Guide des meilleures pratiques pour les immeubles de moyenne hauteur Techniques de construction éprouvées pour les bâtiments à ossature bois de cinq et six étages
Guide des meilleures pratiques pour les immeubles de moyenne hauteur Techniques de construction éprouvées pour les bâtiments à ossature bois de cinq et six étages
Immeubles de moyenne hauteur

Au début des années 1900, les constructions en bois à ossature légère et en bois lourd, d'une hauteur pouvant atteindre dix étages, étaient monnaie courante dans les grandes villes du Canada. La longévité et l'attrait continu de ces types de bâtiments sont évidents dans le fait que beaucoup d'entre eux sont encore utilisés aujourd'hui. Au cours de la dernière décennie, on a assisté à un renouveau de l'utilisation du bois pour les bâtiments plus hauts au Canada, y compris les immeubles de taille moyenne à ossature légère en bois d'une hauteur maximale de six étages. La construction en bois à ossature légère de moyenne hauteur est plus qu'une simple ossature de 2×4 et des panneaux de revêtement en bois. Les progrès de la science du bois et de la technologie du bâtiment ont permis de mettre au point des produits et des systèmes de construction plus solides, plus sûrs et plus sophistiqués, qui élargissent les possibilités de la construction en bois et offrent davantage de choix aux constructeurs et aux concepteurs. Les constructions modernes en bois à ossature légère de moyenne hauteur intègrent des solutions sûres qui ont fait l'objet de recherches approfondies. La conception technique et la technologie qui ont été développées et mises sur le marché positionnent le Canada comme un leader dans l'industrie de la construction à ossature en bois de moyenne hauteur. En 2009, par le biais de ses codes de construction provinciaux, la Colombie-Britannique est devenue la première province canadienne à autoriser la construction d'immeubles de moyenne hauteur en bois. Depuis cette modification du code du bâtiment de la Colombie-Britannique (BCBC), qui a fait passer de quatre à six étages la hauteur autorisée pour les immeubles résidentiels à ossature en bois, plus de 300 de ces structures ont été achevées ou sont en cours de réalisation en Colombie-Britannique. En 2013 et 2015, le Québec, l'Ontario et l'Alberta, respectivement, ont également décidé d'autoriser la construction de bâtiments à ossature en bois de hauteur moyenne jusqu'à six étages. Ces changements réglementaires indiquent que le marché a clairement confiance dans ce type de construction. Des preuves scientifiques et des recherches indépendantes ont montré que les bâtiments à ossature bois de moyenne hauteur peuvent répondre aux exigences de performance en matière d'intégrité structurelle, de sécurité incendie et de sécurité des personnes. Ces preuves ont également contribué à l'ajout de nouvelles dispositions normatives pour la construction en bois, et ont ouvert la voie à de futurs changements qui incluront davantage d'utilisations autorisées et, à terme, de plus grandes hauteurs autorisées pour les bâtiments en bois. À la suite de ces recherches et de la mise en œuvre réussie de nombreux bâtiments résidentiels de moyenne hauteur à ossature en bois, principalement en Colombie-Britannique et en Ontario, la Commission canadienne des codes du bâtiment et de prévention des incendies (CCCBPI) a approuvé des modifications similaires aux codes modèles nationaux de construction. L'édition 2015 du Code national du bâtiment du Canada (CNB) autorise la construction de bâtiments résidentiels, commerciaux et de services personnels de six étages à l'aide de matériaux de construction combustibles traditionnels. Les modifications apportées au CNB tiennent compte des progrès réalisés dans le domaine des produits du bois et des systèmes de construction, ainsi que des systèmes de détection, d'extinction et de confinement des incendies. En ce qui concerne les bâtiments de moyenne hauteur à ossature en bois, plusieurs modifications apportées au CNB 2015 visent à réduire davantage les risques d'incendie, notamment : l'utilisation accrue de gicleurs automatiques dans les zones dissimulées des bâtiments résidentiels ; l'utilisation accrue de gicleurs sur les balcons ; l'augmentation de l'approvisionnement en eau pour la lutte contre l'incendie ; et un revêtement extérieur incombustible ou peu combustible à 90 % à tous les étages. La plupart des immeubles de moyenne hauteur à ossature bois sont situés au cœur des petites municipalités et dans les banlieues des plus grandes, ce qui présente des avantages économiques et de durabilité. La construction à ossature bois de moyenne hauteur soutient les objectifs de nombreuses municipalités : densification, logements abordables pour répondre à la croissance de la population, durabilité de l'environnement bâti et communautés résilientes. Bon nombre de ces bâtiments ont été construits à partir d'une ossature légère en bois, avec une structure à ossature en bois de cinq ou six étages construite sur une dalle de béton au sol, ou sur un parking en sous-sol en béton ; d'autres ont été construits au-dessus d'un ou deux étages de locaux commerciaux incombustibles. Les bâtiments en bois de moyenne hauteur sont intrinsèquement plus complexes et impliquent l'adaptation de détails structurels et architecturaux qui répondent à des critères de conception structurels, acoustiques, thermiques et de performance en cas d'incendie. Plusieurs aspects clés de la conception et de la construction deviennent plus critiques dans cette nouvelle génération de bâtiments en bois de moyenne hauteur : le risque accru de retrait cumulatif et de mouvement différentiel entre les différents types de matériaux, en raison de l'augmentation de la hauteur du bâtiment ; l'augmentation des charges permanentes, vivantes, éoliennes et sismiques qui sont une conséquence de la hauteur plus élevée du bâtiment ; les exigences relatives à la disposition des murs de refend à empilement continu ; l'augmentation des degrés de résistance au feu pour les séparations coupe-feu, comme l'exigent les bâtiments de plus grande hauteur et de plus grande superficie ; les indices de transmission du son, requis pour les bâtiments résidentiels multifamiliaux, ainsi que pour d'autres usages ; la possibilité d'une exposition plus longue aux éléments pendant la construction ; l'atténuation des risques liés aux incendies pendant la construction ; et la modification de la séquence et de la coordination de la construction, résultant de l'utilisation de technologies et de processus de préfabrication. Il existe de nombreuses approches et solutions alternatives à ces nouvelles considérations de conception et de construction associées aux systèmes de construction en bois de moyenne hauteur. Les publications de référence produites par le Conseil canadien du bois fournissent une discussion plus détaillée, des études de cas et des détails sur les techniques de conception et de construction d'immeubles de moyenne hauteur. Pour de plus amples informations, veuillez consulter les ressources suivantes : Guide des meilleures pratiques pour les immeubles de moyenne hauteur (Conseil canadien du bois) Guide de référence 2015 : Mid-Rise Wood Construction in the Ontario Building Code (Conseil canadien du bois) Mid-Rise 2.0 - Innovative Approaches to Mid-Rise Wood Frame Construction (Conseil canadien du bois) Mid-Rise Construction in British Columbia (Conseil canadien du bois) National Building Code of Canada Wood Design Manual (Conseil canadien du bois) CSA O86 Engineering design in wood Wood for Mid-Rise Construction (Wood WORKS ! Atlantic) Fire Safety and Security : Note technique sur la sécurité incendie sur les chantiers de construction en Colombie-Britannique et en Ontario (Conseil canadien du bois)
Construction d'immeubles de taille moyenne en Colombie-Britannique
Construction d'immeubles de moyenne hauteur en Colombie-Britannique - Une étude de cas basée sur le projet Remy à Richmond, BC
Essai quasi statique monotone des assemblages CLT
Mountain Equipment Co-op
Siège social de Mountain Equipment Co-op - Vancouver, BC
Ongles

Nailing is the most basic and most commonly used means of attaching members in wood frame construction. Common nails and spiral nails are used extensively in all types of wood construction. Historical performance, along with research results have shown that nails are a viable connection for wood structures with light to moderate loads. They are particularly useful in locations where redundancy and ductile connections are required, such as loading under seismic events. Typical structural applications for nailed connections include: wood frame construction post and beam construction heavy timber construction shearwalls and diaphragms nailed gussets for wood truss construction wood panel assemblies Nails and spikes are manufactured in many lengths, diameters, styles, materials, finishes and coatings, each designed for a specific purpose and application. In Canada, nails are specified by the type and length and are still manufactured to Imperial dimensions. Nails are made in lengths from 13 to 150 mm (1/2 to 6 in). Spikes are made in lengths from 100 to 350 mm (4 to 14 in) and are generally stockier than nails, that is, a spike has a larger cross-sectional area than an equivalent length common nail. Spikes are generally longer and thicker than nails and are generally used to fasten heavy pieces of timber. Nail diameter is specified by gauge number (British Imperial Standard). The gauge is the same as the wire diameter used in the manufacture of the nail. Gauges vary according to nail type and length. In the U.S., the length of nails is designated by “penny” abbreviated “d”. For example, a twenty-penny nail (20d) has a length of four inches. The most common nails are made of low or medium carbon steels or aluminum. Medium-carbon steels are sometimes hardened by heat treating and quenching to increase toughness. Nails of copper, brass, bronze, stainless steel, monel and other special metals are available if specially ordered. Table 1, below, provides examples of some common applications for nails made of different materials. TABLE 1: Nail applications for alternative materials Material Abbreviation Application Aluminum A For improved appearance and long life: increased strain and corrosion resistance. Steel – Mild S For general construction. Steel – Medium Carbon Sc For special driving conditions: improved impact resistance. Stainless steel, copper and silicon bronze E For superior corrosion resistance: more expensive than hot-dip galvanizing. Uncoated steel nails used in areas subject to wetting will corrode, react with extractives in the wood, and result in staining of the wood surface. In addition, the naturally occurring extractives in cedars react with unprotected steel, copper and blued or electro-galvanized fasteners. In such cases, it is best to use nails made of non-corrosive material, such as stainless steel, or finished with non-corrosive material such as hot-dipped galvanized zinc. Table 2, below, provides examples of some common applications for alternative finishes and coatings of nails. TABLE 2: Nail applications for alternative finishes and coatings Nail Finish or Coating Abbreviation Application Bright B For general construction, normal finish, not recommended for exposure to weather. Blued Bl For increased holding power in hardwood, thin oxide finish produced by heat treatment. Heat treated Ht For increased stiffness and holding power: black oxide finish. Phoscoated Pt For increased holding power; not corrosion resistant. Electro galvanized Ge For limited corrosion resistance; thin zinc plating; smooth surface; for interior use. Hot-dip galvanized Ghd For improved corrosion resistance; thick zinc coating; rough surface; for exterior use. Pneumatic or mechanical nailing guns have found wide-spread acceptance in North America due to the speed with which nails can be driven. They are especially cost effective in repetitive applications such as in shearwall construction where nail spacing can be considerably closer together. The nails for pneumatic guns are lightly attached to each other or joined with plastic, allowing quick loading nail clips, similar to joined paper staples. Fasteners for these tools are available in many different sizes and types. Design information provided in CSA O86 is applicable only for common round steel wire nails, spikes and common spiral nails, as defined in CSA B111. The ASTM F1667 Standard is also widely accepted and includes nail diameters that are not included in the CSA B111. Other nail-type fastenings not described in CSA B111 or ASTM F1667 may also be used, if supporting data is available. Types of Nails For more information, refer to the following resources: International, Staple, Nail, and Tool Association (ISANTA) CSA O86 Engineering design in wood CSA B111 Wire Nails, Spikes and Staples ASTM F1667 Standard Specification for Driven Fasteners: Nails, Spikes and Staples
Codes modèles nationaux au Canada

Au nom de la Commission canadienne des codes du bâtiment et de prévention des incendies (CCCBPI), le Conseil national de recherches du Canada (CNRC), Codes Canada publie des codes modèles nationaux qui énoncent les exigences minimales relatives à leur portée et à leurs objectifs. Il s'agit notamment du Code national du bâtiment (CNB), du Code national de prévention des incendies (CNPI), du Code national de l'énergie pour les bâtiments (CNEB), du Code national de la plomberie (CNP) et d'autres documents. L'Association canadienne de normalisation (CSA) publie d'autres codes modèles qui traitent des systèmes électriques, du gaz et des ascenseurs. Le CNB est le code modèle de construction au Canada qui constitue la base de la conception de la plupart des bâtiments dans le pays. Le CNB est un code modèle de construction très apprécié parce qu'il s'agit d'un processus consensuel de production d'un ensemble modèle d'exigences visant à assurer la santé et la sécurité du public dans les bâtiments. Ses origines sont profondément ancrées dans l'histoire et la culture canadiennes et dans la nécessité de loger la population croissante du Canada de manière sûre et économique. Des événements historiques ont façonné bon nombre des exigences du CNB en matière de santé et de sécurité. Les codes modèles tels que le CNB et le CMNÉB n'ont pas force de loi tant qu'ils n'ont pas été adoptés par une autorité gouvernementale compétente. Au Canada, cette responsabilité incombe aux provinces, aux territoires et, dans certains cas, aux municipalités. La plupart des régions choisissent d'adopter le CNB ou d'adapter leur propre version dérivée du CNB pour répondre à leurs besoins régionaux. Les codes modèles canadiens sont élaborés par des experts, pour des experts, dans le cadre d'un processus collaboratif et consensuel qui inclut des contributions de tous les segments de la communauté du bâtiment. Les codes modèles canadiens s'appuient sur la meilleure expertise du Canada et du monde entier pour fournir des règlements de construction et de sécurité efficaces et harmonisés dans tout le Canada. Les publications de Codes Canada sont élaborées par la Commission canadienne des codes du bâtiment et de prévention des incendies (CCCBPI). La CCCBPI supervise les travaux d'un certain nombre de comités techniques permanents. Représentant toutes les principales facettes de l'industrie de la construction, les membres de la Commission comprennent des responsables de la construction et de la lutte contre les incendies, des architectes, des ingénieurs, des entrepreneurs et des propriétaires de bâtiments, ainsi que des membres du public. Les représentants du Conseil canadien du bois sont membres de plusieurs comités permanents et groupes de travail relevant de la CCCBPI et participent activement aux mises à jour et révisions techniques liées aux aspects des codes modèles canadiens qui s'appliquent aux produits et systèmes de construction en bois. Au cours d'un cycle quinquennal de révision des codes, le public canadien a de nombreuses occasions de contribuer au processus. Au moins deux fois au cours du cycle quinquennal, les modifications proposées au code sont publiées et le public est invité à formuler des commentaires. Cette procédure est cruciale car elle permet à toutes les personnes concernées d'apporter leur contribution et d'élargir le champ d'expertise des comités. Des milliers de commentaires sont reçus et examinés par les comités au cours de chaque cycle. Une proposition de modification peut être approuvée telle quelle, modifiée et soumise à nouveau à l'examen du public à une date ultérieure, ou rejetée dans son intégralité. Pour de plus amples informations, veuillez consulter les ressources suivantes : Fire Safety Design in Buildings (Conseil canadien du bois) Codes Canada - Conseil national de recherches du Canada Code national du bâtiment du Canada