Bienvenue sur le nouveau Hub de Ressources Numériques du CCB (BETA)

en-ca

Construire avec du bois

Explorez notre large éventail de sujets liés à la construction en bois.

5 résultats trouvés...
Trier par Icône de la liste déroulante

Types de murs pour le contrôle de l'eau

Les experts de l'enveloppe du bâtiment parlent généralement de trois ou quatre approches différentes pour la conception d'un mur en vue de contrôler l'humidité. Murs d'étanchéité sont conçus pour assurer l'étanchéité à l'eau et à l'air au niveau de la face du revêtement. Un exemple serait le stuc appliqué directement sur le revêtement ou la maçonnerie sans membrane de protection contre l'humidité telle que le papier de construction. Les joints du bardage et les interfaces avec d'autres éléments de la paroi sont scellés pour assurer la continuité. La face extérieure du revêtement est la principale - et unique - voie de drainage. Il n'y a pas de redondance dans le contrôle de l'humidité, c'est-à-dire qu'il n'y a pas de système de secours. Un système d'étanchéité de la face doit être construit et maintenu en parfait état pour contrôler efficacement l'intrusion de l'eau de pluie. En général, ces murs ne sont recommandés que dans les situations à faible risque, telles que les murs situés sous des surplombs profonds ou dans des climats secs. Murs de séparation dissimulés sont conçus en acceptant qu'une partie de l'eau puisse passer au-delà de la surface du revêtement. Ces murs intègrent un plan de drainage dans l'assemblage du mur, comme deuxième ligne de défense contre l'eau de pluie.

La face du bardage reste la principale voie de drainage, mais le drainage secondaire s'effectue à l'intérieur du mur. Ce plan de drainage est constitué d'une membrane, telle que du papier de construction, qui transporte l'eau vers le bas et l'extérieur du mur. Un exemple est le bardage ou le stuc appliqué sur du papier de construction. Les barrières murales dissimulées conviennent aux zones peu ou moyennement exposées à la pluie et au vent. Murs à écran pare-pluie vont encore plus loin dans la gestion de l'eau en incorporant une cavité entre l'arrière du bardage et le papier de construction. Cet espace d'air ventile l'arrière du bardage, ce qui favorise son assèchement. La cavité agit également comme une coupure capillaire entre le bardage et le papier de construction, empêchant ainsi la plus grande partie de l'eau d'entrer en contact avec le papier de construction. Un exemple de mur à écran pare-pluie est le stuc ou le bardage appliqué sur une bande verticale au-dessus du papier de construction. Murs à écran pare-pluie sont adaptés aux expositions aux fortes pluies et au vent. La technologie de l'écran pare-pluie a été améliorée par l'utilisation de l'écran de protection contre les intempéries. écran pare-pluie à pression équivalente. Ces murs utilisent des évents pour égaliser la pression entre l'air extérieur et l'air de la cavité, supprimant ainsi l'une des forces motrices de la pénétration de l'eau (lorsqu'elle est poussée à travers les fissures en raison d'une pression élevée sur la face du mur et d'une pression faible dans la cavité). Ces murs sont destinés à des expositions à très haut risque.

Importance d'un surplomb

Dans un climat pluvieux, un débord de toit est l'un des moyens les plus simples et les plus efficaces de réduire le risque d'infiltration d'eau. Un débord de toit est un parapluie pour le mur, et plus il est profond, mieux c'est. Une étude sur les bâtiments qui fuient en Colombie-Britannique, commandée par la Société canadienne d'hypothèques et de logement en 1996, a montré une forte corrélation inverse entre la profondeur du débord de toit et le pourcentage de murs présentant des problèmes. Cependant, même un petit porte-à-faux peut contribuer à protéger le mur, en grande partie grâce à son effet sur la pluie battante. L'effet de ces éléments sur la pression du vent est un avantage important des surplombs et des toits en pointe qui n'est souvent pas apprécié. La pluie poussée par le vent est généralement la plus grande source d'humidité pour les murs. Un porte-à-faux et/ou un toit incliné aident à diriger le vent vers le haut et au-dessus du bâtiment, ce qui réduit la pression sur le mur et, par conséquent, la force de la pluie battante qui frappe le mur. Cela signifie que l'eau est moins susceptible d'être poussée par le vent à travers les fissures du mur.

Minimiser les trous

La plupart des problèmes liés à l'eau de pluie sont dus à des fuites d'eau dans le mur par des trous. Si l'on ne prend pas soin de protéger les discontinuités de l'enveloppe, l'eau peut s'infiltrer autour des encadrements de fenêtres et des bouches de séchage, aux intersections comme les balcons et les parapets, et au niveau des joints de papier de construction, par exemple. Une bonne conception et une construction soignée sont essentielles ! Il en va de même pour l'entretien des produits d'étanchéité à courte durée de vie, comme le calfeutrage autour des cadres de fenêtres. Le BC Housing-Homeowner Protection Office a mis à jour le "Best Practice Guide for Wood-Frame Envelopes in the Coastal Climate of British Columbia" élaboré à l'origine par la Société canadienne d'hypothèques et de logement et a publié le "Building Enclosure Design Guide for Wood-Frame Multi-Unit Residential Buildings" qui contient de nombreuses informations sur les détails de conception et de construction.

Utilisez notre Calculateur de R effectif pour déterminer non seulement la résistance thermique des murs, mais aussi une évaluation de la durabilité du mur en fonction des conditions climatiques représentatives du Canada.

Publications connexes
Le programme Build a Better Home, géré par l'APA (The Engineered Wood Association), propose des cours de formation, des maisons de démonstration et des publications. Le site web propose des informations sur la construction et des liens vers tous les sites pertinents de l'APA. Publications de l'APA.

Bâtiments

Guide de conception des enceintes de bâtiment: Bâtiments résidentiels à ossature bois.

Bâtiments

 

Au début des années 1900, les constructions en bois à ossature légère et en bois lourd, d'une hauteur pouvant atteindre dix étages, étaient monnaie courante dans les grandes villes du Canada. La longévité et l'attrait continu de ces types de bâtiments sont évidents dans le fait que beaucoup d'entre eux sont encore utilisés aujourd'hui. Au cours de la dernière décennie, on a assisté à un renouveau de l'utilisation du bois pour les bâtiments plus hauts au Canada, y compris les constructions en bois à ossature légère de taille moyenne, jusqu'à six étages de hauteur.

Les constructions en bois à ossature légère de moyenne hauteur ne se résument pas à une simple ossature de 2×4 et à des panneaux de revêtement en bois. Les progrès de la science du bois et de la technologie du bâtiment ont permis de mettre au point des produits et des systèmes de construction plus solides, plus sûrs et plus sophistiqués, qui élargissent les possibilités de la construction en bois et offrent davantage de choix aux constructeurs et aux concepteurs. Les constructions modernes en bois à ossature légère de moyenne hauteur intègrent des solutions sûres qui ont fait l'objet de recherches approfondies. La conception technique et la technologie qui ont été développées et mises sur le marché positionnent le Canada comme un leader dans l'industrie de la construction à ossature bois de moyenne hauteur.

En 2009, grâce à ses codes de construction provinciaux, la Colombie-Britannique est devenue la première province canadienne à autoriser la construction d'immeubles de moyenne hauteur en bois. Depuis cette modification du code du bâtiment de la Colombie-Britannique (BCBC), qui a fait passer de quatre à six étages la hauteur autorisée pour les immeubles résidentiels à ossature en bois, plus de 300 de ces structures ont été achevées ou sont en cours de réalisation en Colombie-Britannique. En 2013 et 2015, le Québec, l'Ontario et l'Alberta, respectivement, ont également décidé d'autoriser la construction de bâtiments à ossature en bois de hauteur moyenne jusqu'à six étages. Ces changements réglementaires indiquent que le marché a clairement confiance dans ce type de construction.

Des preuves scientifiques et des recherches indépendantes ont montré que les bâtiments à ossature bois de moyenne hauteur peuvent répondre aux exigences de performance en matière d'intégrité structurelle, de sécurité incendie et de sécurité des personnes. Ces preuves ont également contribué à l'ajout de nouvelles dispositions normatives pour la construction en bois, et ont ouvert la voie à de futurs changements qui incluront davantage d'utilisations autorisées et, à terme, de plus grandes hauteurs autorisées pour les bâtiments en bois. À la suite de ces recherches et de la mise en œuvre réussie de nombreux bâtiments résidentiels de moyenne hauteur à ossature en bois, principalement en Colombie-Britannique et en Ontario, la Commission canadienne des codes du bâtiment et de prévention des incendies (CCCBPI) a approuvé des modifications similaires aux codes modèles nationaux de construction. L'édition 2015 du Code national du bâtiment du Canada (CNB) autorise la construction de bâtiments résidentiels, commerciaux et de services personnels de six étages à l'aide de matériaux de construction combustibles traditionnels. Les modifications apportées au CNB tiennent compte des progrès réalisés dans le domaine des produits du bois et des systèmes de construction, ainsi que des systèmes de détection, d'extinction et de confinement des incendies.

En ce qui concerne les bâtiments de moyenne hauteur à ossature en bois, plusieurs changements apportés au CNB 2015 visent à réduire davantage les risques posés par les incendies :

  • l'utilisation accrue de gicleurs automatiques dans les zones dissimulées des bâtiments résidentiels ;
  • l'utilisation accrue d'extincteurs automatiques sur les balcons ;
  • l'augmentation de l'approvisionnement en eau pour la lutte contre les incendies ; et
  • 90 % de bardage extérieur incombustible ou à combustion limitée à tous les étages.

La plupart des immeubles de moyenne hauteur à ossature bois sont situés au cœur des petites municipalités et dans les banlieues proches des plus grandes, ce qui offre des avantages économiques et de durabilité. La construction d'immeubles de moyenne hauteur à ossature bois soutient les objectifs de nombreuses municipalités : densification, logements abordables pour répondre à la croissance de la population, durabilité de l'environnement bâti et résilience des communautés.

Nombre de ces bâtiments ont été construits en bois à ossature légère dès le départ, avec une structure à ossature bois de cinq ou six étages construite sur une dalle de béton au sol ou sur un garage de stationnement en sous-sol en béton ; d'autres ont été construits au-dessus d'un ou deux étages de locaux commerciaux incombustibles.

Les bâtiments en bois de moyenne hauteur sont intrinsèquement plus complexes et impliquent l'adaptation des détails structurels et architecturaux qui répondent aux critères de conception structurels, acoustiques, thermiques et de résistance au feu. Plusieurs aspects clés de la conception et de la construction deviennent plus critiques dans cette nouvelle génération de bâtiments en bois de moyenne hauteur :

  • un risque accru de retrait cumulatif et de mouvement différentiel entre les différents types de matériaux, en raison de l'augmentation de la hauteur des bâtiments ;
  • l'augmentation des charges permanentes, vivantes, éoliennes et sismiques qui sont la conséquence d'une plus grande hauteur des bâtiments ;
  • exigences relatives à la disposition des murs de cisaillement continus et empilés ;
  • l'augmentation du degré de résistance au feu des séparations coupe-feu, comme l'exigent les bâtiments de plus grande hauteur et de plus grande superficie ;
  • les indices de transmission du son, tels qu'ils sont exigés pour les bâtiments à usage d'habitation multifamiliale, ainsi que pour d'autres usages ;
  • le risque d'une exposition plus longue aux éléments pendant la construction ;
  • l'atténuation des risques liés aux incendies pendant la construction ; et
  • la modification de la séquence et de la coordination de la construction, résultant de l'utilisation de technologies et de processus de préfabrication.

Il existe de nombreuses approches et solutions alternatives à ces nouvelles considérations de conception et de construction associées aux systèmes de construction en bois de moyenne hauteur. Les publications de référence produites par le Conseil canadien du bois fournissent une discussion plus détaillée, des études de cas et des détails sur les techniques de conception et de construction des immeubles de moyenne hauteur.

 

Pour plus d'informations, consultez les ressources suivantes :

Guide des meilleures pratiques pour les immeubles de moyenne hauteur (Conseil canadien du bois)

Guide de référence 2015 : Construction en bois de moyenne hauteur dans le Code du bâtiment de l'Ontario (Conseil canadien du bois)

Mid-Rise 2.0 - Innovative Approaches to Mid-Rise Wood Frame Construction (Conseil canadien du bois)

Mid-Rise Construction in British Columbia (Conseil canadien du bois)

Code national du bâtiment du Canada

Manuel de conception du bois (Conseil canadien du bois)

CSA O86 Conception technique en bois

Le bois pour les constructions de moyenne hauteur (Bois ÇA MARCHE ! Atlantique)

Sécurité incendie et sûreté : Note technique sur la sécurité incendie sur les chantiers de construction en Colombie-Britannique et en Ontario (Conseil canadien du bois)

FAQ

Que disent les experts de la construction d'immeubles de moyenne hauteur à ossature bois ?

La construction d'immeubles de moyenne et grande hauteur en bois est-elle un phénomène nouveau ?

La construction à ossature en bois et en bois lourd (jusqu'à dix étages) était la norme au début des années 1900, et beaucoup de ces bâtiments existent encore et sont utilisés dans de nombreuses villes canadiennes.

Au cours des dix dernières années, l'utilisation du bois pour les bâtiments de moyenne hauteur (jusqu'à six étages) et les bâtiments de grande hauteur a connu un regain d'intérêt. Rien qu'en Colombie-Britannique, en décembre 2013, il y avait plus de 250 bâtiments de cinq et six étages en phase de conception ou de construction, construits à partir de produits du bois.

Pourquoi des propositions de modification du code ?

Cette modification du code de la construction de 2015 ne vise pas à favoriser le bois par rapport à d'autres matériaux de construction ; il s'agit de reconnaître, par le biais d'un processus de codification très approfondi, que l'innovation scientifique dans les produits du bois et les systèmes de construction peut conduire et conduira à un plus grand nombre de choix pour les constructeurs et les occupants.

Ces bâtiments sont-ils sûrs ?

Quel que soit le matériau de construction utilisé, rien ne peut être construit s'il n'est pas conforme au code. Les immeubles de moyenne hauteur à ossature bois reflètent une nouvelle norme d'ingénierie dans la mesure où les problèmes structurels, sismiques et d'incendie ont tous été pris en compte par les comités d'experts de la Commission canadienne des codes du bâtiment et de prévention des incendies. Par exemple, en ce qui concerne les préoccupations des pompiers, les espaces cachés et les balcons sont davantage protégés par des gicleurs, l'approvisionnement en eau pour la protection contre l'incendie est plus important, des restrictions sont imposées sur les types de revêtements utilisés et l'accès des pompiers est mieux pris en compte. En fin de compte, lorsqu'ils sont occupés, ces bâtiments répondent pleinement aux mêmes exigences du code de la construction que tout autre type de construction du point de vue de la santé, de la sécurité et de l'accessibilité.

Quelles sont les nouvelles dispositions proposées en matière de sécurité ?

Sécurité incendie :

  • Augmentation du niveau de protection contre les gicleurs et l'eau :
  • Plus d'espaces cachés sprinklés
  • Les balcons doivent être protégés par des gicleurs
  • Augmentation de l'approvisionnement en eau pour la protection contre les incendies
  • Revêtement mural extérieur incombustible ou à combustibles limités sur 5th et 6th étage
  • 25% du périmètre doit donner sur une rue (à moins de 15m de la rue) pour l'accès des pompiers.

Dispositions relatives aux séismes et aux vents :

  • Similaire au code de la construction de la Colombie-Britannique
  • Guide (annexe) sur l'impact de l'augmentation des charges de pluie et de vent pour les bâtiments de 5 et 6 étages.

Acoustique :

  • Exigences relatives à la classe de transmission du son apparent (ASTC)
  • Soutenu par la science de FPInnovations, du CNRC et de nombreux autres organismes.

Le bois ne brûle-t-il pas ?

Aucun matériau de construction n'est imperméable aux effets du feu. Les modifications proposées au code vont au-delà des exigences minimales définies par le CNB. La santé, la sécurité, l'accessibilité, la protection contre les incendies et la protection structurelle des bâtiments restent les objectifs fondamentaux du CNB et de l'industrie du bois dans son ensemble.

Qu'en est-il de la sécurité sur les chantiers de construction ?

Le Conseil canadien du bois a développé un site de construction guides de sécurité incendie qui décrivent les meilleures pratiques et les mesures de sécurité à prendre pendant la phase de construction d'un bâtiment.

Les immeubles de moyenne hauteur à ossature bois sont-ils rentables ?

Dans la plupart des cas, oui. Les immeubles de moyenne hauteur à ossature bois constituent souvent une option de construction moins onéreuse pour les constructeurs. C'est une bonne nouvelle pour le Canada, où les terrains sont très chers. Les modifications recommandées du code national du bâtiment du Canada (CNB) permettraient de construire des bâtiments sûrs et conformes au code, ce qui ne serait pas possible autrement. L'avantage net de la réduction des coûts de construction est une plus grande accessibilité pour les acheteurs de maisons. En termes de nouvelles opportunités économiques, la possibilité d'aller de l'avant "maintenant" crée de nouveaux emplois dans le secteur de la construction dans les villes et soutient l'emploi dans les communautés forestières. Cela offre également des possibilités d'exportation accrues pour les produits du bois actuels et innovants, dont l'adoption au Canada sert d'exemple à d'autres pays.

Les ponts en bois sont depuis longtemps des éléments essentiels des réseaux routiers, ferroviaires et forestiers du Canada. Dépendant de la disponibilité des matériaux, de la technologie et de la main-d'œuvre, la conception et la construction des ponts en bois ont évolué de manière significative au cours des 200 dernières années dans toute l'Amérique du Nord. Les ponts en bois prennent de nombreuses formes et utilisent différents systèmes de support, notamment des ponts en rondins à portée simple, différents types de ponts à treillis, ainsi que des tabliers et des éléments de pont en matériaux composites ou stratifiés. Les ponts en bois restent un élément important de notre réseau de transport au Canada.

Les avantages de la construction de ponts en bois modernes sont les suivants :

  • un coût initial réduit, en particulier pour les régions éloignées ;
  • la rapidité de la construction, grâce à l'utilisation de la préfabrication ;
  • avantages en matière de durabilité ;
  • l'esthétique ;
  • des fondations plus légères ;
  • des charges sismiques plus faibles, associées à des connexions moins complexes avec les sous-structures ;
  • les structures temporaires et les grues de plus petite taille ; et
  • des coûts de transport moins élevés associés à des matériaux moins lourds.

Les différents types de matériaux utilisés pour la construction des ponts en bois sont les suivants : bois de sciage, rondins, bois lamellé-collé droit et courbe (lamellé-collé), bois de placage stratifié (LVL), bois à copeaux parallèles (PSL), bois lamellé-croisé (CLT), bois lamellé-cloué (NLT) et systèmes composites tels que les tabliers stratifiés sous contrainte, les tabliers stratifiés bois-béton et les polymères renforcés par des fibres.

Les deux principales essences de bois utilisées pour la construction de ponts en bois au Canada sont le sapin de Douglas et la combinaison d'essences épicéa-pin-sapin. D'autres espèces appartenant aux combinaisons d'espèces Hem-Fir et Northern sont également reconnues par la norme CSA O86, mais elles sont moins couramment utilisées dans la construction de ponts.

Toutes les fixations métalliques utilisées pour les ponts doivent être protégées contre la corrosion. La méthode la plus courante pour assurer cette protection est la galvanisation à chaud, un processus par lequel un métal sacrificiel est ajouté à l'extérieur de la fixation. Les différents types de fixations utilisés dans la construction de ponts en bois comprennent, entre autres, les boulons, les tire-fonds, les anneaux fendus, les plaques de cisaillement et les clous (pour les stratifiés de pont uniquement).

Tous les ponts routiers au Canada doivent être conçus pour répondre aux exigences des normes CSA S6 et CSA O86. La norme CSA S6 exige que les principaux éléments structurels de tout pont au Canada, quel que soit le type de construction, soient capables de résister à un minimum de 75 ans de charge pendant sa durée de vie.

Le style et la portée des ponts varient considérablement en fonction de l'application. Dans les endroits difficiles d'accès et les vallées profondes, les ponts à chevalets en bois étaient courants à la fin des années 19th siècle et au début des années 20th siècle. Historiquement, les ponts à chevalets dépendaient fortement de l'abondance des ressources en bois et, dans certains cas, étaient considérés comme temporaires. La construction initiale des chemins de fer transcontinentaux d'Amérique du Nord n'aurait pas été possible sans l'utilisation de bois pour construire les ponts et les chevalets.

De nombreux exemples de ponts en bois à treillis ont été construits depuis plus d'un siècle. Les ponts à poutres en treillis permettent des portées plus longues que les ponts à poutres simples et, historiquement, leurs portées étaient comprises entre 30 et 60 m (100 et 200 pieds). Les ponts conçus avec des fermes situées au-dessus du tablier offrent une excellente occasion de construire un toit au-dessus de la chaussée. L'installation d'un toit au-dessus de la chaussée est un excellent moyen d'évacuer l'eau de la structure principale du pont et de la protéger du soleil. La présence de ces toits est la principale raison pour laquelle ces ponts couverts centenaires sont encore en service aujourd'hui. Le fait qu'ils fassent toujours partie de notre paysage témoigne autant de leur robustesse que de leur attrait.

Bien que conçue à l'origine comme une mesure de réhabilitation des tabliers de ponts vieillissants, la technique de stratification sous contrainte a été étendue aux nouveaux ponts par l'application de contraintes au moment de la construction initiale. Les tabliers stratifiés sous contrainte offrent un meilleur comportement structurel, grâce à leur excellente résistance aux effets des charges répétées.

Les trois principales considérations liées à la durabilité des ponts en bois sont la protection par la conception, le traitement de préservation du bois et les éléments remplaçables. Un pont peut être conçu de manière à s'auto-protéger en détournant l'eau des éléments structurels. Le bois traité a la capacité de résister aux effets des produits chimiques de déglaçage et aux attaques des agents biotiques. Enfin, le pont doit être conçu de manière à ce que, à un moment donné, un seul élément puisse être remplacé relativement facilement, sans perturbation ni coût importants.

 

Pour plus d'informations, consultez les ressources suivantes :

  • Ponts routiers en bois (Conseil canadien du bois)
  • Guide de référence sur les ponts en bois de l'Ontario (Conseil canadien du bois)
  • CSA S6 Code canadien de conception des ponts routiers
  • CSA O86 Conception technique du bois

Tests

Les recherches en cours comprennent le plus grand essai de feu de bois massif au monde - cliquez ici pour des mises à jour sur les résultats de l'essai en cours. https://firetests.cwc.ca/

Études

Rapports

Recherche sur les incendies

Recherche et guides sur l'acoustique

Initiative de démonstration des grands bâtiments en bois Rapports d'essai
(financement assuré par Ressources naturelles Canada)

Visitez la bibliothèque de recherche de Think Wood pour obtenir des ressources supplémentaires.

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône Persona
Persona
Tags Icône
Tags
Rapports annuels Icône Plus
Livre des prix Icône Plus
Études de cas Icône Plus
Publications gratuites Icône Plus
Revue Icône Plus
Systèmes de construction Icône Plus
Codes et normes Icône Plus
Nouvelles de l'industrie Icône Plus
Pourquoi le bois (FAQ) Icône Plus
Produits du bois Icône Plus
Acoustique Icône Plus
Exemples de conception Icône Plus
Ingénierie Icône Plus
Résistance au feu Icône Plus
Assurance Icône Plus
Bois massif Icône Plus
Icône de date
Date
Séparateur de ligne