Classement

Visual grading of dimension lumber In Canada, we are fortunate to have forests that are capable of producing dimension lumber that is desirable for use as structural wood products. Some primary factors that contribute to the production of lumber that is desirable for structural uses include; a favourable northern climate that is conducive to tree growth, many Canadian species contain small knots, and many of the Western Canadian species grow to heights of thirty meters or more, providing long sections of clear knot free wood and straight grain. The majority of the structural wood products are grouped within the spruce-pine-fir (S-P-F) species combination, which has the following advantages for structural applications: straight grain good workability light weight moderate strength small knots ability to hold nails and screws There are more than a hundred softwood species in North America. To simplify the supply and use of structural softwood lumber, species having similar strength characteristics, and typically grown in the same region, are combined. Having a smaller number of species combinations makes it easier to design and select an appropriate species and for installation and inspection on the job site. In contrast, non-structural wood products are graded solely on the basis of appearance quality and are typically marked and sold under an individual species (e.g., Eastern White Pine, Western Red Cedar). Canadian dimension lumber is manufactured in accordance with CSA O141 Canadian Standard Lumber and must conform to the requirements of the Canadian and US lumber grading rules. Each piece of dimension lumber is inspected to determine its grade and a stamp is applied indicating the assigned grade, the mill identification number, a green (S-Grn) or dry (S-Dry) moisture content at time of surfacing, the species or species group, the grading authority having jurisdiction over the mill of origin, and the grading rule used, where applicable. Dimension lumber is generally grade stamped on one face at a distance of approximately 600 mm (2 ft) from one end of the piece, in order to ensure that the stamp will be clearly visible during construction. Specialty items, such as lumber manufactured for millwork or for decorative purposes, are seldom marked. To ensure this uniform quality of dimension lumber, Canadian mills are required to have each piece of lumber graded by lumber graders who are approved by an accredited grading agency. Grading agencies are accredited by the CLSAB. NLGA Standard Grading Rules for Canadian Lumber provide a list of the permitted characteristics within each grade of dimension lumber. The grade of a given piece of dimension lumber is based on the visual observations of certain natural characteristics of the wood. Most softwood lumber is assigned either an appearance grade or a structural grade based on a visual review performed by a lumber grader. The lumber grader is an integral part of the lumber manufacturing process. Using established correlations between appearance and strength, lumber graders are trained to assign a strength grade to dimensional lumber based on the presence or absence of certain natural characteristics. Examples of such characteristics include; the presence of wane (bark remnant on the outer edge), size and location of knots, the slope of the grain relative to the long axis and the size of shakes, splits and checks. Other characteristics are limited by the grading rules for appearance reasons only. Some of these include sap and heart stain, torn grain and planer skips. The table below shows a sample of a few of the criteria used to assess grades for 2×4 dimensional lumber that is categorized as ‘structural light framing’ or as ‘structural joist and plank’. Grades Characteristic Select Structural No.1 & No. 2 No. 3 Edge of wide face knots ¾” 1 ¼” 1 ¾” Slope of grain 1 in 12 1 in 8 1 in 4 To keep sorting cost to a minimum, grades may be grouped together. For example, there is an appearance difference between No.1 and No.2 visually graded dimension lumber, but not a difference in strength. Therefore, the grade mark ‘No.2 and better’ is commonly used where the visual appearance of No.1 grade dimensional lumber is not required, for example, in the construction of joists, rafters or trusses. Pieces of the same grade must be bundled together with the engineering properties dictated by the lowest strength grade in the bundle. Dimension lumber is aggregated into the following four grade categories: Structural light framing, Structural joists and planks, Light framing, and Stud. The table below shows the grades and uses for these categories. Grade Category Size Grades Common Grade Mix Principal Uses Structural Light Framing 38 to 89mm (2″ to 4″ nom.) thick and wide Select Structural, No.1, No.2, No.3 No.2 and Better Used for engineering applications such as for trusses, lintels, rafters, and joists in the smaller dimensions. Structural Joists and Planks 38 to 89mm (2″ to 4″ nom.) thick and 114mm (5″ nom.) or more wide Select Structural, No.1, No.2, No.3 No.2 and Better Used for engineering applications such as for trusses, lintels, rafters, and joists in the dimensions greater than 114mm (5″ nom.). Light Framing 38 to 89mm (2″ to 4″ nom.) thick and wide Construction, Standard, Utility Standard and Better (Std. & Btr.) Used for general framing where high strength values are not required such as for plates, sills, and blocking. Studs 38 to 89mm (2″ to 4″ nom.) thick and 38 to 140mm (2″ to 6″ nom.) wide and 3m (10′) or less in length Stud, Economy Stud Made principally for use in walls. Stud grade is suitable for bearing wall applications. Economy grade is suitable for temporary applications. Notes: Grades may be bundled individually or they may be individually stamped, but they must be grouped together with the engineering properties dictated by the lowest strength grade in the bundle. The common grade mix shown is the most economical blending of strength for most applications where appearance is not a factor and average strength is acceptable. Except for economy grade, all grades are stress graded, meaning specified strengths have been
Espèces canadiennes

Essences canadiennes de bois d'œuvre classé visuellement Il existe plus d'une centaine d'essences de bois résineux en Amérique du Nord. Pour simplifier l'approvisionnement et l'utilisation du bois de construction résineux, les essences ayant des caractéristiques de résistance similaires et poussant généralement dans la même région sont combinées. Le fait de disposer d'un nombre réduit de combinaisons d'essences facilite la conception et la sélection d'une essence appropriée, ainsi que l'installation et l'inspection sur le chantier. En revanche, les produits en bois non structuraux sont classés uniquement en fonction de leur qualité esthétique et sont généralement marqués et vendus sous une espèce individuelle (par exemple, pin blanc de l'Est, cèdre rouge de l'Ouest). Le groupe d'essences épicéa-pin-sapin (S-P-F) pousse en abondance dans tout le Canada et représente de loin la plus grande proportion de la production de bois de construction. Les autres grands groupes d'essences commerciales pour le bois d'œuvre canadien sont le douglas, le mélèze, le sapin et les essences nordiques. Les quatre groupes d'essences de bois d'œuvre canadien et leurs caractéristiques sont présentés ci-dessous. Combinaison d'essences : Douglas taxifolié - mélèze Abréviation : D.Fir-L ou DF-L Espèces incluses dans la combinaison Région de croissance Douglas Fir Mélèze de l'Ouest Caractéristiques Gamme de couleurs Du brun rougeâtre au jaune Grande dureté Bonne résistance à la pourriture Combinaison d'essences : Hem-Fir Abréviation : Hémisphère ou H-F Espèces incluses dans la combinaison Région de croissance Pruche de la côte pacifique Sapin Amabilis Caractéristiques Gamme de couleurs Jaune brun à blanc Se travaille facilement Prend bien la peinture Tient bien les clous Bonnes caractéristiques de collage Combinaison d'espèces : Épicéa, pin et sapin Abréviation : S-P-F Espèces incluses dans la combinaison Région de croissance Épicéa blanc Épicéa d'Engleman Épicéa rouge Épicéa noir Pin gris Pin Lodgepole Sapin baumier Sapin alpin Caractéristiques Gamme de couleurs Blanc à jaune pâle Se travaille facilement Prend bien la peinture Tient bien les ongles Bonnes caractéristiques de collage Combinaison d'espèces : Espèces nordiques Abréviation : North ou Nor Espèces incluses dans la combinaison Région de croissance Cèdre rouge de l'Ouest Caractéristiques Gamme de couleurs Bois de cœur brun rougeâtre, aubier clair Résistance exceptionnelle à la pourriture Résistance modérée Qualités esthétiques élevées Se travaille facilement Prend des finitions fines Retrait le plus faible Également inclus dans les espèces nordiques Espèces incluses dans la région de croissance combinée Pin rouge Caractéristiques Gammes de couleurs Se travaille facilement Également inclus dans les espèces nordiques Espèces incluses dans la région de croissance combinée Région Pin Ponderosa Caractéristiques Gammes de couleurs Prend bien les finitions Tient bien les clous Tient bien les vis Saisons avec peu de fissures ou de déformations Également inclus dans les espèces nordiques Espèces incluses dans la région de croissance combinée Pin blanc de l'Ouest Pin blanc de l'Est Caractéristiques Gammes de couleurs Bois de cœur blanc crémeux à brun paille pâle, aubier presque blanc Fonctionne facilement Finit bien N'a pas tendance à se fendre ou à s'éclater Tient bien les clous Faible retrait Prend bien la teinture, les peintures et les vernis Également inclus dans les espèces nordiques Espèces incluses dans la région de croissance combinée Peuplier faux-tremble Peuplier baumier Caractéristiques Gammes de couleurs Fonctionne facilement Finit bien Tient bien les clous Vous trouverez ci-dessous une carte des régions forestières du Canada et des principales espèces d'arbres qui poussent dans chacune d'elles. Cliquez pour agrandir la carte. Cette carte est une gracieuseté de Ressources naturelles Canada.
Adhésifs

Les adhésifs peuvent également être appelés résines. De nombreux produits en bois d'ingénierie, notamment le bois abouté, le contreplaqué, les panneaux à copeaux orientés (OSB), le bois lamellé-collé, le bois lamellé-croisé (CLT), les poutrelles en I en bois et d'autres produits en bois composite, nécessitent l'utilisation d'adhésifs pour transférer les contraintes entre les fibres de bois adjacentes. Les adhésifs étanches et les adhésifs résistants à la chaleur sont couramment utilisés dans la fabrication des produits structuraux en bois. Les progrès réalisés dans la technologie des adhésifs pour relever les défis liés à l'augmentation des taux de production, à l'aspect visuel, aux émissions des processus et aux préoccupations relatives à l'impact sur l'environnement ont donné lieu à une gamme élargie de produits adhésifs structuraux innovants. Il est impératif que cette nouvelle génération d'adhésifs atteigne le même niveau de performance que les adhésifs traditionnels pour les produits structuraux en bois tels que le phénol-formaldéhyde (PF) ou le phénol-résorcinol-formaldéhyde (PRF). Parmi les différentes familles d'adhésifs pour produits structuraux en bois, on peut citer, entre autres, les suivantes : Les polymères isocyanates en émulsion (EPI) ; les polyuréthanes monocomposants (PUR) ; les résines phénoliques telles que le phénol-formaldéhyde (PF) et le phénol-résorcinol-formaldéhyde (PRF). Divers types d'adjuvants tels que la farine de coquille de noix, la farine d'écorce de douglas, la farine d'écorce d'aulne et la farine de bois sont parfois utilisés pour réduire les coûts, contrôler la pénétration dans la fibre de bois ou modérer les propriétés de résistance pour les matériaux spécifiques à coller. Il existe plusieurs normes industrielles qui peuvent être utilisées pour évaluer les performances des adhésifs pour produits en bois de construction, notamment : CSA O112.6 Adhésifs à base de résine phénolique et phénolo-résorcinolique pour le bois (durcissement à haute température) CSA O112.7 Adhésifs à base de résine résorcinolique et phénolo-résorcinolique pour le bois (durcissement à température ambiante et intermédiaire) CSA O112.9 Évaluation des adhésifs pour les produits structuraux en bois (exposition à l'extérieur) CSA O112.10 Évaluation des adhésifs pour les produits structuraux en bois (exposition limitée à l'humidité) CAN/CSA O160 Norme d'émissions de formaldéhyde pour les produits en bois composite ASTM D7247 Standard Test Method for Evaluating the Shear Strength of Adhesive Bonds in Laminated Wood Products at Elevated Temperatures ASTM D7374 Standard Practice for Evaluating Elevated Temperature Performance of Adhesives Used in End-Jointed Lumber (Méthode d'essai standard pour évaluer la résistance au cisaillement des adhésifs dans les produits en bois stratifié à des températures élevées)
Boulons

Les boulons sont largement utilisés dans la construction en bois. Ils sont capables de résister à des charges modérément lourdes avec relativement peu de connecteurs. Les boulons peuvent être utilisés dans les types de connexions bois-bois, bois-acier et bois-béton. Parmi les applications structurelles typiques des boulons, on peut citer : les connexions entre les pannes et les poutres les connexions entre les poutres et les poteaux les connexions entre les poteaux et la base les connexions entre les fermes les arcs en bois la construction de poteaux et de poutres la construction de charpentes en bois les ponts en bois les structures marines Plusieurs types de boulons, comme le montre la figure 5.10 ci-dessous, sont utilisés pour la construction en bois, le type à tête hexagonale étant le plus courant. Les têtes fraisées sont utilisées lorsqu'une surface plane est souhaitée. Les boulons à tête cylindrique peuvent être serrés en tournant l'écrou sans tenir le boulon, car les épaulements sous la tête s'agrippent au bois. Les boulons sont généralement disponibles en diamètres impériaux de 1/4, 1/2, 5/8, 3/4, 7/8 et 1 pouce. Les boulons sont installés dans des trous percés légèrement (1 à 2 mm) plus grands que le diamètre du boulon afin d'éviter tout fendillement et développement de contraintes qui pourraient être causés par l'installation ou le rétrécissement ultérieur du bois. En fonction du diamètre, les boulons sont disponibles dans des longueurs allant de 75 mm (3″) à 400 mm (16″), d'autres longueurs étant disponibles sur commande spéciale. Les boulons peuvent être trempés ou plaqués, moyennant un supplément de prix, pour résister à la corrosion. Dans des conditions d'exposition et dans des environnements très humides, il convient de résister à la corrosion en utilisant des boulons, des rondelles et des écrous galvanisés à chaud ou en acier inoxydable. Les rondelles sont généralement utilisées avec les boulons pour éviter que la tête du boulon ou l'écrou n'écrase la pièce de bois lors du serrage. Les rondelles ne sont pas nécessaires avec une plaque latérale en acier, car la tête du boulon ou l'écrou repose directement sur l'acier. Les types de rondelles les plus courants sont illustrés à la figure 5.11 ci-dessous. Les informations de conception fournies dans le Wood Design Manual de CWC sont basées sur des boulons conformes aux exigences de la norme ASTM A307 Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60 000 PSI Tensile Strength ou des boulons et goujons de grade 2 tels que spécifiés dans la norme SAE J429 Mechanical and Material Requirements for Externally Threaded Fasteners (Exigences mécaniques et matérielles pour les fixations à filetage externe). Télécharger les figures 5.10 (et 5.11) au format PDF.
Connecteurs d'encadrement

Les connecteurs de charpente sont des produits brevetés et comprennent des types d'attaches tels que des ancres de charpente, des cornières de charpente, des suspensions de solives, de pannes et de poutres, des plaques de fermes, des capuchons de poteaux, des ancres de poteaux, des ancres de plaques d'appui, des bandes d'acier et des plaques d'acier clouées. Les connecteurs de charpente sont souvent utilisés pour différentes raisons, telles que leur capacité à fournir des connexions dans les fermes préfabriquées à ossature légère en bois, leur capacité à résister au soulèvement du vent et aux charges sismiques, leur capacité à réduire la profondeur totale d'un plancher ou d'un toit, ou leur capacité à résister à des charges plus élevées que les connexions clouées traditionnelles. La figure 5.6 ci-dessous présente des exemples de connecteurs de charpente courants. Les connecteurs d'ossature sont faits de tôle et sont fabriqués avec des trous pré-perforés pour recevoir des clous. Les connecteurs d'ossature standard sont généralement fabriqués en tôle d'acier zinguée de calibre 20 ou 18. Les connecteurs d'ossature moyens et lourds peuvent être fabriqués à partir d'acier zingué plus lourd, généralement de calibre 12 et de calibre 7, respectivement. La capacité de transfert de charge des connecteurs de charpente est liée à l'épaisseur de la tôle ainsi qu'au nombre de clous utilisés pour fixer le connecteur de charpente à l'élément en bois. Les connecteurs de charpente conviennent à la plupart des géométries de connexion qui utilisent du bois de charpente de 38 mm (2″ nom.) et plus d'épaisseur. Dans les constructions en bois à ossature légère, les connecteurs d'ossature sont couramment utilisés pour les connexions entre les solives et les chevrons, les chevrons et les plaques ou les faîtières, les pannes et les fermes, et les montants et les plaques d'appui. Certains types de connecteurs de charpente, fabriqués pour s'adapter à des éléments en bois plus grands et supporter des charges plus élevées, conviennent également aux constructions en bois massif et aux constructions à poteaux et poutres. Les fabricants de connecteurs d'ossature préciseront le type et le nombre de fixations, ainsi que les procédures d'installation requises pour atteindre la ou les résistances tabulées de l'assemblage. Le Centre canadien des matériaux de construction (CCMC) et l'Institut de recherche en construction (IRC) produisent des rapports d'évaluation qui documentent les valeurs de résistance des connecteurs d'ossature, dérivées des résultats des essais. Figure 5.6 Connecteurs d'ossature Pour plus d'informations, consultez les ressources suivantes : Centre canadien des matériaux de construction, Conseil national de recherches du Canada Truss Plate Institute of Canada CSA S347 Method of Test for Evaluation of Truss Plates used in Lumber Joints ASTM D1761 Standard Test Methods for Mechanical Fasteners in Wood Canadian Wood Truss Association
Ongles

Nailing is the most basic and most commonly used means of attaching members in wood frame construction. Common nails and spiral nails are used extensively in all types of wood construction. Historical performance, along with research results have shown that nails are a viable connection for wood structures with light to moderate loads. They are particularly useful in locations where redundancy and ductile connections are required, such as loading under seismic events. Typical structural applications for nailed connections include: wood frame construction post and beam construction heavy timber construction shearwalls and diaphragms nailed gussets for wood truss construction wood panel assemblies Nails and spikes are manufactured in many lengths, diameters, styles, materials, finishes and coatings, each designed for a specific purpose and application. In Canada, nails are specified by the type and length and are still manufactured to Imperial dimensions. Nails are made in lengths from 13 to 150 mm (1/2 to 6 in). Spikes are made in lengths from 100 to 350 mm (4 to 14 in) and are generally stockier than nails, that is, a spike has a larger cross-sectional area than an equivalent length common nail. Spikes are generally longer and thicker than nails and are generally used to fasten heavy pieces of timber. Nail diameter is specified by gauge number (British Imperial Standard). The gauge is the same as the wire diameter used in the manufacture of the nail. Gauges vary according to nail type and length. In the U.S., the length of nails is designated by “penny” abbreviated “d”. For example, a twenty-penny nail (20d) has a length of four inches. The most common nails are made of low or medium carbon steels or aluminum. Medium-carbon steels are sometimes hardened by heat treating and quenching to increase toughness. Nails of copper, brass, bronze, stainless steel, monel and other special metals are available if specially ordered. Table 1, below, provides examples of some common applications for nails made of different materials. TABLE 1: Nail applications for alternative materials Material Abbreviation Application Aluminum A For improved appearance and long life: increased strain and corrosion resistance. Steel – Mild S For general construction. Steel – Medium Carbon Sc For special driving conditions: improved impact resistance. Stainless steel, copper and silicon bronze E For superior corrosion resistance: more expensive than hot-dip galvanizing. Uncoated steel nails used in areas subject to wetting will corrode, react with extractives in the wood, and result in staining of the wood surface. In addition, the naturally occurring extractives in cedars react with unprotected steel, copper and blued or electro-galvanized fasteners. In such cases, it is best to use nails made of non-corrosive material, such as stainless steel, or finished with non-corrosive material such as hot-dipped galvanized zinc. Table 2, below, provides examples of some common applications for alternative finishes and coatings of nails. TABLE 2: Nail applications for alternative finishes and coatings Nail Finish or Coating Abbreviation Application Bright B For general construction, normal finish, not recommended for exposure to weather. Blued Bl For increased holding power in hardwood, thin oxide finish produced by heat treatment. Heat treated Ht For increased stiffness and holding power: black oxide finish. Phoscoated Pt For increased holding power; not corrosion resistant. Electro galvanized Ge For limited corrosion resistance; thin zinc plating; smooth surface; for interior use. Hot-dip galvanized Ghd For improved corrosion resistance; thick zinc coating; rough surface; for exterior use. Pneumatic or mechanical nailing guns have found wide-spread acceptance in North America due to the speed with which nails can be driven. They are especially cost effective in repetitive applications such as in shearwall construction where nail spacing can be considerably closer together. The nails for pneumatic guns are lightly attached to each other or joined with plastic, allowing quick loading nail clips, similar to joined paper staples. Fasteners for these tools are available in many different sizes and types. Design information provided in CSA O86 is applicable only for common round steel wire nails, spikes and common spiral nails, as defined in CSA B111. The ASTM F1667 Standard is also widely accepted and includes nail diameters that are not included in the CSA B111. Other nail-type fastenings not described in CSA B111 or ASTM F1667 may also be used, if supporting data is available. Types of Nails For more information, refer to the following resources: International, Staple, Nail, and Tool Association (ISANTA) CSA O86 Engineering design in wood CSA B111 Wire Nails, Spikes and Staples ASTM F1667 Standard Specification for Driven Fasteners: Nails, Spikes and Staples
Vis

Wood screws are manufactured in many different lengths, diameters and styles. Wood screws in structural framing applications such as fastening floor sheathing to the floors joists or the attachment of gypsum wallboard to wall framing members. Wood screws are often higher in cost than nails due to the machining required to make the thread and the head. Screws are usually specified by gauge number, length, head style, material and finish. Screw lengths between 1 inch and 2 ¾ inch lengths are manufactured in ¼ inch intervals, whereas screws 3 inches and longer, are manufactured in ½ inch intervals. Designers should check with suppliers to determine availability. Design provisions in Canada are limited to 6, 8, 10 and 12 gauge screws and are applicable only for wood screws that meet the requirements of ASME B18.6.1. For wood screw diameters greater than 12 gauge, design should be in accordance with the lag screw requirements of CSA O86. Screws are designed to be much better at resisting withdrawal than nails. The length of the threaded portion of the screw is approximately two-thirds of the screw length. Where the wood relative density is equal to or greater than 0.5, lead holes, at least the length of the threaded portion of the shank, are required. In order to reduce the occurrence of splitting, pre-drilled holes are recommended for all screw connections. The types of wood screws commonly used are shown in Figure 5.4, below. For more information on wood screws, refer to the following resources: ASME B18.6.1 Wood Screws CSA O86 Engineering design in wood
Menuiserie en bois

De nombreuses structures historiques en Amérique du Nord ont été construites à une époque où les fixations métalliques n'étaient pas facilement disponibles. Au lieu de cela, les éléments de bois étaient assemblés en façonnant les éléments de bois adjacents pour qu'ils s'emboîtent les uns dans les autres. La menuiserie est une technique traditionnelle de construction de poteaux et de poutres en bois qui permet d'assembler les éléments en bois sans utiliser de fixations métalliques. La menuiserie nécessite que les extrémités des pièces de bois soient sculptées de manière à ce qu'elles s'emboîtent les unes dans les autres comme des pièces de puzzle. Les variations et les configurations des assemblages bois-bois sont assez nombreuses et complexes. Parmi les assemblages bois-bois les plus courants, citons la mortaise et le tenon, la queue d'aronde, l'assemblage par ligature, l'assemblage en écharpe, l'assemblage à épaulement biseauté et l'assemblage à recouvrement. Il existe de nombreuses variantes et combinaisons de ces types d'assemblages et d'autres types d'assemblages. La figure 5.18 ci-dessous présente quelques exemples d'assemblage de bois. Pour le transfert des charges, la menuiserie repose sur l'emboîtement des éléments de bois adjacents. Les assemblages sont retenus en insérant des chevilles en bois dans des trous percés à travers les éléments emboîtés. Un trou d'environ un pouce de diamètre est percé à travers le joint et une cheville en bois est enfoncée pour maintenir l'assemblage. Les fixations métalliques ne nécessitent qu'un enlèvement minimal des fibres de bois dans la zone des fixations et, par conséquent, la capacité du système est souvent déterminée par la taille modérée des pièces de bois à supporter les charges horizontales et verticales. La menuiserie en bois, au contraire, nécessite l'enlèvement d'un volume important de fibres de bois à l'endroit des joints. C'est pourquoi la capacité de la construction traditionnelle en bois est généralement régie par les connexions et non par la capacité des éléments eux-mêmes. Pour tenir compte de l'élimination de la fibre de bois au niveau des assemblages, les dimensions des éléments des systèmes de construction en bois qui utilisent la menuiserie, tels que les poteaux et les poutres, sont souvent plus grandes que celles des systèmes de construction en bois qui utilisent des attaches métalliques. Les normes de conception technique du bois au Canada ne fournissent pas d'informations spécifiques sur le transfert de charge pour la menuiserie en bois en raison de leur sensibilité à la qualité de l'exécution et des matériaux. Par conséquent, la conception technique doit être prudente, ce qui se traduit souvent par des dimensions de pièces plus importantes. Les compétences et le temps nécessaires pour mesurer, ajuster, couper et faire des essais d'assemblage sont beaucoup plus importants pour la menuiserie que pour d'autres types de construction en bois. Ce n'est donc pas le moyen le plus économique d'assembler les éléments d'un bâtiment en bois. La menuiserie bois n'est pas utilisée lorsque l'économie est le critère de conception primordial. Elle est plutôt utilisée pour donner un aspect structurel unique qui met en valeur la beauté naturelle du bois sans distraction. La menuiserie en bois offre un aspect visuel unique qui témoigne d'un haut degré d'artisanat. Pour de plus amples informations, veuillez consulter les ressources suivantes : Timber Framers Guild (Guilde des charpentiers)
Panneau de lamelles orientées (OSB)

Le panneau de lamelles orientées (OSB) est un panneau de bois structurel polyvalent et largement utilisé. L'OSB utilise efficacement les ressources forestières en employant des essences moins précieuses et à croissance rapide. L'OSB est fabriqué à partir de peupliers et de trembles abondants et de faible diamètre, ce qui permet de produire un panneau structurel économique. Le processus de fabrication peut utiliser des arbres tordus, noueux et déformés qui n'auraient autrement aucune valeur commerciale, maximisant ainsi l'utilisation de la forêt. L'OSB a la capacité d'offrir des avantages en termes de performances structurelles, d'être un élément important de l'enveloppe du bâtiment et de permettre des économies. L'OSB est un panneau à base de bois dimensionnellement stable qui résiste à la délamination et au gauchissement. L'OSB peut également résister à la déformation et à la distorsion de forme lorsqu'il est soumis à des charges éoliennes et sismiques. Les panneaux OSB sont légers et faciles à manipuler et à installer. Les panneaux OSB sont principalement utilisés dans des conditions de service sèches comme revêtement de toit, de mur et de plancher, et servent d'éléments structurels clés pour résister aux charges latérales dans les diaphragmes et les murs de cisaillement. L'OSB est également utilisé comme matériau d'âme pour certains types de solives en I préfabriquées en bois et comme matériau de peau pour les panneaux isolants structurels. L'OSB peut également être utilisé pour le bardage, les soffites, les sous-couches de plancher et les sous-planchers. Certains produits OSB spécialisés sont fabriqués pour le bardage et le coffrage du béton, bien que l'OSB ne soit pas couramment traité à l'aide de produits de conservation. L'OSB comporte de nombreuses couches entrelacées qui confèrent au panneau de bonnes propriétés de fixation des clous et des vis. Les fixations peuvent être enfoncées jusqu'à 6 mm du bord du panneau sans risque de fissure ou de rupture. L'OSB est un panneau structurel formé à partir de fines lamelles de tremble ou de peuplier, tranchées à partir de rondins ou de blocs de bois de petit diamètre, et collées à l'aide d'un adhésif phénolique imperméable qui durcit sous l'effet de la chaleur et de la pression. Aux États-Unis, l'OSB est également fabriqué à partir de l'essence de pin jaune du sud. D'autres essences, telles que le bouleau, l'érable ou le sweetgum, peuvent également être utilisées en quantités limitées lors de la fabrication. L'OSB est fabriqué avec les brins de la couche de surface alignés dans le sens du panneau long, tandis que les couches intérieures ont un alignement aléatoire ou croisé. Comme le contreplaqué, l'OSB est plus résistant dans l'axe long que dans l'axe étroit. Cette orientation aléatoire ou croisée des brins et des plaquettes permet d'obtenir un panneau structurel en bois d'ingénierie présentant des propriétés de rigidité et de résistance constantes, ainsi qu'une stabilité dimensionnelle. Il est également possible de produire des propriétés de résistance spécifiques à une direction en ajustant l'orientation des couches de brins ou de plaquettes. Les plaquettes ou les lamelles utilisées dans la fabrication de l'OSB mesurent généralement jusqu'à 150 mm de long dans le sens du fil, 25 mm de large et moins de 1 mm (1/32″) d'épaisseur. Au Canada, les panneaux OSB sont fabriqués pour répondre aux exigences de la norme CSA O325. Cette norme définit les performances pour des utilisations finales spécifiques telles que le revêtement de plancher, de toit et de mur dans les constructions en bois à ossature légère. Les revêtements conformes à la norme CSA O325 sont mentionnés dans la partie 9 du Code national du bâtiment du Canada (CNB). De plus, les valeurs de calcul pour le revêtement de construction en OSB sont énumérées dans la norme CSA O86, ce qui permet la conception technique des revêtements de toit, de mur et de plancher à l'aide de panneaux OSB conformes à la norme CSA O325. Les panneaux OSB sont fabriqués en dimensions impériales et métriques, et sont soit à bords carrés, soit à languettes et rainures sur les bords longs pour les panneaux de 15 mm (19/32 po) et plus d'épaisseur. Pour plus d'informations sur les dimensions disponibles des panneaux OSB, veuillez consulter le document ci-dessous. Pour plus d'informations sur l'OSB, veuillez consulter les ressources suivantes : APA - The Engineered Wood Association Code national du bâtiment du Canada CSA O86 Engineering design in wood CSA O325 Construction sheathing CSA O437 Standards on OSB and Waferboard PFS TECO Exemples de spécifications pour les panneaux à lamelles orientées (OSB) Oriented Strand Board (OSB) Grades Oriented Strand Board (OSB) Manufacture Oriented Strand Board (OSB) Quality Control Oriented Strand Board (OSB) Sizes Oriented Strand Board (OSB) Storage and Handling
Contreplaqué

Le contreplaqué est un panneau à base de bois d'ingénierie largement reconnu et utilisé dans les projets de construction canadiens depuis des décennies. Les panneaux de contreplaqué fabriqués pour des applications structurelles sont constitués de plusieurs couches ou plis de placage de bois résineux qui sont collés ensemble de manière à ce que le sens du grain de chaque couche de placage soit perpendiculaire à celui des couches adjacentes. Ces feuilles de placage croisées sont collées à l'aide d'un adhésif imperméable à base de résine phénol-formaldéhyde et durcies sous l'effet de la chaleur et de la pression. Les panneaux de contreplaqué présentent une stabilité dimensionnelle supérieure, des propriétés de résistance et de rigidité dans les deux sens et un excellent rapport résistance/poids. Ils sont également très résistants aux chocs, aux produits chimiques et aux variations de température et d'humidité relative. Le contreplaqué reste plat pour donner une surface lisse et uniforme qui ne se fissure pas, ne se tasse pas et ne se tord pas. Le contreplaqué peut être peint, teinté ou commandé avec des teintures ou des finitions appliquées en usine. Le contreplaqué est disponible avec des bords équarris ou avec des rainures et languettes, ces dernières permettant de réduire les coûts de main-d'œuvre et de matériaux en éliminant la nécessité de bloquer les bords des panneaux dans certains scénarios de conception. Le contreplaqué convient à une grande variété d'utilisations finales dans des conditions de service humides et sèches, notamment : sous-plancher, plancher à couche unique, revêtement de mur, de toit et de plancher, panneaux isolés structurels, applications marines, âmes de poutrelles en I en bois, coffrage en béton, palettes, conteneurs industriels et meubles. Les panneaux de contreplaqué utilisés comme revêtement de murs extérieurs et de toits remplissent de multiples fonctions ; ils peuvent offrir une résistance aux forces latérales telles que les charges dues au vent et aux tremblements de terre et font également partie intégrante de l'enveloppe du bâtiment. Le contreplaqué peut être utilisé à la fois comme revêtement structurel et comme revêtement de finition. Pour les applications de revêtement extérieur, les contreplaqués spécialisés sont disponibles dans une large gamme de motifs et de textures, combinant les caractéristiques naturelles du bois avec des propriétés de résistance et de rigidité supérieures. Lorsqu'il est traité avec des produits de préservation du bois, le contreplaqué convient également à une utilisation dans des conditions d'exposition extrême et prolongée à l'humidité, comme dans le cas des fondations permanentes en bois. Le contreplaqué est disponible dans une grande variété de qualités d'aspect, allant de surfaces lisses et naturelles adaptées aux travaux de finition à des qualités non poncées plus économiques utilisées pour les revêtements. Le contreplaqué est disponible dans plus d'une douzaine d'épaisseurs courantes et plus de vingt qualités différentes. Le contreplaqué de sapin de Douglas non poncé, conforme à la norme CSA O121, et le contreplaqué de résineux canadien, conforme à la norme CSA O151, sont les deux types de contreplaqués de résineux les plus couramment produits au Canada. Tous les contreplaqués structuraux sont marqués d'une estampille lisible et durable indiquant : la conformité aux normes CSA O121, CSA O151 ou CSA O153, le fabricant, le type de liant (EXTERIOR), l'essence (DFP) ou (CSP), et la qualité. Le contreplaqué peut être traité chimiquement pour améliorer sa résistance à la pourriture ou au feu. Le traitement de préservation doit être effectué par un procédé sous pression, conformément à la norme CSA O80. Les fabricants de contreplaqué doivent effectuer des tests conformément aux normes ASTM D5516 et ASTM D6305 pour déterminer les effets des produits ignifuges ou de tout autre produit chimique susceptible de réduire la résistance. Pour de plus amples informations, veuillez consulter les ressources suivantes : APA - The Engineered Wood Association CSA O121 Contreplaqué de sapin de Douglas, CSA O151 Contreplaqué de résineux canadien CSA O153 Contreplaqué de peuplier CSA O86 Engineering design in wood CSA O80 Préservation du bois ASTM D5516 Standard Test Method for Evaluating the Flexural Properties of Fire-Retardant Treated Softwood Plywood Exposed to Elevated Temperatures ASTM D6305 Standard Practice for Calculating Bending Strength Design Adjustment Factors for Fire-Code national du bâtiment du Canada Exemples de spécifications pour le contreplaqué Grades de contreplaqué Manipulation et stockage du contreplaqué Fabrication du contreplaqué Dimensions du contreplaqué Contrôle de la qualité du contreplaqué
Bois traité ignifuge

“Fire-retardant treated wood” (FRTW), as defined by the National Building Code of Canada (NBC), is ‘…wood or a wood product that has had its surface-burning characteristics, such as flame spread, rate of fuel contribution and density of smoke developed, reduced by impregnation with fire-retardant chemicals.’ FRTW must be pressure impregnated with fire-retardant chemicals in accordance with the CAN/CSA-O80 Series of Standards, Wood Preservation and when fire-tested for its surface flammability, must have a flame spread rating not more than 25. Fire-retardant chemical treatments applied to FRTW retard the spread of flame and limit smoke production from wood in fire situations. FRTW products are harder to ignite than untreated wood products and preservative treated wood products. Fire-retardant treatments applied to FRTW enhances the fire performance of the products by reducing the amount of heat released during the initial stages of fire. The treatments also reduce the amount of flammable volatiles released during fire exposure. This results in a reduction in the rate of flame spread over the surface. When the flame source is removed, FRTW ceases to char. FRTW contains different chemicals than preservative treated wood. However, the same manufacturing process is used to apply the chemicals. FRTW must be kiln-dried after treatment to a moisture content of 19% for lumber and 15% for plywood. The fire-retardant treatments used in FRTW do not generally interfere with the adhesion of surface paints and coatings unless the FRTW has an increased moisture content. The finishing characteristics of specific products should be discussed with the manufacturer. Typical interior applications of FRTW include architectural millwork, paneling, roof assemblies/trusses, beams, interior load bearing and non-load bearing partitions. Exterior-type fire retardants use different chemical formulations from those used for interior applications, since they must pass an accelerated weathering test (ASTM D2898), which exposes FRTW to regular wetting and drying cycles to represent actual long-term outdoor conditions. Generally, exterior-type fire retardants are applied to shingles and shakes. FRTW can be crosscut to length (not ripped) and drilled for holes following treatment without reducing its effectiveness. End cuts in the field, whether exposed or butt jointed, do not require treatment, since any untreated areas are relatively small compared to the total surface area and the flame spread rating remains unaffected. Plywood can be both crosscut and ripped without concern, since the chemical treatment has penetrated throughout the individual layers/plys. FRTW is not excessively corrosive to metal fasteners and other hardware, even in areas of high relative humidity. In fact, testing has demonstrated that FRTW is no more corrosive than untreated wood. Exterior use of FRTW Fire retardant coatings Fire-retardant-treated wood roof systems Flame-spread rating For more information on FRTW, visit the manufacture’s websites: Arch Wood Protection, Lonza: www.wolmanizedwood.com Viance LLC: www.treatedwood.com
Bois de construction composite

Structural Composite Lumber (SCL) Structural composite lumber (SCL) is a term used to encompass the family of engineered wood products that includes laminated veneer lumber (LVL), parallel strand lumber (PSL), laminated strand lumber (LSL) and oriented strand lumber (OSL). With its ability to be manufactured using small, fast-grow and underutilized trees, SCL products represent an efficient use of forest resources as they help to meet the increasing demand for structural lumber products that have highly reliable strength and stiffness properties. SCL consists of dried and graded wood veneers, strands or flakes that are layered upon one another and bonded together with a moisture resistant adhesive into large blocks known as billets. The grain of each layer of veneer or flakes run primarily in the same direction. These SCL billets are subsequently resawn into specified dimensions and lengths. SCL has been successfully used in a variety of applications, such as rafters, headers, beams, joists, truss chords, I-joist flanges, columns and wall studs. SCL is produced in a number of standard sizes. Some SCL products are available in a number of thicknesses while others are available in the 45 mm (1-3/4 in) thickness only. Typical depths of SCL members range from 241 to 606 mm (9-1/2 to 24 in). Single SCL members may be nailed or bolted together to form built-up beams. Generally, SCL is available in lengths of up to 20 m (65 ft). SCL is produced at a low moisture content so that very little shrinkage will occur after installation. This low moisture content also allows for SCL to be virtually free from checking, splitting or warping while in service. SCL products are proprietary products and therefore, the specific engineering properties and sizes are unique to each manufacturer. Thus, SCL products do not have a common standard of production and common design values. Design values are derived from test results analysed in accordance with CSA O86 and ASTM D5456 and the design values are reviewed and approved by the Canadian Construction Materials Centre (CCMC). Products meeting the CCMC guidelines receive an Evaluation Number and Evaluation Report that includes the specified design strengths for the SCL product, which are subsequently listed in CCMC’s Registry of Product Evaluations. The manufacturer’s name or product identification and the stress grade is marked on the material at various intervals, but due to end cutting it may not be present on every piece. For further information, refer to the following resources: APA – The Engineered Wood Association Canadian Construction Materials Centre (CCMC), Institute for Research in Construction CSA O86 Engineering design in wood ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products