aux résines pendant le processus de mélange, juste avant le formage et le pressage du matelas. Le borate de zinc est couramment utilisé dans cette application. En ajoutant des conservateurs au processus de fabrication, il est possible d'obtenir un traitement uniforme sur toute l'épaisseur du produit.

En Amérique du Nord, le contreplaqué est normalement protégé contre la pourriture et les termites par des procédés de traitement sous pression. Toutefois, dans d'autres parties du monde, des insecticides sont souvent formulés avec des adhésifs pour protéger le contreplaqué contre les termites. 

Le bois résiste à certains des produits chimiques qui détruisent l'acier et le béton. Par exemple, le bois est souvent le matériau de choix lorsqu'il est exposé à des composés organiques, à des solutions chaudes ou froides d'acides ou de sels neutres, à des acides dilués, à des gaz de combustion industriels, à l'air marin et à une humidité relative élevée. En raison de sa résistance aux produits chimiques, le bois est souvent utilisé dans les applications suivantes :

  • Bâtiments de stockage de potasse
  • Dômes de stockage de sel
  • Tours de refroidissement
  • Réservoirs industriels pour divers types de produits chimiques

Grâce à une conception réfléchie et à une exécution soignée, les ponts en bois se révèlent remarquablement durables. Dans le monde entier, on trouve de nombreux exemples de ponts en bois durables, qu'ils soient historiques ou modernes. Les tabliers des ponts modernes sont soumis aux attaques incessantes des produits chimiques de déglaçage, et le bois est de plus en plus accepté comme une option viable pour ces applications.

Les pieux qui sont constamment immergés dans l'eau douce sont connus pour durer des siècles. Les pieux de fondation sous les structures ne se décomposeront pas si la nappe phréatique reste plus élevée que le sommet des pieux. De nombreuses structures importantes dans le monde sont construites sur des pilotis en bois, notamment une grande partie de la ville de Venise et l'Empire State Building à New York.

L'édition actuelle du Code national du bâtiment du Canada (CNB) est publiée dans un format axé sur les objectifs afin de permettre une plus grande flexibilité lors de l'évaluation de solutions non traditionnelles ou alternatives. Le format axé sur les objectifs actuellement utilisé fournit des informations supplémentaires qui aident les promoteurs et les organismes de réglementation à déterminer le niveau de performance minimal à atteindre pour faciliter l'évaluation de nouvelles solutions. Bien que le CNB aide les utilisateurs à comprendre l'intention des exigences, il est entendu que les promoteurs et les autorités de réglementation auront toujours des difficultés à démontrer la conformité. Quoi qu'il en soit, les codes axés sur les objectifs devraient favoriser l'esprit d'innovation et créer de nouvelles opportunités pour les fabricants canadiens.

Les exigences relatives à la spécification des produits et des systèmes de construction en bois en rapport avec la santé, la sécurité, l'accessibilité et la protection des bâtiments contre les incendies ou les dommages structurels sont énoncées dans le CNB. Le CNB s'applique principalement aux nouvelles constructions, mais aussi à certains aspects de la démolition, de la relocalisation, de la rénovation et du changement d'utilisation des bâtiments. Le CNB actuel a été publié en 2015 et est généralement mis à jour tous les cinq ans. La prochaine mise à jour est prévue pour 2020.

En termes de conception structurelle, le CNB spécifie les charges, tandis que le matériau La résistance est référencée par l'utilisation de les normes relatives aux matériaux. Dans le cas de la conception technique du bois, la norme CSA O86 fournit au concepteur les éléments suivants les moyens de calculer les valeurs de résistance de produits structuraux en bois pour résister aux charges gravitaires et latérales. Des informations supplémentaires sur la conception sont disponibles à l'adresse suivante dans les documents d'accompagnement du CNB ; Commentaires sur les structures (Guide de l'utilisateur - NBC 2015 : Partie 4 de la Division B) et le Guide illustré de l'utilisateur - NBC 2015 : Partie 9 de la division B, habitations et petits bâtiments.

Au Canada, les produits structuraux en bois sont spécifiés de manière normative ou par le biais d'une conception technique, en fonction de l'application et de l'occupation. Les professionnels de la conception, tels que les architectes et les ingénieurs, sont généralement requis pour les structures de plus de trois étages ou de plus de 600 m de hauteur.2 ou si les occupations ne sont pas couvertes par la partie 9 "Logements et petits bâtiments" du CNB.

Les logements et les petits bâtiments peuvent être construits sans conception structurelle complète, en utilisant les exigences prescriptives de la partie 9 du code. Certaines exigences de la partie 9 sont basées sur des calculs, d'autres sont basées sur des pratiques de construction qui ont fait leurs preuves. En général, l'utilisation de prescriptions est autorisée si les conditions suivantes sont remplies :

  • trois étages ou moins
  • 600m2 ou moins
  • utilise des éléments en bois répétitifs espacés de 600 mm
  • les portées sont inférieures à 12,2 mètres
  • les charges dynamiques du plancher ne dépassent pas 2,4 kPa
  • occupation résidentielle, de bureaux, de commerces ou d'industries à risque moyen ou faible

La raison pour laquelle toutes les exigences de la partie 9 ne sont pas basées sur des calculs vient du fait qu'il y a eu des performances historiques et de l'expérience avec de petits bâtiments à ossature en bois au Canada, en plus de la notion que de nombreux éléments non structurels contribuent en fait à la performance structurelle d'un système à ossature en bois. La quantification des effets du "système" sur le comportement global d'un bâtiment à ossature bois ne peut se faire de manière adéquate en utilisant les hypothèses de conception habituelles, telles que les chemins de charge bidimensionnels et la mécanique d'ingénierie d'un seul élément. Dans ces cas, les exigences pour les maisons et les petits bâtiments sont basées sur des critères alternatifs de nature prescriptive. Ces critères prescriptifs sont basés sur un vaste historique de performance des maisons et petits bâtiments à ossature en bois qui répondent aux objectifs et aux exigences des codes actuels.

Les bâtiments qui sortent des limites prescrites ou qui sont destinés à une occupation importante ou à des situations post-catastrophe doivent être conçus par des professionnels de la conception conformément à la partie 4 du CNB. La résistance structurale des produits du bois et des systèmes de construction est calculée conformément aux exigences de la norme CSA O86 afin de résister aux charges décrites dans la partie 4 du CNB.

 

Les publications suivantes du CWC sont référencées dans le CNB :

L'humidité et les bâtiments à ossature bois

Introduction à la technologie de la construction en bois

Manuel de référence sur le bois

Le livre de Span

Guide d'ingénierie pour la construction à ossature bois

 

Pour plus d'informations, consultez les ressources suivantes :

Conception de la sécurité incendie dans les bâtiments (Conseil canadien du bois)

Codes Canada - Conseil national de recherches du Canada

Code national du bâtiment du Canada

CSA O86 Conception technique en bois

1 2 3 4 5 6 7 8 9

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône Persona
Persona
Tags Icône
Tags
Rapports annuels Icône Plus
Livre des prix Icône Plus
Études de cas Icône Plus
Publications gratuites Icône Plus
Revue Icône Plus
Systèmes de construction Icône Plus
Codes et normes Icône Plus
Nouvelles de l'industrie Icône Plus
Pourquoi le bois (FAQ) Icône Plus
Produits du bois Icône Plus
Acoustique Icône Plus
Exemples de conception Icône Plus
Ingénierie Icône Plus
Résistance au feu Icône Plus
Assurance Icône Plus
Bois massif Icône Plus
Icône de date
Date
Séparateur de ligne