en-ca

CSA S406 Fondations permanentes en bois

CSA S406 Fondations permanentes en bois

CSA S406 Spécification des fondations permanentes en bois pour les habitations et les petits bâtiments La norme CSA S406 est la norme de conception et de construction des fondations permanentes en bois (FPC) qui est citée en référence dans la partie 9 du CNB et dans les codes du bâtiment provinciaux. La première édition de la norme CSA S406 a été publiée en 1983, et les révisions et mises à jour subséquentes de la norme ont été publiées en 1992, 2014 et 2016. La norme CSA S406 s'applique à la sélection des matériaux, à la conception, à la fabrication et à l'installation de la MPO. La norme contient également des renseignements sur la préparation du site, les matériaux, le découpage et l'usinage, les semelles, les produits d'étanchéité, les barrières extérieures contre l'humidité, le remblayage et le nivellement du site. La CSA S406 fournit des détails spécifiques et des exigences normatives pour les bâtiments construits sur des MPO qui relèvent de la partie 9 du Code national du bâtiment du Canada (CNB), c'est-à-dire les bâtiments d'une hauteur maximale de trois étages au-dessus des fondations et dont l'aire de construction ne dépasse pas 600 m2. La norme CSA S406 prévoit l'utilisation facultative de systèmes de traverses en bois, de dalles de béton coulées et de planchers de sous-sol en bois suspendus en tant qu'éléments du CTP, ainsi que l'utilisation de CTP en tant qu'enveloppes de vide sanitaire. La norme n'exclut pas les CPE qui peuvent également être conçus pour des bâtiments plus grands, en utilisant les mêmes principes de conception, à condition que les exigences du code du bâtiment soient respectées. La norme CSA S406 comprend de nombreux tableaux de sélection et figures isométriques visant à améliorer l'efficacité de la conception et la compréhension des détails de construction des coffres-forts. La norme a été élaborée sur la base d'hypothèses de conception technique spécifiques concernant les procédures d'installation, le type de sol, les portées libres pour les planchers et les toits, les charges permanentes et dynamiques, les facteurs de modification, les déflexions et la hauteur de remblayage. Pour les conditions qui dépassent la portée de la norme CSA S406, des détails similaires peuvent être utilisés à condition qu'ils soient fondés sur des principes d'ingénierie reconnus qui garantissent un niveau de performance équivalent à celui énoncé dans la norme CSA S406. Si l'une des conditions de conception est différente ou plus sévère que les hypothèses, le PWF doit être conçu par un ingénieur ou un architecte et installé conformément à la norme. Indépendamment de la taille du bâtiment et de sa conformité aux hypothèses de conception de la norme CSA S406, certaines autorités compétentes exigent le sceau d'un professionnel de la conception pour délivrer un permis de construire. Pour de plus amples informations, veuillez consulter les ressources suivantes : Fondations permanentes en bois (Conseil canadien du bois) Préservation du bois Canada Code national du bâtiment du Canada

Planches de terrasse

Planches de terrasse

Les lames de terrasse peuvent être utilisées pour porter plus loin et supporter des charges plus importantes que les panneaux tels que le contreplaqué et les panneaux à copeaux orientés (OSB). Le platelage en planches est souvent utilisé lorsque l'apparence du platelage est souhaitée en tant qu'élément architectural ou lorsque la performance au feu doit répondre aux exigences de construction en bois lourd décrites dans la partie 3 du Code national du bâtiment du Canada. Le platelage est généralement utilisé dans les structures en bois massif ou en poteaux et poutres et est posé avec la face plate ou large sur les supports afin de fournir un platelage structurel pour les planchers et les toits. Les lames de terrasse peuvent être utilisées dans des conditions humides ou sèches et peuvent être traitées avec des produits de préservation, en fonction de l'essence de bois. Les clous et les pointes de terrasse sont utilisés pour fixer les pièces adjacentes de lames de terrasse les unes aux autres et pour fixer la terrasse à ses supports. Les lames de terrasse sont généralement disponibles dans les essences suivantes : sapin de Douglas (combinaison d'essences D.Fir-L) pruche de la côte pacifique (combinaison d'essences Hem-Fir) diverses essences d'épicéa, de pin et de sapin (combinaison d'essences S-P-F) cèdre rouge de l'Ouest (combinaison d'essences Northern) Pour produire des lames de terrasse, le bois scié est fraisé dans un profil à rainure et languette avec un usinage de surface spécial, tel qu'un joint en V. Les lames de terrasse sont généralement produites dans des matériaux de qualité supérieure, comme le bois d'œuvre. Les lames de terrasse sont normalement produites en trois épaisseurs : 38 mm, 64 mm et 89 mm. Les planches de 38 mm ont une languette et une rainure simples, tandis que les planches plus épaisses ont une double languette et une rainure. Les épaisseurs supérieures à 38 mm comportent également des trous de 6 mm de diamètre, espacés de 760 mm, afin que chaque pièce puisse être clouée à la pièce adjacente à l'aide de pointes de terrasse. Les dimensions et profils standard sont indiqués ci-dessous. Les lames de terrasse sont le plus souvent disponibles en longueurs aléatoires de 1,8 à 6,1 m (6 à 20 ft). Il est possible de commander des planches dans des longueurs spécifiques, mais il faut s'attendre à une disponibilité limitée et à des coûts supplémentaires. Une spécification typique pour les longueurs aléatoires pourrait exiger qu'au moins 90 % des planches soient de 3,0 m (10 pieds) et plus, et qu'au moins 40 % soient de 4,9 m (16 pieds) et plus. Le platelage en planches est disponible en deux qualités : La qualité Select (Sel) La qualité Commercial (Com) La qualité Select a un aspect plus qualitatif et est également plus solide et plus rigide que la qualité Commercial. Les planches de terrasse doivent être fabriquées conformément à la norme CSA O141 et classées selon les règles de classement standard de la NLGA pour le bois d'œuvre canadien. Étant donné que les planches de terrasse ne sont pas estampillées comme le bois de construction, il convient d'obtenir une vérification écrite de la part du fournisseur ou de faire appel à une agence de classement qualifiée pour vérifier le matériau fourni. Pour minimiser le retrait et le gauchissement, les lames de terrasse sont constituées d'éléments de bois sciés qui sont séchés à un taux d'humidité de 19 % ou moins au moment du surfaçage (S-Dry). L'utilisation d'un platelage vert peut entraîner le relâchement du joint à rainure et languette au fil du temps et une réduction de la performance structurelle et de la facilité d'utilisation. Les planches individuelles peuvent s'étendre simplement entre les supports, mais elles sont généralement de longueur aléatoire s'étendant sur plusieurs supports par souci d'économie et pour tirer parti d'une rigidité accrue. Il existe trois méthodes d'installation des terrasses en planches : aléatoire contrôlée, à travée simple et à deux travées continues. Une règle générale de conception pour le platelage aléatoire contrôlé est que les travées ne doivent pas dépasser de plus de 600 mm (2 pieds) la longueur que 40 % de l'expédition du platelage dépasse. Ces deux dernières méthodes d'installation nécessitent des planches de longueur prédéterminée, ce qui peut entraîner un surcoût. Profils et dimensions des lames de terrasse

CSA 080 Préservation du bois

CSA 080 Préservation du bois

Le Code national du bâtiment du Canada (CNB) contient des exigences relatives à l'utilisation de bois traité dans les bâtiments et la série de normes CSA O80 est citée en référence dans le CNB et dans les codes du bâtiment provinciaux pour la spécification du traitement de préservation d'une vaste gamme de produits du bois utilisés dans différentes applications. La première édition de la norme CSA O80 a été publiée en 1954. Onze révisions et mises à jour de la norme ont suivi, la dernière édition ayant été publiée en 2015. La fabrication et l'application des produits de préservation du bois sont régies par les normes de la série CSA O80. Ces normes consensuelles indiquent les essences de bois qui peuvent être traitées, les agents de préservation autorisés ainsi que la rétention et la pénétration de l'agent de préservation dans le bois qui doivent être atteintes pour la catégorie d'utilisation ou l'application. La série de normes CSA O80 spécifie également les exigences relatives à l'ignifugation du bois par traitement chimique sous pression et par imprégnation thermique du bois. Les sujets généraux couverts par la série de normes CSA O80 comprennent également les matériaux et leur analyse, les procédures d'imprégnation thermique et sous pression, ainsi que la fabrication et l'installation. Les normes canadiennes relatives à la préservation du bois sont basées sur les normes de l'American Wood Protection Association (AWPA), modifiées pour les conditions canadiennes. Seuls les produits de préservation du bois homologués par l'Agence canadienne de réglementation de la lutte antiparasitaire sont répertoriés. Les pénétrations et les charges (rétentions) requises pour les produits de préservation varient en fonction des conditions d'exposition qu'un produit est susceptible de rencontrer au cours de sa durée de vie. Chaque type de produit de préservation présente des avantages distincts et le produit de préservation utilisé doit être déterminé en fonction de l'utilisation finale du matériau. Les exigences de transformation et de traitement de la série CSA O80 sont conçues pour évaluer les conditions d'exposition auxquelles le bois traité sous pression sera soumis pendant la durée de vie d'un produit. Le niveau de protection requis est déterminé par l'exposition au danger (par exemple, les conditions climatiques, le contact direct avec le sol ou l'exposition à l'eau salée), les attentes du produit installé (par exemple, le niveau d'intégrité structurelle tout au long de la durée de vie) et les coûts potentiels de réparation ou de remplacement au cours du cycle de vie. Les exigences techniques de la norme CSA O80 sont organisées dans le système de catégories d'utilisation (SCU). Le SCU est conçu pour faciliter la sélection de l'essence de bois, du produit de préservation, de la pénétration et de la rétention (charge) appropriés par le rédacteur de devis et l'utilisateur de bois traité en faisant correspondre plus précisément l'essence, le produit de préservation, la pénétration et la rétention pour des conditions d'humidité typiques et les agents de biodétérioration du bois à l'utilisation finale prévue. La norme CSA O80.1 spécifie quatre catégories d'utilisation (CU) pour le bois traité utilisé dans la construction : UC1 couvre le bois traité utilisé dans les constructions intérieures sèches ; UC2 couvre le bois traité et les matériaux à base de bois utilisés dans les constructions intérieures sèches qui ne sont pas en contact avec le sol mais qui peuvent être exposés à l'humidité ; UC3 couvre le bois traité utilisé dans les constructions extérieures qui ne sont pas en contact avec le sol ; UC3.1 couvre les constructions extérieures au-dessus du sol avec des produits en bois enduits et un ruissellement rapide de l'eau ; UC3.2 couvre les constructions extérieures en surface avec des produits du bois non enduits ou un faible écoulement de l'eau ; UC4 couvre le bois traité utilisé dans les constructions extérieures en contact avec le sol ou l'eau douce ; UC4.1 couvre les composants non critiques ; UC4.2 couvre les composants structurels critiques ou les composants difficiles à remplacer ; UC5A couvre le bois traité utilisé dans les eaux côtières, y compris l'eau saumâtre, l'eau salée et la zone de boue adjacente. La série de normes CSA O80 comprend les cinq normes suivantes : CSA O80.0 Exigences générales relatives à la préservation du bois ; précise les exigences et fournit des renseignements applicables à l'ensemble de la série de normes. CSA O80.1 Spécification du bois traité ; vise à aider les rédacteurs de devis et les utilisateurs de produits de bois traité à déterminer les exigences appropriées en matière de produits de préservation pour divers produits du bois et environnements d'utilisation finale. CSA O80.2 Transformation et traitement : spécifie les exigences minimales et les limites des procédés de traitement des produits du bois. CSA O80.3 Formulations de produits de préservation ; spécifie les exigences relatives aux produits de préservation qui ne sont pas mentionnées ailleurs. CSA O80.4 a été retirée. CSA O80.5 Additifs CCA - Poteaux utilitaires ; spécifie les exigences relatives à la préparation et à l'utilisation des combinaisons de produits de préservation et d'additifs CCA pour les poteaux utilitaires autorisés par les normes CSA O80.1 et CSA O80.2. Pour de plus amples informations, veuillez consulter les ressources suivantes : www.durable-wood.com CSA O80 Préservation du bois Préservation du bois Canada Code national du bâtiment du Canada Agence de réglementation de la lutte antiparasitaire American Wood Protection Association ISO 21887 Durabilité du bois et des produits à base de bois - Classes d'utilisation

Bois de construction composite

Bois de construction composite

Bois de construction composite (SCL) Le bois de construction composite (SCL) est un terme utilisé pour englober la famille de produits en bois d'ingénierie qui comprend le bois de placage stratifié (LVL), le bois à copeaux parallèles (PSL), le bois à copeaux stratifiés (LSL) et le bois à copeaux orientés (OSL). Grâce à leur capacité à être fabriqués à partir d'arbres de petite taille, à croissance rapide et sous-utilisés, les produits SCL représentent une utilisation efficace des ressources forestières et contribuent à répondre à la demande croissante de produits de bois de charpente présentant des propriétés de résistance et de rigidité très fiables. Les SCL sont constitués de placages, de brins ou de flocons de bois séchés et calibrés qui sont superposés et collés avec un adhésif résistant à l'humidité pour former de grands blocs appelés billettes. Le grain de chaque couche de placage ou de flocons est principalement orienté dans la même direction. Ces billettes SCL sont ensuite sciées à nouveau dans les dimensions et longueurs spécifiées. Le SCL a été utilisé avec succès dans une variété d'applications, telles que les chevrons, les poutrelles, les solives, les membrures de fermes, les brides de poutrelles en I, les colonnes et les montants muraux. Le SCL est produit dans un certain nombre de dimensions standard. Certains produits SCL sont disponibles dans un certain nombre d'épaisseurs, tandis que d'autres ne sont disponibles que dans l'épaisseur de 45 mm (1-3/4 in). Les profondeurs typiques des éléments SCL vont de 241 à 606 mm (9-1/2 à 24 in). Les éléments SCL individuels peuvent être cloués ou boulonnés ensemble pour former des poutres construites. Généralement, le SCL est disponible en longueurs allant jusqu'à 20 m (65 ft). Le SCL est produit à un faible taux d'humidité, de sorte qu'il y a très peu de retrait après l'installation. Cette faible teneur en humidité permet également au SCL d'être pratiquement exempt de gerces, de fissures ou de gauchissements en cours d'utilisation. Les produits SCL sont des produits brevetés et, par conséquent, les propriétés techniques et les dimensions spécifiques sont propres à chaque fabricant. Par conséquent, les produits SCL n'ont pas de norme de production commune ni de valeurs de conception communes. Les valeurs de conception sont dérivées des résultats d'essais analysés conformément à la norme CSA O86 et à la norme ASTM D5456 et les valeurs de conception sont examinées et approuvées par le Centre canadien des matériaux de construction (CCMC). Les produits conformes aux directives du CCMC reçoivent un numéro d'évaluation et un rapport d'évaluation comprenant les résistances nominales spécifiées pour le produit SCL, qui sont ensuite répertoriées dans le registre des évaluations de produits du CCMC. Le nom du fabricant ou l'identification du produit et le degré de contrainte sont marqués sur le matériau à différents intervalles, mais en raison de la coupe en bout, ils peuvent ne pas être présents sur chaque pièce. Pour de plus amples informations, veuillez consulter les ressources suivantes : APA - The Engineered Wood Association Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction CSA O86 Engineering design in wood ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products

Bois massif

Bois massif

Les progrès de la technologie et des systèmes de produits du bois sont à l'origine de la dynamique des bâtiments innovants au Canada. Des produits tels que le bois lamellé-croisé (CLT), le bois lamellé-cloué (NLT), le bois lamellé-collé (GLT), le bois lamellé-collé (LSL), le bois de placage stratifié (LVL) et d'autres produits composites structurels de grande dimension (SCL) font partie d'une classification plus large connue sous le nom de "bois de masse". Bien que le bois de masse soit un terme émergent, la construction traditionnelle à poteaux et à poutres (charpente en bois) existe depuis des siècles. Aujourd'hui, les produits de bois de masse peuvent être constitués en fixant mécaniquement et/ou en collant des éléments de bois plus petits tels que du bois de construction ou des placages, des brins ou des fibres de bois pour former de grands éléments de bois préfabriqués utilisés comme poutres, colonnes, arcs, murs, planchers et toits. Les produits en bois de masse ont un volume et des dimensions transversales suffisants pour offrir des avantages significatifs en termes de résistance au feu, d'acoustique et de performance structurelle, en plus de l'efficacité de la construction.

Poutrelles à ossature légère

Poutrelles à ossature légère

Une ferme est une structure qui repose sur une disposition triangulaire des âmes et des membrures pour transférer les charges aux points de réaction. Cette disposition géométrique des éléments confère aux fermes un rapport résistance/poids élevé, ce qui permet des portées plus longues que les charpentes conventionnelles. Les fermes à ossature légère peuvent généralement atteindre une portée de 20 m (60 pieds), bien que des portées plus longues soient également possibles. Les premières fermes à ossature légère ont été construites sur place à l'aide de goussets en contreplaqué cloués. Ces fermes offraient des portées acceptables mais nécessitaient un temps de construction considérable. Développée à l'origine aux États-Unis dans les années 1950, la plaque de connexion métallique a transformé l'industrie des fermes en permettant une préfabrication efficace des fermes de courte et de longue portée. Les plaques d'assemblage en métal léger permettent de transférer la charge entre les éléments adjacents grâce à des dents en acier poinçonnées qui sont encastrées dans les éléments en bois. Aujourd'hui, les fermes en bois à ossature légère sont largement utilisées dans les constructions résidentielles unifamiliales et multifamiliales, institutionnelles, agricoles, commerciales et industrielles. La forme et la taille des fermes à ossature légère ne sont limitées que par les capacités de fabrication, les contraintes d'expédition et les considérations de manutention. Les fermes peuvent être conçues comme simples ou à plusieurs travées, avec ou sans porte-à-faux. L'économie, la facilité de fabrication, la livraison rapide et les procédures de montage simplifiées rendent les fermes en bois à ossature légère compétitives dans de nombreuses applications de toiture et de plancher. Leur grande portée élimine souvent le besoin de murs porteurs intérieurs, ce qui offre au concepteur une grande souplesse dans l'agencement des planchers. Les fermes de toit offrent des configurations en pente, inclinées ou plates, tout en laissant un espace libre entre les membrures pour l'isolation, la ventilation, l'électricité, la plomberie, le chauffage et l'air conditionné. Les fermes en bois à ossature légère sont préfabriquées en pressant les dents saillantes de la plaque d'acier de la ferme dans des éléments de bois de 38 mm (2 po), qui sont prédécoupés et assemblés dans un gabarit. La plupart des fermes sont fabriquées avec du bois de 38 x 64 mm (2 x 3 pouces) à 38 x 184 mm (2 x 8 pouces) classé visuellement et soumis à des contraintes mécaniques (MSR). Pour obtenir différentes valeurs d'adhérence, les plaques d'assemblage des fermes sont estampées à partir de tôles d'acier galvanisé de calibre léger de différentes qualités et épaisseurs. De nombreuses dimensions de plaques sont fabriquées pour s'adapter à toutes les formes et dimensions de fermes ou de charges à supporter. Les fermes à ossature légère sont fabriquées conformément aux normes établies par le Truss Plate Institute of Canada. Les capacités des plaques varient d'un fabricant à l'autre et sont établies par des essais. Les plaques de fermes doivent être conformes aux exigences de la norme CSA O86 et doivent être approuvées par le Centre canadien des matériaux de construction (CCMC). Pour obtenir cette approbation, les plaques de fermes sont testées conformément à la norme CSA S347. Lors de la conception, les fermes à ossature légère sont généralement conçues par le fabricant de plaques de fermes pour le compte du fabricant de fermes. Lorsque les fermes à ossature légère arrivent sur le chantier, il convient de vérifier qu'elles ne présentent pas de dommages permanents tels que des ruptures transversales dans le bois, des plaques de connexion métalliques manquantes ou endommagées, des fissures excessives dans le bois ou tout autre dommage susceptible de nuire à l'intégrité structurelle de la ferme. Dans la mesure du possible, les fermes doivent être déchargées en paquets sur un sol sec et relativement lisse. Elles ne doivent pas être déchargées sur un terrain accidenté ou sur des espaces irréguliers qui pourraient entraîner des tensions latérales excessives susceptibles de déformer les plaques d'assemblage métalliques ou d'endommager des parties des fermes. Les fermes à ossature légère peuvent être stockées horizontalement ou verticalement. Si elles sont stockées en position horizontale, les fermes doivent être soutenues par des cales espacées de 2,4 à 3 m (8 à 10 ft) afin d'éviter les flexions latérales et de réduire l'absorption d'humidité par le sol. Lorsqu'elles sont stockées en position verticale, les fermes doivent être placées sur une surface horizontale stable et contreventées pour éviter qu'elles ne basculent ou ne se renversent. Si les fermes doivent être stockées pendant une période prolongée, des mesures doivent être prises pour les protéger des intempéries, en les gardant sèches et bien ventilées. Les fermes à ossature légère nécessitent un contreventement temporaire pendant le montage, avant l'installation d'un contreventement permanent. Les plaques de fermes ne doivent pas être utilisées avec du bois incisé. Contacter le fabricant de fermes pour obtenir des conseils supplémentaires sur l'utilisation des fermes à ossature légère dans des environnements corrosifs, des conditions de service humides ou lorsqu'elles sont traitées avec un produit ignifuge. Pour plus d'informations, consulter les ressources suivantes : Canadian Wood Truss Association Truss Plate Institute of Canada CSA O86 Engineering design in wood CSA S347 Method of test for evaluation of truss plates used in lumber joints Canadian Construction Materials Centre

Bois d’échantillon

Bois d’échantillon

Le bois de construction est un bois massif scié dont l'épaisseur est inférieure à 89 mm (3,5 pouces). Le bois de construction peut être désigné par sa dimension nominale en pouces, c'est-à-dire la dimension réelle arrondie au pouce supérieur, ou par sa dimension réelle en millimètres. Par exemple, un matériau de 38 × 89 mm (1-1/2 × 3-1/2 in) est désigné nominalement comme du bois d'œuvre 2 × 4. Le bois d'œuvre séché à l'air ou au four (S-Dry), dont le taux d'humidité est inférieur ou égal à 19 %, est facilement disponible dans une épaisseur de 38 mm (1,5 po). Les épaisseurs de 64 et 89 mm (2-1/2 et 3-1/2 in) sont généralement disponibles en vert surfacé (S-Grn) uniquement, c'est-à-dire que le taux d'humidité est supérieur à 19 %. La longueur maximale du bois d'œuvre que l'on peut obtenir est d'environ 7 m (23 ft), mais elle varie d'un bout à l'autre du Canada. Le bois d'œuvre est principalement utilisé dans la construction de bâtiments pour l'ossature des toits, des planchers, des murs de cisaillement, des diaphragmes et des murs porteurs. Le bois d'œuvre peut être utilisé directement comme matériau d'ossature ou peut servir à fabriquer des produits structuraux techniques, tels que des fermes à ossature légère ou des solives en I préfabriquées en bois. Le bois de dimension de qualité spéciale, appelé lamstock (stock de stratification), est fabriqué exclusivement pour le bois lamellé-collé. L'assurance qualité du bois canadien est assurée par un système complexe de normes de produits, de normes de conception technique et de codes de construction, impliquant une surveillance du classement, un soutien technique et un cadre réglementaire. Vérification et fendillement Vérification et fendillement La vérification se produit lorsque le bois est séché rapidement. La surface sèche rapidement, tandis que le cœur du bois reste à un taux d'humidité plus élevé pendant un certain temps. Par conséquent, la surface tente de se rétracter, mais elle est retenue par le cœur du bois. Cette contrainte provoque des tensions à la surface qui, si elles sont suffisamment importantes, peuvent séparer les fibres, créant ainsi une fente. Les fissures sont des fentes de passage qui se produisent généralement à l'extrémité des éléments en bois. Lorsqu'un élément en bois sèche, l'humidité est perdue très rapidement à l'extrémité de l'élément. À mi-longueur, cependant, le bois a encore un taux d'humidité plus élevé. Cette différence de teneur en eau crée des contraintes de traction à l'extrémité de la pièce. Lorsque les contraintes dépassent la résistance du bois, une fente se forme. Les sciages massifs de grande dimension sont susceptibles de se fendre et de se fissurer car ils sont toujours apprêtés en vert (S-Grn). En outre, en raison de leur grande taille, l'âme sèche lentement et les contraintes de traction à la surface et aux extrémités peuvent être importantes. Les petits défauts limités à la surface d'un élément en bois ont très rarement un effet sur la résistance de l'élément. Les fissures profondes peuvent être importantes si elles se produisent à un endroit où les contraintes de cisaillement sont élevées. Les fissures dans les colonnes n'ont pas d'importance structurelle, sauf si elles se transforment en fissures traversantes qui augmentent le coefficient d'élancement de la colonne. Les résistances au cisaillement spécifiées pour les bois de construction et les bois d'œuvre ont été élaborées en tenant compte de la quantité maximale de fissures ou de fentes autorisée par la règle de classement applicable. Il est possible de réduire la possibilité et la gravité des fentes et des gerces en contrôlant la vitesse de séchage. Pour ce faire, le bois doit être maintenu à l'abri de la lumière directe du soleil et à l'écart de toute source de chaleur artificielle. En outre, les extrémités peuvent être enduites d'un produit d'étanchéité pour retarder la perte d'humidité. D'autres mesures permettent de minimiser les changements de dimensions et le risque de fendillement : spécifier des produits du bois dont la teneur en humidité est aussi proche que possible de la teneur en humidité d'équilibre prévue pour l'utilisation finale ; veiller à ce que les produits du bois secs soient protégés par un stockage et une manipulation appropriés. Bois abouté Les produits aboutés sont fabriqués en prenant des pièces plus courtes de bois séché au four, en usinant un profil en forme de "doigt" à chaque extrémité des pièces courtes, en ajoutant un adhésif structurel approprié et en collant les pièces ensemble pour obtenir une pièce de bois plus longue. La longueur d'un bois abouté n'est pas limitée par la longueur de la grume. En fait, le processus de fabrication peut aboutir à la production de solives et de chevrons d'une longueur de 12 m (40 pieds) ou plus. Le procédé d'aboutage est également utilisé dans le processus de fabrication de plusieurs autres produits en bois d'ingénierie, notamment le bois lamellé-collé et les poutrelles en I en bois. Le terme spécifique de "bois abouté" s'applique au bois de construction qui contient des joints à entures multiples. L'aboutage permet de tirer une plus grande valeur de la ressource forestière en utilisant de courtes pièces de bois de qualité inférieure comme intrants pour la fabrication d'un produit en bois d'ingénierie à valeur ajoutée. Le processus d'aboutage utilise de courtes pièces de bois coupées et permet une utilisation plus efficace des fibres de bois récoltées. Le bois abouté peut être fabriqué à partir de n'importe quelle essence ou groupe d'essences commerciales. Le groupe d'essences le plus couramment utilisé pour la production de bois abouté est l'épicéa, le pin et le sapin (S-P-F). Avantages de la conception du bois abouté Le bois abouté est un produit d'ingénierie en bois souhaitable pour plusieurs raisons : rectitude stabilité dimensionnelle interchangeabilité avec le bois non abouté utilisation très efficace des fibres de bois Les avantages de la conception et de la performance de ce produit d'ingénierie en bois sont sa rectitude et sa stabilité dimensionnelle. La rectitude et la stabilité dimensionnelle du bois abouté résultent du fait que des pièces de bois de faible longueur, au fil relativement droit et présentant moins de défauts naturels, sont assemblées pour former une pièce de bois de plus grande longueur. Le grain du bois abouté devient non uniforme et aléatoire lorsque de nombreuses pièces courtes sont assemblées. Le bois abouté est donc moins susceptible de se déformer que le bois de sciage massif. Le processus d'aboutage permet également de réduire ou d'éliminer les défauts qui réduisent la résistance, ce qui donne un produit structurel en bois dont les propriétés techniques sont moins variables que celles du bois de construction massif. L'utilisation la plus courante du bois abouté est celle des montants dans les murs de cisaillement et les murs porteurs verticaux. Le facteur le plus important pour les montants est la rectitude. Les montants assemblés par entures multiples restent plus droits que les montants en bois de construction massif lorsqu'ils sont soumis à des changements de température et d'humidité. Cette caractéristique présente des avantages considérables pour le constructeur et le propriétaire, notamment une construction de qualité supérieure, l'élimination des sauts de clous dans les cloisons sèches et d'autres problèmes liés aux variations dimensionnelles.

Analyse du cycle de vie

Analyse du cycle de vie

Les produits de construction et le secteur du bâtiment dans son ensemble ont un impact significatif sur l'environnement. Les instruments politiques et les forces du marché poussent de plus en plus les gouvernements et les entreprises à documenter et à rendre compte des impacts environnementaux et à suivre les améliorations. L'analyse du cycle de vie (ACV) est un outil qui permet de comprendre les aspects environnementaux liés à la construction, à la rénovation et à la modernisation des bâtiments et des ouvrages de génie civil. L'ACV est un outil d'aide à la décision qui permet d'identifier les approches de conception et de construction qui améliorent les performances environnementales. Plusieurs juridictions européennes, dont l'Allemagne, Zurich et Bruxelles, ont fait de l'ACV une exigence obligatoire avant la délivrance d'un permis de construire. En outre, l'application de l'ACV à la conception des bâtiments et à la sélection des matériaux est une composante des systèmes d'évaluation des bâtiments écologiques. L'ACV peut être utile aux fabricants, aux architectes, aux constructeurs et aux agences gouvernementales en fournissant des informations quantitatives sur les impacts environnementaux potentiels et en fournissant des données permettant d'identifier les domaines à améliorer. L'ACV est une approche basée sur la performance pour évaluer les aspects environnementaux liés à la conception et à la construction des bâtiments. L'ACV peut être utilisée pour comprendre les impacts environnementaux potentiels d'un produit ou d'une structure à chaque étape de sa vie, depuis l'extraction des ressources ou l'acquisition des matières premières, le transport, la transformation et la fabrication, la construction, l'exploitation, l'entretien et la rénovation jusqu'à la fin de vie. L'ACV est une méthodologie scientifique internationalement reconnue qui existe sous d'autres formes depuis les années 1960. Les exigences et les orientations relatives à la réalisation d'une ACV ont été établies par le biais de normes internationales consensuelles, à savoir les normes ISO 14040 et ISO 14044. L'ACV prend en compte tous les flux d'entrée et de sortie (matériaux, énergie, ressources) associés à un système de produits donné. Il s'agit d'une procédure itérative qui comprend la définition des objectifs et du champ d'application, l'analyse de l'inventaire, l'évaluation de l'impact et l'interprétation. L'analyse de l'inventaire, également connue sous le nom d'inventaire du cycle de vie (ICV), consiste en la collecte de données et le suivi de tous les flux d'entrée et de sortie au sein d'un système de produits. Des bases de données publiques sur l'ICV, telles que la base de données américaine sur l'inventaire du cycle de vie, sont accessibles gratuitement afin d'obtenir ces données. Au cours de la phase d'évaluation de l'impact de l'ACV, les flux de l'ICV sont traduits en catégories d'impact potentiel sur l'environnement à l'aide de techniques de modélisation environnementale théoriques et empiriques. L'ACV permet de quantifier les impacts environnementaux potentiels et les aspects d'un produit, tels que le potentiel de réchauffement de la planète, le potentiel d'acidification, le potentiel de réduction de la pollution, etc : le potentiel de réchauffement de la planète, le potentiel d'acidification, le potentiel d'eutrophisation, le potentiel d'appauvrissement de la couche d'ozone, le potentiel de smog, la consommation d'énergie primaire, la consommation de ressources matérielles et la production de déchets dangereux et non dangereux. Les concepteurs de bâtiments disposent d'outils d'ACV accessibles au public et faciles à utiliser. Ces outils permettent aux concepteurs d'obtenir rapidement des informations sur l'impact potentiel sur l'environnement d'une large gamme d'assemblages génériques de bâtiments ou d'élaborer eux-mêmes des évaluations complètes du cycle de vie des bâtiments. Les logiciels d'ACV offrent aux professionnels de la construction des outils puissants pour calculer les impacts potentiels du cycle de vie des produits ou des assemblages de construction et effectuer des comparaisons environnementales. Il est également possible d'utiliser l'ACV pour effectuer des comparaisons objectives entre des matériaux alternatifs, des assemblages et des bâtiments entiers, mesurées sur les cycles de vie respectifs et basées sur des indicateurs environnementaux quantifiables. L'ACV permet de comparer les compromis environnementaux associés au choix d'un matériau ou d'une solution de conception par rapport à un autre et, par conséquent, fournit une base efficace pour comparer les implications environnementales relatives de scénarios de conception de bâtiments alternatifs. Une ACV qui examine des options de conception alternatives doit garantir l'équivalence fonctionnelle. Chaque scénario de conception envisagé, y compris l'ensemble du bâtiment, doit répondre aux exigences du code du bâtiment et offrir un niveau minimum de performance technique ou d'équivalence fonctionnelle. Pour quelque chose d'aussi complexe qu'un bâtiment, cela signifie qu'il faut suivre et comptabiliser les intrants et les extrants environnementaux pour la multitude d'assemblages, de sous-assemblages et de composants de chaque option de conception. La longévité d'un système de construction a également un impact sur la performance environnementale. Les bâtiments en bois peuvent rester en service pendant de longues périodes s'ils sont conçus, construits et entretenus correctement. De nombreuses études d'ACV dans le monde ont démontré que les produits et systèmes de construction en bois peuvent présenter des avantages environnementaux par rapport à d'autres matériaux et méthodes de construction. FPInnovations a réalisé une ACV d'un bâtiment de quatre étages au Québec construit en bois lamellé-croisé (CLT). L'étude a évalué comment la conception en CLT se comparerait à un bâtiment fonctionnellement équivalent en béton et en acier de la même surface de plancher, et a révélé une performance environnementale améliorée dans deux des six catégories d'impact, et une performance équivalente dans les autres catégories. En outre, en fin de vie, les produits biosourcés peuvent faire partie d'un système de produits ultérieurs lorsqu'ils sont réutilisés, recyclés ou valorisés énergétiquement, ce qui peut réduire les incidences sur l'environnement et contribuer à l'économie circulaire. Cycle de vie des produits de construction en bois Photo source : CEI-Bois Pour de plus amples informations, veuillez consulter les ressources suivantes : www.naturallywood.com Athena Sustainable Materials Institute Building for Environmental and Economic Sustainability (BEES) FPInnovations. Analyse comparative du cycle de vie de deux bâtiments résidentiels à plusieurs étages : Cross-Laminated Timber vs. Concrete Slab and Column with Light Gauge Steel Walls, 2013. American Wood Council U.S. Life Cycle Inventory Database ISO 14040 Management environnemental - Analyse du cycle de vie - Principes et cadre ISO 14044 Management environnemental - Analyse du cycle de vie - Exigences et lignes directrices

Codes et normes

Codes et normes

CODES ET NORMES DE CONSTRUCTION (LE SYSTÈME RÉGLEMENTAIRE) L'industrie de la construction est réglementée par des codes de construction qui s'appuient sur des normes de conception qui fournissent des informations sur la "manière" de construire avec du bois : Les normes de conception qui fournissent des informations sur la manière de construire en bois, les normes de produits qui définissent les caractéristiques des produits du bois pouvant être utilisés dans les normes de conception, et les normes d'essai qui définissent la méthodologie permettant d'établir les caractéristiques d'un produit du bois. Il s'agit notamment des domaines suivants CODES DE CONSTRUCTION - Le CWC participe activement au processus d'élaboration des codes de construction au Canada. La CCB est membre des comités nationaux et provinciaux du code du bâtiment. Ces comités sont équilibrés et la représentation est limitée à environ 25 membres par comité. Des intérêts concurrents (par exemple l'acier et le béton) siègent dans les mêmes comités. C'est un domaine où CWC peut gagner ou perdre du terrain pour les produits de ses membres. NORMES DE CONCEPTION - Chaque producteur de matériaux de construction élabore des normes de conception technique qui fournissent des informations sur la manière d'utiliser ses produits dans les bâtiments. Le CWC assure le secrétariat de la norme canadienne de conception du bois (CSA O86 "Engineering Design in Wood"), fournissant à la fois l'expertise technique et le soutien administratif nécessaires à son élaboration. Le CWC est également membre du comité de l'American Wood Council (AWC) qui est responsable de la National Design Specification des États-Unis pour la conception du bois. NORMES DE PRODUITS - CWC participe à l'élaboration de normes canadiennes, américaines et internationales pour ses producteurs de produits de construction en bois. NORMES D'ESSAI - CWC participe à l'élaboration de normes d'essai canadiennes, américaines et internationales dans des domaines qui concernent les produits du bois, tels que la résistance au feu. Pages détaillées sur les codes et normes de construction : Acoustique Construction combustible Construction en bois massif encapsulé Code de l'énergie Code national de prévention des incendies Codes modèles nationaux au Canada Conception du bois dans le Code national du bâtiment du Canada Bois dans les bâtiments non combustibles Normes sur le bois CSA O86 Conception technique en bois CSA S-6 Code canadien de conception des ponts routiers CSA S406 Fondations permanentes en bois CSA 080 Préservation du bois

Code du feu

Code du feu

Code national de prévention des incendies du Canada Le Code national du bâtiment du Canada (CNB) et le Code national de prévention des incendies du Canada (CNPI), tous deux publiés par le Conseil national de recherches du Canada (CNRC) et élaborés par la Commission canadienne des codes du bâtiment et de prévention des incendies (CCCBPI), sont des documents complémentaires. Le CNB établit des normes minimales pour la santé et la sécurité des occupants des bâtiments neufs. Il s'applique également à la modification des bâtiments existants, y compris les changements d'occupation. Le CNB n'est pas rétroactif. En d'autres termes, un bâtiment construit conformément à une édition particulière du CNB, en vigueur au moment de sa construction, n'est pas automatiquement tenu de se conformer à l'édition suivante du CNB. Ce bâtiment ne serait tenu de se conformer à une version actualisée du CNB que s'il faisait l'objet d'un changement d'occupation ou de modifications entraînant l'application du nouveau CNB en vigueur au moment du changement d'occupation ou de la modification majeure. Le CNPI traite de la sécurité incendie pendant l'exploitation des installations et des bâtiments. Les exigences du CNPI, quant à elles, visent à garantir le maintien du niveau de sécurité initialement prévu par le CNB. Dans ce but, le CNPI réglemente : la conduite d'activités entraînant des risques d'incendie l'entretien des équipements de sécurité incendie et des moyens d'évacuation les limitations concernant le contenu des bâtiments, y compris le stockage et la manipulation de produits dangereux l'établissement de plans de sécurité incendie Le CNPI est censé être rétroactif en ce qui concerne les systèmes d'alarme incendie, les colonnes montantes et les systèmes d'extinction automatique. En 1990, le CNPI a été révisé pour préciser que de tels systèmes "doivent être installés dans tous les bâtiments lorsque cela est exigé par le Code national du bâtiment du Canada et conformément à ses exigences". Cette disposition garantit que les bâtiments sont correctement protégés contre le risque inhérent au même niveau que celui exigé par le CNB pour un nouveau bâtiment. Il ne concerne pas les autres dispositifs de protection contre l'incendie tels que les mesures de contrôle des fumées ou les ascenseurs pour pompiers. Le CNPI garantit également que les changements d'utilisation des bâtiments n'augmentent pas le risque au-delà des limites des systèmes de protection incendie d'origine. Le CNB et le CNPI sont rédigés de manière à minimiser les risques de conflit entre leurs contenus respectifs. Ils doivent tous deux être pris en compte lors de la construction, de la rénovation ou de l'entretien des bâtiments. Ils sont complémentaires, en ce sens que le CNPI prend le relais du CNB une fois que le bâtiment est en service. En outre, les structures plus anciennes qui ne sont pas conformes au niveau de sécurité incendie le plus récent peuvent être rendues plus sûres grâce aux exigences du CNPI. Les dernières modifications importantes du CNPI concernent la construction de bâtiments de six étages utilisant des matériaux combustibles. En conséquence, huit mesures de protection supplémentaires relatives aux bâtiments combustibles de moyenne hauteur ont été ajoutées pour faire face aux risques d'incendie pendant la construction lorsque les dispositifs de protection contre l'incendie ne sont pas encore en place.

Code de l'énergie

Code de l'énergie

Le Code national de l'énergie pour les bâtiments (CNÉB) vise à aider à économiser sur les factures d'énergie, à réduire la demande d'énergie de pointe et à améliorer la qualité et le confort de l'environnement intérieur des bâtiments. À travers chaque cycle d'élaboration du code, le CNÉB entend mettre en œuvre une approche progressive pour atteindre l'objectif du Canada pour les nouveaux bâtiments, tel que présenté dans le "Cadre pancanadien sur la croissance propre et le changement climatique", qui consiste à réaliser des bâtiments "prêts pour une consommation énergétique nette zéro" d'ici 2030. Le CNÉB est disponible gratuitement en ligne ; il est publié par le Conseil national de recherches du Canada (CNRC) et élaboré par la Commission canadienne des codes du bâtiment et de prévention des incendies en collaboration avec Ressources naturelles Canada (RNCan). La CCB participe en permanence à l'élaboration et à la mise à jour du CNÉB. Le CNÉB définit les exigences techniques en matière de conception et de construction efficaces sur le plan énergétique, ainsi que les niveaux minimaux d'efficacité énergétique pour la conformité au code de tous les nouveaux bâtiments. Le CNEB s'applique à tous les types de bâtiments, à l'exception des logements et des petits bâtiments, qui sont régis par l'article 9.36 du Code national du bâtiment du Canada. Le CNEB offre trois voies de conformité : normative, de compromis et de performance. Le moment le plus rentable pour intégrer des mesures d'efficacité énergétique dans un bâtiment est la phase initiale de conception et de construction. Il est beaucoup plus coûteux d'effectuer des travaux de rénovation plus tard. Cela est particulièrement vrai pour l'enveloppe du bâtiment, qui comprend les murs extérieurs, les fenêtres, les portes et la toiture. Le CMNÉB aborde des considérations telles que les taux d'infiltration d'air (fuites d'air) et la transmission de la chaleur à travers l'enveloppe du bâtiment. Compte tenu des différentes zones climatiques du Canada, le CMNÉB fournit également des exigences relatives à la transmission thermique globale (effective) maximale pour les parois opaques au-dessus du sol et à la résistance thermique effective des assemblages en contact avec le sol, par exemple les fondations permanentes en bois. En outre, le CMNÉB spécifie la fenestration maximale et le rapport porte/mur en fonction de la zone climatique dans laquelle le bâtiment est situé. Les exigences en matière d'efficacité énergétique des bâtiments étant de plus en plus strictes, le bois est une solution naturelle à associer à d'autres matériaux d'isolation et de protection contre les intempéries pour créer des bâtiments ayant une performance énergétique opérationnelle élevée et offrant un confort intérieur constant aux occupants. Pour plus d'informations sur le CNÉB, visitez le site Codes Canada du Conseil national de recherches du Canada.

Acoustique

Acoustique

Le bois est composé de nombreux petits tubes cellulaires principalement remplis d'air. La composition naturelle du matériau permet au bois d'agir comme un isolant acoustique efficace et lui confère la capacité d'amortir les vibrations. Ces caractéristiques d'amortissement du son permettent de spécifier des éléments de construction en bois là où l'isolation ou l'amplification du son est nécessaire, comme dans les bibliothèques et les auditoriums. Une autre propriété acoustique importante du bois est sa capacité à limiter la transmission des bruits d'impact, un problème généralement associé aux matériaux et systèmes de construction plus durs et plus denses. L'utilisation d'une chape ou d'un système de plancher flottant superposé à une ossature en bois léger ou à des éléments structurels en bois massif est une approche courante pour assurer la séparation acoustique entre les étages d'un bâtiment. Selon le type de matériaux utilisés dans le système de plancher construit, la chape peut être appliquée directement sur les éléments structurels en bois ou sur une barrière contre l'humidité ou une couche résiliente. L'utilisation de plaques de plâtre, d'isolants absorbants (en matelas ou en vrac) et de profilés souples sont également des éléments essentiels d'un mur ou d'un plancher à ossature bois, qui contribuent également aux performances acoustiques de l'ensemble. La conception acoustique tient compte d'un certain nombre de facteurs, notamment l'emplacement et l'orientation du bâtiment, ainsi que l'isolation ou la séparation des fonctions génératrices de bruit et des éléments du bâtiment. Les indices de transmission du son (STC), de transmission du son apparent (ASTC) et d'isolation contre les chocs (IIC) sont utilisés pour déterminer le niveau de performance acoustique des produits et systèmes de construction. Les différents indices peuvent être déterminés sur la base d'essais normalisés en laboratoire ou, dans le cas des indices ASTC, calculés à l'aide de méthodes décrites dans le CNB. Actuellement, le Code national du bâtiment du Canada (CNB) ne réglemente que la conception acoustique des murs intérieurs et des planchers qui séparent les unités d'habitation (p. ex. appartements, maisons, chambres d'hôtel) d'autres unités ou d'autres espaces dans un bâtiment. Les exigences relatives à l'indice STC pour les murs intérieurs et les planchers visent à limiter la transmission des bruits aériens entre les espaces. Le CNB n'impose aucune exigence en matière de contrôle de la transmission des bruits d'impact par les planchers. Les bruits de pas et autres impacts peuvent être très gênants dans les résidences multifamiliales. Les constructeurs soucieux de la qualité et de la réduction des plaintes des occupants veilleront à ce que les planchers soient conçus de manière à minimiser la transmission des bruits d'impact. En plus de se conformer aux exigences minimales du CNB dans les habitations, les concepteurs peuvent également établir des indices acoustiques pour la conception de projets non résidentiels et spécifier des matériaux et des systèmes pour s'assurer que le bâtiment fonctionne à ce niveau. Outre la limitation de la transmission des bruits aériens par les murs structurels internes et les planchers, la transmission latérale du son par les joints périmétriques et la transmission du son par les cloisons de séparation non structurelles doivent également être prises en compte lors de la conception acoustique. L'annexe A du CNB, aux sections A-9.10.3.1. et A-9.11., contient de plus amples informations et exigences relatives aux indices STC, ASTC et IIC. Cela comprend, entre autres, les tableaux 9.10.3.1-A et 9.10.3.1.-B qui fournissent des données génériques sur les indices STC de différents types de murs à ossature de bois et les indices STC et IIC de différents types d'assemblages de planchers en bois, respectivement. Les tableaux A-9.11.1.4.-A à A-9.11.1.4.-D présentent des options génériques pour la conception et la construction des jonctions entre les assemblages de séparation et les assemblages latéraux. La construction selon ces options est susceptible d'atteindre ou de dépasser la cote ASTC de 47 exigée par le CNB. Tableau A - Le tableau 9.11.1.4. présente des données sur les traitements de plancher génériques qui peuvent être utilisés pour améliorer les performances d'isolation acoustique des planchers à ossature légère, c'est-à-dire des couches supplémentaires de matériau sur le sous-plancher (p. ex. chape de béton, panneaux OSB ou contreplaqué) et le plancher ou les revêtements finis (p. ex. moquette, bois d'ingénierie).

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône d'expertise
Domaine d'expertise
Icône de la province
Province
Type de membre Icône
Partenaires nationaux de WoodWork
Icône Persona
Persona
Tags Icône
Tags
Rapports annuels Icône Plus
Livre des prix Icône Plus
Études de cas Icône Plus
Publications gratuites Icône Plus
Revue Icône Plus
Systèmes de construction Icône Plus
Codes et normes Icône Plus
Nouvelles de l'industrie Icône Plus
Pourquoi le bois (FAQ) Icône Plus
Produits du bois Icône Plus
Acoustique Icône Plus
Exemples de conception Icône Plus
Ingénierie Icône Plus
Résistance au feu Icône Plus
Assurance Icône Plus
Bois massif Icône Plus
Icône de date
Date
Séparateur de ligne