en-ca

Décroissance

Décroissance

Wood is biodegradable – that’s a characteristic we normally consider to be one of the benefits of choosing natural materials. Organisms exist that can break down wood into its basic chemicals so that fallen logs in the forest can contribute to the growth of the next generation of life. This process – essential in the forest – must be prevented when we use wood in buildings. A variety of fungi, insects, and marine borers have the capability to break down the complex polymers which make up the wood structure. In Canada, fungi are a more serious problem than insects. The wood-inhabiting fungi can be separated into moulds, stainers, soft-rot fungi and wood-rotting basidiomycetes. The moulds and stainers can discolour the wood however they do not significantly damage the wood structurally. Soft-rot fungi and wood-rotting basidiomycetes can cause strength loss in wood, with the basidiomycetes the ones responsible for decay problems in buildings. With regard to insects, carpenter ants only cause problems in decayed wood, and significant subterranean termite activity is confined to a few southern areas of Canada. However, other parts of the world have a serious problem with termites. Decayed wood is the result of a series of events including a sequence of fungal colonization. The spores of these fungi are ubiquitous in the air for much of the year. Wood-rotting fungi require wood as their food source, an equable temperature, oxygen and water. Water is normally the only one of these factors that we can easily manage. This may be made more difficult by some fungi, which can transport water to otherwise dry wood. It can also be difficult to control moisture once decay has started, since the fungi produce water as a result of the decay process. The outer portion of this log is being attacked by a decay fungus. Note that the damage is held back at the line between heartwood and sapwood. To understand why, click here to read about natural durability.   More Information Click Here for a 26-page paper on biodeterioration, including illustrations and bibliography. For answers to common questions on decay, visit the FAQ page

Traitement des dépôts

Traitement des dépôts

Le traitement des dépôts étant localisé, il est essentiel qu'il soit placé au bon endroit, ce qui nécessite de comprendre comment l'humidité peut pénétrer dans la structure. Cela ne peut se faire que lorsque la construction est achevée ou sur le point de l'être. C'est à ce moment-là que l'on peut évaluer le degré de protection prévu par la conception et que l'on peut identifier et, si possible, éliminer les pièges à eau. Le traitement peut alors être appliqué au bon endroit pour intercepter l'humidité près de son point d'entrée. Les traitements en profondeur sont un excellent choix pour quelques applications courantes telles que les poutres partiellement exposées. Lorsqu'une poutre pénètre l'enveloppe du bâtiment, seule une partie est exposée à l'humidité et il est logique de ne traiter que cette partie. Les traitements en dépôt sont particulièrement utiles pour les produits qui ne se prêtent pas au traitement sous pression avec des produits de préservation à base d'eau, comme le bois lamellé-collé. De même, les traitements en dépôt sont appropriés pour les extrémités exposées des rondins dans les maisons en rondins - les rondins qui dépassent le débord de toit protecteur sont exposés au risque de pourriture. Solides Les traitements de dépôt utilisent le plus souvent une forme solide de conservateur. Les bâtonnets de borate, de cuivre/borate et de fluorure conviennent parfaitement à cette utilisation finale car ils sont faciles à installer et les ingrédients actifs ne deviennent mobiles qu'en cas d'entrée d'humidité. Autres formats Les pâtes peuvent être introduites dans des trous percés ou des rainures - les rainures des maisons en rondins sont une application appropriée. L'injection de liquide est moins courante, car il s'agit de percer de petits trous, d'insérer un injecteur à buse à pointe relié à un réservoir/pompe de 70 à 120 psi et de forcer le conservateur le long du grain sous l'effet de la pression. Une série de trous de ce type est nécessaire, en particulier pour les grandes dimensions, afin d'augmenter la charge. Moins adaptés au traitement des dépôts, les fumigants n'ont pas, à notre connaissance, été utilisés dans ces applications.

Durabilité - FAQ

Durabilité - FAQ

Veuillez vous référer aux documents pdf ci-dessous pour les questions fréquemment posées concernant la durabilité : Bois en général Décroissance et réparation Décoloration Finition Bois traité contre les moisissures

Durabilité par conception

Durabilité par conception

La "durabilité par la conception" est l'aspect le plus important des solutions durables. Il s'agit d'abord d'utiliser du bois sec, de le stocker de manière appropriée pour s'assurer qu'il reste sec, puis de concevoir le bâtiment de manière à protéger le bois ou, si le bois est exposé, de le concevoir de manière à ce qu'il n'accumule pas d'humidité. Il faut également veiller à ce que l'enveloppe du bâtiment soit conçue de manière à évacuer l'eau en vrac, à empêcher l'eau et la vapeur de pénétrer dans l'enveloppe et à évacuer l'eau qui s'y infiltre.

Durabilité par nature

Durabilité par nature

For outdoor applications of wood, we have a strong tradition here in North America of using our naturally durable species: Western red cedar, Eastern white cedar, yellow cypress and redwood. These are familiar choices for decks, fences, siding and roofing. These species are resistant to decay in their natural state, due to high levels of organic chemicals called extractives. Extractives are chemicals that are deposited in the heartwood of certain tree species as they convert sapwood to heartwood. In addition to providing the wood with decay resistance, extractives also often give the heartwood colour and odour. Only the heartwood has these protective deposits. The sapwood of all North American softwoods is susceptible to decay and must be protected by other means when decay resistance is required. Sapwood is the newer part of the tree, closer to the bark. It needs no decay protection in the live tree because wound responses keep out any invading organisms. The heartwood is the inner, older part of the tree and is no longer alive. Heartwood is often visibly distinguishable from sapwood by colour (heartwood is generally darker), but not in all species. However, even if you’re sure you have heartwood of a durable species, you may not have the level of resistance you think. Decay resistance is often highly variable, and may be lower in plantation-grown trees. There is currently no way to reliably estimate the durability of a piece of naturally durable heartwood. More Information Click Here for a table showing natural durability rankings of common softwood species.

Durabilité par traitement

Durabilité par traitement

Treating Methods There are two basic methods of treating: with and without pressure. Non-pressure methods are the application of preservative by brushing, spraying or dipping the piece to be treated. These are superficial treatments that do not result in deep penetration or large absorption of preservative. Their use is best restricted to field treatment during construction (for example, when a pressure-treated piece of lumber must be field cut), to cases where only part of a piece is to be treated, to manufacturing processes for strand-based wood products, to surface protection against moulds or to remedial treatment of wood in place. For example, mixtures of borate and glycols are used to treat sound wood left in place during repair of decay problems. The glycol helps the borate to penetrate dry wood, arresting the activity of any fungus which contacts it. The penetration of the preservative is still limited, and the most important function is to prevent undetected fungus left in place from spreading to sound wood. Deeper, more thorough penetration is achieved by driving the preservative into the wood cells with pressure. Various combinations of pressure and vacuum are used to force adequate levels of chemical into the wood. Pressure-treating preservatives consist of chemicals carried in a solvent. The solvent, or carrier, is either water or oil. Oilborne preservatives are largely used for treating industrial products such as railway ties, utility poles and bridge timbers, and for protection of field cuts. Waterborne preservatives are more widely used in residential markets due to the absence of odour, the cleaner wood surface and the ability to paint or stain the wood product. When a wood product will be used in an application known to present a risk, for example outdoors, pressure-treatment is recommended. Types of Preservatives The mostly commonly used wood preservatives in North America for residential construction are waterborne copper-based systems, including alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper azole (MCA). Wood treated with these preservatives has a natural green hue, though this may be masked by the use of colourants that most often give the treated wood a mid-brown colour. Copper is the primary biocide in these systems. ACQ also contains quaternary ammonium compounds that act as a co-biocide to protect against copper-tolerant organisms. Similarly, CA and MCA contain tebuconazole to protect against these organisms.  Chromated copper arsenate (CCA) was heavily used in residential construction until 2004 when its use in most residential applications was phased out. It is now largely limited to industrial applications, but can still be used in a few residential applications such as shakes and shingles and permanent wood foundations. Ammoniacal copper zinc arsenate (ACZA) can also be used in most of these applications, but is primarily favoured for treating Douglas-fir and for marine applications. Borates are another class of waterborne preservative used in North America. Their use is currently limited to applications which are protected from rain and other persistent sources of water. These include framing in termite areas and repair of decayed framing in leaky buildings where the main moisture source has been eliminated. Borates are also used as part of a dual treatment in conjunction with a creosote or copper naphthenate shell to protect railway ties. Metal-free waterborne preservative systems such as PTI and EL2 contain carbon-based fungicides and insecticides. Wood treated with these systems is used in residential construction in the United States, and is restricted to above-ground applications. Oilborne preservatives include creosote, pentachlorphenol, and copper- and zinc-naphthenate. Creosote is the well-known black oily wood preservative, the oldest type of preservative still in modern use. It’s now used in Canada almost exclusively for railroad ties, where its resistance to moisture movement is a key advantage. Pentachlorophenol in oil is mainly used for utility poles where the surface softening characteristics of the oil are useful in pole climbing. Copper naphthenate and zinc naphthenate are two common preservatives used for treating field cuts. Copper naphthenate is also used to treat ties and timbers in the United States. Thermal Modification The properties of wood are altered when it is exposed to high temperatures (160-260°C) under reduced oxygen conditions. Thermal modification kilns use much higher temperatures than drying kilns, and use steam (or other oxygen-excluding media) to protect the wood from degradation at these high temperatures. The resulting thermally modified wood generally has a darker colour, increased dimensional stability, and increased decay resistance. Thermal modification may reduce some mechanical properties and does not protect wood against insects. Thermally modified wood is typically used in non-structural, above-ground applications, such as siding, decking and outdoor furniture. More information from Producers of Wood Preservative Products Lonza Wood Protection Timber Specialties  Viance LLC  Genics Inc.  Kop-Coat   Rio Tinto Minerals Nisus   Creosote council   KMG Chemicals   Wood Preservation Canada  

Lignes directrices en matière de durabilité

Lignes directrices en matière de durabilité

Les structures en bois, correctement conçues et traitées, dureront indéfiniment. Cette section contient des conseils sur les applications spécifiques des structures qui sont constamment exposées aux éléments. Extérieurs en bois de masse La construction moderne en bois de masse comprend des systèmes de construction connus sous le nom de poteaux et poutres, ou bois lourd, et bois lamellé-croisé (CLT). Les composants typiques sont le bois massif scié, le bois lamellé-collé (glulam), le bois de fil parallèle (PSL), le bois de placage stratifié (LVL), le bois de fil stratifié (LSL) et le CLT. La construction de poutres et poteaux en bois massif avec des murs de remplissage en divers matériaux est l'un des plus anciens systèmes de construction connus de l'homme. Les exemples historiques encore debout vont de l'Europe à l'Asie, en passant par les longues maisons des premières nations de la côte pacifique (figure 1). Les temples anciens du Japon et de la Chine, datant de plusieurs milliers d'années, sont essentiellement des constructions en bois massif dont certains éléments sont semi-exposés aux intempéries (figure 2). Les entrepôts à forte ossature en bois avec des murs en maçonnerie datant de 100 ans ou plus sont toujours utilisables et recherchés comme résidences ou immeubles de bureaux dans des villes comme Toronto, Montréal et Vancouver (Koo 2013). Outre leur valeur historique, ces anciens entrepôts offrent des structures en bois visuellement impressionnantes, des planchers ouverts et la flexibilité d'utilisation et de réaffectation qui en résulte. S'appuyant sur cet héritage, la construction moderne en bois massif devient de plus en plus populaire dans certaines régions du Canada et des États-Unis pour les constructions non résidentielles, les propriétés de loisirs et même les immeubles résidentiels à plusieurs logements. Les propriétaires et les architectes ressentent généralement le besoin d'exprimer ces matériaux structurels, en particulier le bois lamellé-collé, à l'extérieur du bâtiment, où ils sont semi-exposés aux éléments (figure 3). En outre, les éléments en bois sont de plus en plus utilisés pour adoucir l'aspect extérieur des bâtiments qui ne sont pas en bois et les rendre plus attrayants (figure 4). Ils sont censés rester structurellement sains et visuellement attrayants pendant toute leur durée de vie. Cependant, l'utilisation du bois à l'extérieur crée un risque de détérioration qu'il convient de gérer. Comme pour le bois utilisé pour les aménagements paysagers, les principaux défis auxquels le bois est confronté dans ces situations sont la pourriture, les intempéries et les champignons de tache noire. Ce document aide les architectes et les prescripteurs à prendre les bonnes décisions pour maximiser la durabilité et minimiser les besoins d'entretien du bois lamellé-collé et d'autres bois de masse à l'extérieur des bâtiments résidentiels et non résidentiels. Il se concentre sur les principes généraux, plutôt que de fournir des recommandations détaillées. Il s'adresse principalement à un public canadien et accessoirement à un public nord-américain. Cliquez ici pour en savoir plus Logement en cas de catastrophe Les besoins en abris après une catastrophe naturelle se présentent en trois phases : Abris immédiats : normalement des bâches ou des tentes légères Abris de transition : il peut s'agir de tentes résistantes ou d'abris plus robustes à moyen terme. Bâtiments permanents : En fin de compte, des abris permanents doivent être construits lorsque l'économie locale se rétablit. Les abris immédiats et de transition sont généralement fournis par les organismes d'aide. L'ossature en bois léger est idéale pour la fourniture rapide d'abris à moyen et long terme après une catastrophe naturelle. Cependant, dans certains climats, la construction à ossature bois présente des difficultés qu'il convient de résoudre afin de construire des abris de manière durable et responsable. Par exemple, de nombreuses régions qui subissent des ouragans, des tremblements de terre et des tsunamis présentent également de graves risques de pourriture et de termites, notamment des espèces agressives de Coptotermes et des termites de bois sec. Dans les climats nordiques extrêmes, les charges d'occupation élevées sont courantes et, lorsqu'elles sont combinées à la nécessité d'une isolation thermique substantielle pour assurer des températures intérieures confortables, elles peuvent entraîner la condensation et la formation de moisissures si les systèmes de murs et de toits ne sont pas conçus avec soin. Le désir des organisations humanitaires de maximiser le nombre d'abris livrés tend à réduire le coût admissible, ce qui impose des conceptions simplifiées avec moins de dispositifs de gestion de l'humidité. Il peut également être difficile de contrôler la qualité de la construction dans certaines régions. Une fois construites, les structures "temporaires" sont généralement utilisées bien plus longtemps que leur durée de vie prévue. Les améliorations apportées par les occupants sur le long terme peuvent potentiellement accroître les problèmes d'humidité et de termites. Tous ces facteurs signifient que le bois utilisé doit être durable. L'une des méthodes permettant d'obtenir des produits en bois plus durables consiste à traiter le bois afin de prévenir la pourriture et les attaques d'insectes et de termites. Toutefois, le bois traité avec un agent de conservation couramment disponible au Canada peut ne pas être adapté à une utilisation dans d'autres pays. Le choix du produit de préservation et du procédé de traitement doit tenir compte des réglementations en vigueur dans les pays d'exportation et de destination, et notamment du risque de contact humain avec le bois préservé, de l'emplacement du produit dans le bâtiment, de la possibilité de traiter les essences de bois et du risque local de pourriture et de termites. Des caractéristiques de conception simples, comme le fait de s'assurer que le bois n'entre pas en contact avec le sol et qu'il est protégé de la pluie, peuvent réduire les problèmes d'humidité et de termites. Construire avec du béton et de l'acier n'élimine pas les problèmes de termites. Les termites se nourrissent volontiers de composants en bois, de meubles, d'armoires et d'autres matériaux cellulosiques, tels que le papier des cloisons sèches, les cartons, les livres, etc. dans les bâtiments en béton ou en maçonnerie. Des tubes de boue s'étendant sur 10 pieds au-dessus des fondations en béton pour atteindre les matériaux de construction cellulosiques ont été documentés. En effet, les termites ont causé d'importants dégâts économiques aux matériaux de construction cellulosiques, même dans des tours en béton et en acier en Floride et dans le sud de la Chine. Cliquez ici pour en savoir plus Ponts en bois Les ponts en bois sont un excellent moyen de démontrer la solidité et la durabilité des structures en bois, même dans des conditions difficiles, lorsque le choix des matériaux, la conception, la construction et l'entretien sont bien faits. Ils peuvent également être des éléments d'infrastructure critiques qui enjambent des rivières rapides ou des gorges profondes. La défaillance de ces structures peut avoir de graves conséquences en termes de pertes de vies humaines et d'accès aux communautés. La durabilité est aussi importante que l'ingénierie pour garantir une utilisation sûre des ponts en bois pendant la durée de vie prévue, qui est généralement de 75 ans en Amérique du Nord. Il existe de nombreux exemples de vieux ponts en bois encore en service en Amérique du Nord (Figure 1). Les plus anciens sont des ponts couverts traditionnels (figure 2), dont trois ont environ 190 ans. Dans le sud-est de la Chine, les provinces de Fujian et de Zhejiang comptent de nombreux ponts couverts vieux de près de 1000 ans (figure 3). Le fait que ces ponts soient encore debout témoigne des artisans qui ont sélectionné les matériaux, conçu les structures, les ont construites, ont surveillé leur état et les ont entretenues et réparées. Ils auraient choisi le bois le plus durable

Risques liés à la durabilité

Risques liés à la durabilité

Moisture, Decay, and Termites Wood is a natural, biodegradable material.  That means certain insects and fungi can break wood down to be recycled via earth into new plant material. Decay, also called rot, is the decomposition of organic material by fungal activity.  A few specialized species of fungi can do this to wood.  This is an important process in the forest.  But it is obviously a process to be avoided for wood products in service. The key to controlling decay is controlling excessive moisture.  Water by itself doesn’t cause harm to wood, but water enables these fungal organisms to grow.  Wood is actually quite tolerant of water and forgiving of many moisture errors.  But too much unintended moisture (for example, a major wall leak) can lead to a significant decay hazard.  If a wood product is to be used in an application that will frequently be wet for extended periods, then measures need to be taken to protect the wood against decay. Various types of insects can damage wood, but the predominant ones causing problems are termites.  Termites live everywhere in the world where the climate is warm or temperate.

Recherche et développement en matière de durabilité

Recherche et développement en matière de durabilité

FPInnovations has been field testing the performance of treated wood products for years. Click one of these categories for performance data from our field tests. Borate-treated Wood vs. Termites                               Naturally Durable Species The heartwood of species reported to have some natural durability was evaluated in ground contact (stakes) and above-ground (decking) tests.  Commodity: 2×4 and 2×6 lumber from naturally durable species: Western redcedar, yellow cypress, eastern white cedar, larch, tamarack, Douglas-fir Control species: Ponderosa pine sapwood Test method: Stake test (AWPA E7) and Decking test (AWPA E25) Test sites: FPInnovations – Maple Ridge, BC; Petawawa, ON Michigan Technological University – Gainesville, Florida; Kipuka, Hawaii  Date of installation: 2004-2005   Estimated service life: In the ground-contact stake test, after 5 years moderate to high levels of decay were found in all species at all sites. Yellow cypress and western redcedar were the most durable at all site. Eastern white cedar had similar durability at the Canadian and Florida sites, but was less durable in Hawaii. There were no major performance differences observed between old-growth and second-growth materials used in this study. Untreated naturally durable heartwood is not recommended for long-term performance in ground contact. In the above ground decking test, at the Canadian test sites after 10 years only small amounts of decay were observed in any of the naturally durable heartwoods tested. In contrast, the ponderosa pine controls had moderate to advanced decay. Decay was more rapid at the Florida and Hawaii test sites, with moderate to advanced decay present in all material types after 7 years. Untreated naturally durable heartwood is not recommended for long-term performance in exposed above ground applications in high decay hazard areas such as Florida and Hawaii. However, in temperate climates these naturally durable heartwoods can provide service lives greater than 10 years. References: Morris, P. I., Ingram, J., Larkin, G., & Laks, P. (2011). Field tests of naturally durable species. Forest Products Journal, 61(5), 344-351. Morris, P. I., Laks, P., Larkin, G., Ingram, J. K., & Stirling, R. (2016). Aboveground decay resistance of selected Canadian softwoods at four test sites after 10 years of exposure. Forest products journal, 66(5), 268-273.

Solutions de durabilité

Solutions de durabilité

Le bois est un matériau structurel précieux et efficace depuis les premiers jours de la civilisation humaine. Avec de bonnes pratiques normales, le bois peut offrir de nombreuses années de service fiable. Mais, comme d'autres matériaux de construction, le bois peut souffrir des erreurs commises dans les pratiques de stockage, de conception, de construction et d'entretien. Comment assurer la longévité d'un bâtiment en bois ? La meilleure approche consiste à se rappeler que le bois destiné à une application sèche doit rester sec. Commencez par acheter du bois sec, stockez-le soigneusement pour qu'il reste sec, concevez le bâtiment pour protéger les éléments en bois, gardez le bois sec pendant la construction et entretenez bien le bâtiment. Cette approche s'appelle la durabilité par la conception. Si le bois ne reste pas sec, deux solutions s'offrent à vous. Le bois humide étant exposé au risque de pourriture, vous devez choisir un produit résistant à la pourriture. L'une des solutions consiste à choisir une essence naturellement durable, comme le Western Red Cedar. C'est ce qu'on appelle la durabilité par nature. La plupart de nos bois de construction ne sont pas naturellement durables, mais nous pouvons les rendre résistants à la pourriture en les traitant avec un produit de préservation. Le bois d'œuvre traité avec un agent de conservation résiste mieux à la pourriture que le bois d'œuvre naturellement durable. Cette approche est appelée durabilité du bois traité. Le niveau d'attention que vous accordez aux questions de durabilité au cours de la conception dépend du risque de pourriture. En d'autres termes, plus les circonstances exposent le bois à un risque, plus vous devez prendre soin de le protéger contre la pourriture. Dans les applications extérieures, par exemple, tout bois en contact avec le sol présente un risque élevé de pourriture et doit être traité sous pression à l'aide d'un produit de préservation. Pour le bois exposé aux intempéries mais qui n'est pas en contact direct avec le sol, le degré de risque est lié au climat. Les champignons qui attaquent le bois se développent généralement mieux dans des environnements humides et à des températures chaudes. Des chercheurs ont établi des zones de danger en Amérique du Nord en se basant sur la température mensuelle moyenne et le nombre de jours de pluie. Cette carte montre en particulier les risques liés aux précipitations et s'applique aux utilisations exposées du bois, telles que les terrasses, les bardeaux et les planches de clôture. Un degré élevé de risque indique qu'il faut choisir avec soin une essence de bois ou un traitement de préservation pour obtenir une durée de vie maximale. À l'avenir, les codes de construction pourront fournir des directives plus spécifiques en fonction du risque de pourriture. Pour le bois non exposé aux intempéries, comme le bois de charpente, cette carte n'est que modérément utile. En effet, les conditions environnementales à l'intérieur du mur peuvent être très différentes de celles de l'extérieur.

Construction en bois massif encapsulé

Construction en bois massif encapsulé

En plus des constructions combustibles, des constructions en bois massif et des constructions incombustibles, un nouveau type de construction est actuellement envisagé pour être inclus dans le Code national du bâtiment du Canada (CNB). Il est proposé de définir la construction en bois massif encapsulé (EMTC) comme le "type de construction dans lequel un degré de sécurité incendie est atteint par l'utilisation d'éléments en bois massif encapsulé avec un indice d'encapsulation et des dimensions minimales pour les éléments structuraux en bois et les autres assemblages du bâtiment". L'EMTC n'est ni une "construction combustible", ni une "construction en bois massif", ni une "construction incombustible", telles que définies dans le CNB. L'EMTC doit avoir une cote d'encapsulation. L'indice d'encapsulation est le temps, en minutes, pendant lequel un matériau ou un assemblage de matériaux retardera l'inflammation et la combustion d'éléments en bois massif encapsulés lorsqu'il est exposé au feu dans des conditions d'essai et selon des critères de performance spécifiés, ou selon d'autres prescriptions du CNB. L'indice d'encapsulation de l'EMTC est déterminé par la méthode d'essai ULC S146. Pour que les éléments structuraux en bois soient considérés comme du "bois de masse", ils doivent répondre à des exigences minimales de taille, qui sont différentes pour les éléments porteurs horizontaux (murs, planchers, toits, poutres) et verticaux (colonnes, arcs) et qui dépendent du nombre de côtés où l'élément est exposé au feu. Au Canada, la construction d'un bâtiment EMTC devrait être limitée à une hauteur de douze étages, c'est-à-dire que le niveau le plus élevé peut se situer au maximum à 42 m (137 pieds) au-dessus du premier étage. Un bâtiment EMTC doit être équipé de gicleurs conformément à la norme NFPA 13 et il est probable qu'une partie du bois de charpente puisse être exposée dans les suites. Tous les éléments de l'EMTC doivent avoir une résistance au feu d'au moins deux heures et la surface au sol du bâtiment doit être limitée à 6 000 m2 pour une occupation du groupe C et à 7 200 m2 pour une occupation du groupe D. Il existe des restrictions quant à l'utilisation de l'extérieur du bâtiment. Il existe des restrictions sur l'utilisation d'éléments de revêtement extérieur dans les EMTC, ainsi que d'autres restrictions sur l'utilisation de matériaux de couverture combustibles, de châssis et de cadres de fenêtres combustibles, d'éléments combustibles dans les murs extérieurs, d'éléments de clouage, d'éléments de plancher combustibles, d'escaliers combustibles, de finitions intérieures combustibles, d'éléments combustibles dans les cloisons et d'espaces cachés. Si un matériau d'encapsulation est endommagé ou enlevé, il devra être réparé ou remplacé de manière à ce que l'indice d'encapsulation des matériaux soit maintenu. En outre, les exigences relatives à la sécurité incendie sur le chantier doivent être appliquées à l'accès au chantier, à l'installation de colonnes d'incendie et à l'encapsulation protectrice. L'EMTC et ses dispositions connexes devraient être incluses dans le CNB 2020. Définitions du CNB : Combustible signifie qu'un matériau ne répond pas aux critères d'acceptation de la norme CAN/ULC-S114, " Essai de détermination de l'incombustibilité des matériaux de construction ". On entend par construction combustible le type de construction qui ne répond pas aux exigences de la construction incombustible. Construction en bois lourd : ce type de construction combustible dans laquelle un certain degré de sécurité incendie est atteint en limitant les dimensions des éléments structurels en bois ainsi que l'épaisseur et la composition des planchers et des toits en bois, et en évitant les espaces cachés sous les planchers et les toits. Construction incombustible : type de construction dans lequel un degré de sécurité incendie est atteint par l'utilisation de matériaux incombustibles pour les éléments de structure et autres assemblages de bâtiments. Incombustible signifie qu'un matériau répond aux critères d'acceptation de la norme CAN/ULC-S114, "Essai de détermination de l'incombustibilité des matériaux de construction". Pour de plus amples informations, veuillez consulter les ressources suivantes : ULC S146 Standard Method of Test for the Evaluation of Encapsulation Materials and Assemblies of Materials for the Protection of Mass Timber Structural Members and Assemblies Fire performance of mass-timber encapsulation methods and the effect of encapsulation on char rate of cross-laminated timber (Hasburgh et al., 2016) CAN/ULC-S114 Test for Determination of Non-Combustibility in Building Materials NFPA 13 Standard for the Installation of Sprinkler Systems (norme relative à l'installation de systèmes d'extincteurs automatiques).

Code de l'énergie

Code de l'énergie

Le Code national de l'énergie pour les bâtiments (CNÉB) vise à aider à économiser sur les factures d'énergie, à réduire la demande d'énergie de pointe et à améliorer la qualité et le confort de l'environnement intérieur des bâtiments. À travers chaque cycle d'élaboration du code, le CNÉB entend mettre en œuvre une approche progressive pour atteindre l'objectif du Canada pour les nouveaux bâtiments, tel que présenté dans le "Cadre pancanadien sur la croissance propre et le changement climatique", qui consiste à réaliser des bâtiments "prêts pour une consommation énergétique nette zéro" d'ici 2030. Le CNÉB est disponible gratuitement en ligne ; il est publié par le Conseil national de recherches du Canada (CNRC) et élaboré par la Commission canadienne des codes du bâtiment et de prévention des incendies en collaboration avec Ressources naturelles Canada (RNCan). La CCB participe en permanence à l'élaboration et à la mise à jour du CNÉB. Le CNÉB définit les exigences techniques en matière de conception et de construction efficaces sur le plan énergétique, ainsi que les niveaux minimaux d'efficacité énergétique pour la conformité au code de tous les nouveaux bâtiments. Le CNEB s'applique à tous les types de bâtiments, à l'exception des logements et des petits bâtiments, qui sont régis par l'article 9.36 du Code national du bâtiment du Canada. Le CNEB offre trois voies de conformité : normative, de compromis et de performance. Le moment le plus rentable pour intégrer des mesures d'efficacité énergétique dans un bâtiment est la phase initiale de conception et de construction. Il est beaucoup plus coûteux d'effectuer des travaux de rénovation plus tard. Cela est particulièrement vrai pour l'enveloppe du bâtiment, qui comprend les murs extérieurs, les fenêtres, les portes et la toiture. Le CMNÉB aborde des considérations telles que les taux d'infiltration d'air (fuites d'air) et la transmission de la chaleur à travers l'enveloppe du bâtiment. Compte tenu des différentes zones climatiques du Canada, le CMNÉB fournit également des exigences relatives à la transmission thermique globale (effective) maximale pour les parois opaques au-dessus du sol et à la résistance thermique effective des assemblages en contact avec le sol, par exemple les fondations permanentes en bois. En outre, le CMNÉB spécifie la fenestration maximale et le rapport porte/mur en fonction de la zone climatique dans laquelle le bâtiment est situé. Les exigences en matière d'efficacité énergétique des bâtiments étant de plus en plus strictes, le bois est une solution naturelle à associer à d'autres matériaux d'isolation et de protection contre les intempéries pour créer des bâtiments ayant une performance énergétique opérationnelle élevée et offrant un confort intérieur constant aux occupants. Pour plus d'informations sur le CNÉB, visitez le site Codes Canada du Conseil national de recherches du Canada.

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône Persona
Persona
Tags Icône
Tags
Rapports annuels Icône Plus
Livre des prix Icône Plus
Études de cas Icône Plus
Publications gratuites Icône Plus
Revue Icône Plus
Systèmes de construction Icône Plus
Codes et normes Icône Plus
Nouvelles de l'industrie Icône Plus
Pourquoi le bois (FAQ) Icône Plus
Produits du bois Icône Plus
Acoustique Icône Plus
Exemples de conception Icône Plus
Ingénierie Icône Plus
Résistance au feu Icône Plus
Assurance Icône Plus
Bois massif Icône Plus
Icône de date
Date
Séparateur de ligne