en-ca

Prétraitement de la surface

Prétraitement de la surface

Application liquide : Le traitement par diffusion par immersion du bois vert (humide) Le traitement par diffusion par immersion consiste à plonger le bois fraîchement coupé, encore humide, dans une solution concentrée de conservateur. Le conservateur peut être épaissi pour augmenter la quantité de solution retenue à la surface. Le bois est empilé, couvert et stocké pendant plusieurs semaines pour permettre au produit de se diffuser en profondeur dans le bois. En Nouvelle-Zélande, le bois de charpente est traité aux borates selon ce procédé depuis les années 1950. La diffusion par immersion fonctionne bien avec les essences de bois qui sont principalement constituées d'aubier ou dont le bois de cœur est humide. Le rapport entre la surface et le volume, la quantité de solution retenue à la surface et la solubilité du produit de préservation limitent la quantité de produit chimique qui peut être diffusée en profondeur dans le bois par ce procédé. Par exemple, une charge d'acide borique de 0,5% en poids de bois, suffisante pour prévenir la pourriture et les attaques de coléoptères, peut être appliquée à du bois de construction nominal de 2 pouces à l'aide de ce procédé. Cependant, une charge d'acide borique de 2,0% en poids, suffisante pour prévenir les attaques des termites de Formose, ne peut être atteinte sans de multiples trempages et des mois de stockage. Application liquide : Traitement par pulvérisation de la charpente Comme ce type de traitement est généralement effectué pendant la phase de construction, il peut être appliqué à l'ensemble de la structure ou à des parties sélectionnées de la structure qui risquent d'être attaquées par la pourriture fongique ou les insectes. Les solides et les fumigants ne sont pas appropriés pour ces applications, et les seules formulations largement utilisées sont à base de borates. Comme le bois est sec à ce stade et que les borates ont besoin d'humidité pour se diffuser, il est utile que ces traitements soient formulés de manière à améliorer la pénétration dans le bois sec. On y parvient généralement en ajoutant des glycols. Néanmoins, on ne peut pas s'attendre à ce que la pénétration initiale du conservateur soit aussi bonne que celle obtenue par un processus de traitement sous pression. Les applications de borate par pulvérisation deviennent populaires dans certaines régions des États-Unis dans le cadre des systèmes de gestion des termites. En règle générale, des traitements superficiels sont utilisés dans toute la maison pour protéger contre les termites de bois sec et les coléoptères xylophages. Ces traitements remplacent les fumigations régulières. Pour la protection contre les termites souterrains, des borates de glycol concentrés peuvent être appliqués sur les deux pieds inférieurs de tout le bois en contact avec la dalle ou, pour la construction d'un vide sanitaire, sur les deux pieds supérieurs et vers l'intérieur de la fondation. Cela remplace une barrière de sol. Application à la brosse Les applications à la brosse pour le prétraitement de surface se limitent essentiellement aux produits de préservation coupés sur le terrain pour le bois traité sous pression et au traitement des structures par les propriétaires, vraisemblablement avec une durée de vie limitée. Le naphténate de cuivre fonctionne bien en surface ou en contact avec le sol, mais sa couleur vert foncé (qui vire au brun au bout d'un an environ) n'est pas très attrayante. Le naphténate de zinc est incolore et peut être teinté à volonté, mais il ne fonctionne pas aussi bien en contact avec le sol. Les borates sont généralement utilisés pour les coupes de terrain sur les seuils intérieurs. En outre, des mélanges borate/glycol sont disponibles pour un usage domestique.

Traitement des dépôts

Traitement des dépôts

Le traitement des dépôts étant localisé, il est essentiel qu'il soit placé au bon endroit, ce qui nécessite de comprendre comment l'humidité peut pénétrer dans la structure. Cela ne peut se faire que lorsque la construction est achevée ou sur le point de l'être. C'est à ce moment-là que l'on peut évaluer le degré de protection prévu par la conception et que l'on peut identifier et, si possible, éliminer les pièges à eau. Le traitement peut alors être appliqué au bon endroit pour intercepter l'humidité près de son point d'entrée. Les traitements en profondeur sont un excellent choix pour quelques applications courantes telles que les poutres partiellement exposées. Lorsqu'une poutre pénètre l'enveloppe du bâtiment, seule une partie est exposée à l'humidité et il est logique de ne traiter que cette partie. Les traitements en dépôt sont particulièrement utiles pour les produits qui ne se prêtent pas au traitement sous pression avec des produits de préservation à base d'eau, comme le bois lamellé-collé. De même, les traitements en dépôt sont appropriés pour les extrémités exposées des rondins dans les maisons en rondins - les rondins qui dépassent le débord de toit protecteur sont exposés au risque de pourriture. Solides Les traitements de dépôt utilisent le plus souvent une forme solide de conservateur. Les bâtonnets de borate, de cuivre/borate et de fluorure conviennent parfaitement à cette utilisation finale car ils sont faciles à installer et les ingrédients actifs ne deviennent mobiles qu'en cas d'entrée d'humidité. Autres formats Les pâtes peuvent être introduites dans des trous percés ou des rainures - les rainures des maisons en rondins sont une application appropriée. L'injection de liquide est moins courante, car il s'agit de percer de petits trous, d'insérer un injecteur à buse à pointe relié à un réservoir/pompe de 70 à 120 psi et de forcer le conservateur le long du grain sous l'effet de la pression. Une série de trous de ce type est nécessaire, en particulier pour les grandes dimensions, afin d'augmenter la charge. Moins adaptés au traitement des dépôts, les fumigants n'ont pas, à notre connaissance, été utilisés dans ces applications.

Traitement complémentaire

Traitement complémentaire

Un traitement supplémentaire peut être ajouté lorsque la coupe ou le forage du bois sur place est inévitable ou lorsque l'on soupçonne que les mesures de protection initiales sont inadéquates. C'est le cas le plus fréquent pour les fondations en bois, les bâtiments agricoles ou les applications non résidentielles à longue durée de vie telles que les poteaux électriques et les poutres de pont. Pour les fondations en bois et les bâtiments agricoles, il est normal de prévoir des coupes et des forages pour les boulons, les tuyaux ou le câblage électrique. En général, le naphténate de cuivre est badigeonné sur les extrémités coupées ou les trous dans le bois traité afin de protéger les surfaces exposées. L'expérience a montré que cela était suffisant pour l'exposition limitée résultant de ces cas. Dans le cas de poteaux ou de poutres de pont, la protection d'origine peut être perdue au fil du temps en raison de la dégradation ou de l'épuisement des ingrédients actifs. La nécessité d'un traitement supplémentaire peut être indiquée par les dommages subis par des structures similaires dans la même zone. Il peut également être prouvé que le risque de dommages a augmenté, par exemple si de nouveaux termites s'installent dans la zone. Dans le cas des poteaux électriques, qui font partie de l'infrastructure physique d'une organisation, l'inspection, la maintenance et l'assainissement sont pratiqués régulièrement pour garantir la sécurité de l'utilisation et programmer le remplacement des poteaux. Souvent, le coût d'un traitement supplémentaire est relativement faible par rapport au coût de l'inspection et ne représente qu'une infime partie du coût d'une défaillance prématurée. Le traitement supplémentaire peut également s'avérer prudent en termes de diligence raisonnable (réduction de la responsabilité juridique). Lors de l'inspection de ces structures, des perceuses ou des foreuses à incréments peuvent être utilisées pour déterminer l'état de l'intérieur des éléments en bois. Il est conseillé de traiter ces trous afin d'éviter toute infection due à des forets et des perceuses non stérilisés. En outre, comme les trous sont généralement percés là où l'on soupçonne ou prévoit la présence de pourriture, il est judicieux de traiter ces trous pour compléter la protection à cet endroit. Solides Les bâtonnets de borate, de cuivre/borate et de fluorure sont de plus en plus utilisés comme traitements complémentaires de la carie interne en raison de leur facilité de manipulation et de leur très faible toxicité. Le cuivre se déplace plus lentement dans le bois que le borate, ce qui permet de protéger la zone autour de la tige si le borate est éliminé au fil du temps par un écoulement massif d'eau. Cela concerne principalement les poteaux électriques dans les climats humides, où l'humidité pénètre dans le poteau à partir du sol, remonte le long du poteau et s'évapore au-dessus du sol, entraînant avec elle le borate vers le haut du poteau - ce qui laisse le borate dans une partie du poteau qui n'est pas particulièrement exposée au risque de pourriture. La vitesse d'écoulement de l'eau peut être relativement lente dans le cas du sapin de Douglas (une essence de bois imperméable) traité avec un produit de préservation à base d'huile ayant un certain pouvoir hydrofuge. Elle peut être plus rapide dans le cas du pin du sud (une essence de bois très perméable) traité avec un produit de préservation à base d'eau. Liquides, pâtes et gels L'application par pulvérisation et par mousse de liquides et de gels est de plus en plus utilisée pour le traitement complémentaire des bâtiments à ossature bois contre les termites et les coléoptères xylophages. Des trous sont percés dans chaque espace entre les montants et les liquides ou gels sont pompés sous pression. On ne peut s'attendre à ce que la couverture soit aussi efficace que celle obtenue par pulvérisation pendant la construction. Les liquides peuvent être versés ou pompés dans les trous percés pour traiter la pourriture interne des poteaux électriques ou des poutres. En général, la charge de produit de préservation qui peut être obtenue est limitée, dans le premier cas, par la taille et l'emplacement des trous et la solubilité du produit chimique, et dans le second cas, par la perméabilité du bois. Une autre approche consiste à laisser un dispositif sous pression attaché au poteau sous le sol, ce qui permet de faire pénétrer une plus grande quantité de liquide dans le poteau sur une période plus longue. Il faut veiller à ce que les trous percés ne recoupent pas des vides ou des fentes menant à la surface du bois, faute de quoi les liquides peuvent s'écouler. Les pâtes peuvent être tassées dans les trous percés pour traiter la carie interne. Elles peuvent également être appliquées au pinceau, à la truelle ou sur des bandages pour traiter la carie externe. Fumigants Les traitements par fumigation sont utilisés avec succès depuis des décennies sur les poteaux électriques et les structures en bois. Le gaz traverse rapidement le bois, s'adsorbe sur la lignocellulose et assure une protection résiduelle de plusieurs années.

Fixations

Fixations

Fasteners, Connectors and Flashing for Wood Treated With Copper-Based Preservatives The presence of moisture is a precondition for corrosion of metals. Treated wood is typically used in applications where it may be exposed to moisture for considerable periods so any fasteners and connectors used with treated wood must also be resistant to these conditions.  In addition, most wood preservatives designed for exterior use contain copper that may react with the metals used to fabricate fasteners and connectors therefore, it is important to use the right type of fastener and/or connectors. Where treated wood is used in dry environments to prevent damage by wood-destroying insects, including termites, corrosion is of less concern. Users and specifiers should also be aware that corrosive industrial, or salt air, environments may also require the use of appropriate corrosion resistant metals. Types of Wood Preserving Treatments Most copper-based preservatives are corrosive to unprotected fasteners and connectors. More recent systems such as MCA where the copper isn’t introduced in an ionic salt form, are designed to reduce the corrosion of metals, and the preserved wood is approved for use in contact with aluminum (e.g. brackets or outdoor furniture legs). Borate treatments do not increase the risk of corrosion. Recommendations on Connectors for Treated Wood Connectors used for wood treated with a copper-based preservative must be manufactured from steel either hot–dipped galvanized in accordance with ASTM A653 or hot dipped galvanized after manufacture in accordance with ASTM A123.  Galvanizing nails and screws is actually a sacrificial coating to protect the structural integrity of the fastener, and the presence of some white corrosion product on the surface is normal. Red rust appearing is an indicator of coating failure. The service life of these components can be extended by using a barrier membrane between the connector and the treated wood surface. Stainless steel connectors (type 304 or 316) should be used for maximum service life, for high preservative retentions (i.e. ground contact products) or severe applications such as salt spray environments.  For borate-treated wood used inside buildings, the same connectors can be used as for untreated wood. Recommendations on Fasteners for Treated Wood Fasteners for use in treated wood that will be exposed to the weather should be selected to withstand weathering as long as the treated wood itself.  As a minimum, nails for wood treated with a copper-based preservative must be hot-dipped galvanized in accordance with ASTM A153. Hot-dipped galvanized nails should not be fastened using a high pressure nail gun due to the risk of damage to the coating during firing. The protective coating on electroplated galvanized fasteners is too thin and will perform poorly, and common nails will corrode rapidly after fastening most copper-based treated wood.  Stainless steel should be used for maximum service life, for high preservative retentions or severe applications such as salt spray environments. Where appropriate, copper fasteners may also be used. Fasteners used in combination with metal connectors must be the same type of metal to avoid galvanic corrosion caused by dissimilar metals.  For example stainless steel fasteners should not be used in combination with galvanized connectors. Screws intended for use on wood treated with a copper-based preservative must be hot dipped galvanized in accordance with ASTM A153 or, if recommended by the manufacturer and the preservative supplier, high-quality polymer coated. Stainless steel should be used for maximum service life, for high preservative retentions or severe applications such as salt spray environments. For borate treated wood used inside buildings, the same fasteners can be used as for untreated wood. As a general rule aluminum fasteners should not be used with treated wood, except new generation products (MCA treated) specifically tested, approved and labelled as suitable for contact with Aluminum.  Recommendations on Flashing for Treated Wood Flashing used in contact with treated wood must be compatible with the treated wood and be last long enough to be suitable for the intended application.  Flashing must also be of the same type of metal as any fasteners that penetrate through them to avoid galvanic corrosion. Copper and stainless steel are the most durable metals for flashing.  Galvanized steel, in accordance with ASTM A653, G185 designation, is also suitable for use as flashing. Other Fasteners, Connectors or Hardware as Recommended by the Manufacturer There may be additional products such as polymer or ceramic coatings for fasteners, or vinyl or plastic flashings that are suitable for use with treated wood products.  Consult the individual fastener, connector or flashing manufacturer for recommendations for use of their products with treated wood. Current Recommendations for Drying and Conditioning of Treated Wood Prior to Construction. Wood treated with copper-based preservatives should be at the least surface dried at the treating plant, in the store or at the job site before attachment of fasteners, connectors, flashing or other hardware. A moisture meter with a calibration for preservative treated wood should be used to verify that the wood is within a similar moisture content range to untreated construction lumber (i.e. about 12 to 18%) otherwise the treated wood can undergo similar shrinkage related cracking and deformation as incorrectly conditioned untreated lumber. Canadian Preservation Industry Canada has had a wood preservation industry for more than 100 years.  Canada is tied with the UK as the world’s second largest producer of treated wood (the USA is first, by a large margin).  In 1999, the most recent year for which we have data, Canada produced 3.5 million cubic metres of treated wood.  There are about 60 treating plants in Canada. As with most other industrialized countries, Canada developed a wood preservation industry using creosote, initially to service railroads (the ties holding the rails) and then utilities (power poles).  Creosote production began declining by the 1950s, and by the 1970s was being somewhat replaced for these traditional uses by pentachlorophenol.  Today, these oil-borne preservatives only constitute 17% of Canadian treated wood production. The remaining 83% of production uses water-borne preservatives such as CCA, ACQ, CA and MCA.  The industry began its substantial shift to the water borne

Traitabilité

Traitabilité

Treatability of Major North American Softwoods Some wood is easier to treat than others. The particular structure of the cells for a given piece of wood will determine how permeable the wood is to chemicals. This table describes the permeability of common softwoods used in North America. The permeability ratings are: 1 – Permeable 2 – Moderately Impermeable 3 – Impermeable 4 – Extremely Impermeable Tree Permeability Permeability Predominant in the Tree   Sapwood Heartwood   Douglas Fir 2 4 Heartwood  Western Hemlock 2 3 Heartwood Eastern Hemlock 2 4 Heartwood White Spruce 2 3-4 Heartwood Engelmann Spruce 2 3-4 Heartwood Black Spruce 2 4 Heartwood Red Spruce 2 4 Heartwood Sitka Spruce 2 3 Heartwood Lodgepole Pine 1 3-4 Heartwood Jack Pine 1 3 Heartwood Red Pine 1 3 Sapwood Southern Pine 1 3 Sapwood Ponderosa Pine 1 3 Sapwood Amabilis Fir (Pacific silver fir) 2 2-3 Heartwood Alpine Fir 2 3 Heartwood Balsam Fir 2 4 Heartwood Western Red Cedar 2 3-4 Heartwood Eastern White Cedar 2 3-4 Heartwood Yellow Cypress 1 3 Heartwood Western S-P-F 2 3-4 Heartwood Eastern S-P-F 2 4 Heartwood Hem-Fir 2 3 Heartwood Western Larch 2 4 Heartwood Tamarack 2 4 Heartwood Incising We can improve the penetration of preservative into impermeable wood by making little cuts in the wood. A series of small, shallow slits are cut into the wood by an incising machine. This is an effective way of increasing the treatability of lumber pieces which are predominantly heartwood. Species with heartwood permeability ratings of higher than 3 require high density incising (over 7,500 incisions per square meter). Incising does reduce the strength of lumber and this effect must be taken into account in engineering calculations. Drying to Maximise Treatabilty Unless the purchaser can be assured that lumber for treatment will be air dried to less than 30% moisture content, the specification of KD lumber for preservative treatment is strongly recommended. The problem with treating lumber which is not kiln dried is that the practicalities of production and delivery lead to the potential for poor product quality. The durability of treated Canadian lumber relies on a shell of preservative treatment preventing access by wood-rotting fungi to the untreated core. If the treated shell fails to prevent penetration by checks or abrasion or if the wood-rotting fungus is already in the untreated core, premature failure can result. There are four major pitfalls in treating green lumber: saturated sapwood, frozen lumber, check development and pre-treatment infection. Saturated Sapwood In order for the preservative to penetrate the wood cells, they must be empty of water, that is, the wood must be below 30% moisture content. In green lumber the sapwood cells may be too full of sap to accept any preservative. The sapwood is the part most susceptible to decay and most in need of preservative penetration. Partial air or kiln drying to between 20 and 30% moisture content is ideal, but there is seldom the time or the conditions necessary to do this. Purchasing commercial KD material (maximum 20%) is normally the only option to ensure the sapwood will accept treatment. Frozen Lumber The overwhelming majority of production is treated over the winter to prepare for the spring and summer outdoor construction season. With the exception of coastal British Columbia, most regions of Canada will be dealing with frozen wood at this time. Many treating plants do not have dry kilns, thus material is treated in the condition it is delivered to the plant. Preservative will not penetrate through ice until it is fully thawed. This typically occurs in contact with the treating solution. Frozen green lumber contains a lot of ice and there is insufficient time for this to thaw during typical commercial treating cycles. The residual moisture (12 – 20%) in kiln-dried lumber is in the cell walls and will not impede preservative penetration even if it is frozen. Check Development Checks only develop when the moisture content of wood drops below about 28%. If lumber is treated green and then dries, checks will penetrate the treated zone exposing the untreated core. If lumber is kiln-dried to the in-service moisture content, typically around 16% in exterior exposure, the checks will be largely developed prior to treatment. This means that the checks will be lined with a treated zone and the shell of treatment will remain intact. Pre-treatment Infection A lesser problem than the above three, but still of some concern, is the potential for survival through the manufacturing process of wood-rotting fungi that may have infected in the tree, log or lumber storage stages. At worst, this might only apply to 10% or fewer of pieces. Nevertheless, we have seen examples where treatment of green lumber without application of heat (60°C or more) fails to kill wood-rotting fungi already in the product, leading to premature failure in service. This can occur in as little as 4 years. CCA treatment is a cool process, but most kiln-drying schedules will kill all wood-rotting fungi.

La résilience

La résilience

Les professionnels de la conception et de la construction choisissent de plus en plus des matériaux, des techniques de conception et des procédures de construction qui améliorent la capacité d'une structure à résister et à se remettre d'événements extrêmes tels que des pluies, des neiges et des vents intenses, des ouragans, des tremblements de terre et des incendies de forêt. Par conséquent, la spécification de matériaux et de détails de conception robustes, et la construction de bâtiments flexibles et facilement réparables deviennent des critères de conception importants. La résilience est la capacité de se préparer et de planifier, d'absorber, de récupérer et de s'adapter avec plus de succès à des événements défavorables. Pour un bâtiment, cela signifie qu'il doit être conçu pour résister à des situations défavorables telles que les inondations et les vents violents et s'en remettre rapidement, avec un niveau de fonctionnalité acceptable. Une structure construite pour résister à de telles catastrophes naturelles avec un minimum de dégâts est plus facile à réparer et peut contribuer au développement durable. Concevoir pour la résilience peut contribuer à minimiser les risques humains, à réduire les déchets de matériaux et à diminuer les coûts de restauration. En raison de l'évolution des conditions météorologiques due au changement climatique, l'adaptation et la conception pour la résilience suscitent un intérêt croissant. L'augmentation des températures peut accroître les risques d'événements météorologiques extrêmes, y compris de graves vagues de chaleur et des changements régionaux en matière d'inondations, de sécheresses et de risques d'incendies de forêt plus graves. Les ouragans sont plus intenses et plus fréquents, et les précipitations se présentent souvent sous la forme d'événements intenses d'une seule journée. Les températures hivernales plus chaudes provoquent l'évaporation de l'eau dans l'air et, si la température est encore inférieure au point de congélation, cela peut entraîner des chutes de neige, de neige fondue ou de pluie verglaçante inhabituellement fortes, même les années où les chutes de neige sont inférieures à la moyenne. Un bâtiment résilient est capable de faire face à des changements tels qu'une charge de neige plus importante, des fluctuations de température plus marquées, des vents et des pluies plus extrêmes. Les bâtiments en bois existants peuvent être facilement adaptés ou modernisés s'il est nécessaire d'augmenter la charge de vent ou de neige. Les bâtiments en bois correctement conçus et construits fonctionnent bien dans tous les types de climats, même les plus humides. Le bois tolère une humidité élevée et peut absorber ou libérer de la vapeur d'eau sans compromettre l'intégrité de la structure. Dans certaines régions, le changement climatique contribue à rendre les saisons des feux de forêt de plus en plus complexes, ce qui accroît le risque d'incendies extrêmes. Certaines réglementations relatives aux incendies de forêt ciblent des caractéristiques de construction spécifiques dans les zones d'interface entre la forêt et la ville, telles que les terrasses extérieures, les couvertures de toit et les bardages. Un certain nombre de produits du bois répondent à ces réglementations pour diverses applications, notamment les éléments en bois lourd, le bois traité ignifuge et certaines essences de bois qui présentent un faible indice de propagation de la flamme (inférieur à 75). Pour plus d'informations, consultez les ressources suivantes : Resilient and Adaptive Design Using Wood (Conseil canadien du bois) American Wood Council American Institute of Architects

Décroissance

Décroissance

Wood is biodegradable – that’s a characteristic we normally consider to be one of the benefits of choosing natural materials. Organisms exist that can break down wood into its basic chemicals so that fallen logs in the forest can contribute to the growth of the next generation of life. This process – essential in the forest – must be prevented when we use wood in buildings. A variety of fungi, insects, and marine borers have the capability to break down the complex polymers which make up the wood structure. In Canada, fungi are a more serious problem than insects. The wood-inhabiting fungi can be separated into moulds, stainers, soft-rot fungi and wood-rotting basidiomycetes. The moulds and stainers can discolour the wood however they do not significantly damage the wood structurally. Soft-rot fungi and wood-rotting basidiomycetes can cause strength loss in wood, with the basidiomycetes the ones responsible for decay problems in buildings. With regard to insects, carpenter ants only cause problems in decayed wood, and significant subterranean termite activity is confined to a few southern areas of Canada. However, other parts of the world have a serious problem with termites. Decayed wood is the result of a series of events including a sequence of fungal colonization. The spores of these fungi are ubiquitous in the air for much of the year. Wood-rotting fungi require wood as their food source, an equable temperature, oxygen and water. Water is normally the only one of these factors that we can easily manage. This may be made more difficult by some fungi, which can transport water to otherwise dry wood. It can also be difficult to control moisture once decay has started, since the fungi produce water as a result of the decay process. The outer portion of this log is being attacked by a decay fungus. Note that the damage is held back at the line between heartwood and sapwood. To understand why, click here to read about natural durability.   More Information Click Here for a 26-page paper on biodeterioration, including illustrations and bibliography. For answers to common questions on decay, visit the FAQ page

Termites

Termites

Termites, sometimes called “white ants” are a social insect, more closely related to cockroaches than ants. They can be distinguished from ants by the absence of a narrow waist on the body and their typically white colour. Under a hand lens, termite antennae are straight whereas those of ants have an elbow. Flying reproductive termites (alates) can be distinguished from flying ants by the equal size of all four termite wings. Three types of termites can be distinguished on the basis of their moisture requirements: Damp-wood termites Dry-wood termites Subterranean termites Damp-wood termites are particularly prevalent in coastal British Columbia and the Pacific Northwest of the USA. They only attack and help physically break down decaying trees in forest ecosystems and can be controlled by eliminating the moisture source which has led to decay. They are rarely a problem in buildings. Dry-wood termites on the other hand pose significant hazards to exposed, accessible wooden infrastructure, since they need no significant moisture source, and mated pairs can fly into buildings and start up a nest in dry wood. Consequently, control measures designed to separate wood from soil or moisture are ineffective. On the North American Continent, dry-wood termites are found only from the extreme south of the USA into Mexico. Subterranean termites do need a reliable source of moisture, normally the soil, but they have the capability to carry their required moisture needs into dry wood in buildings. Although satellite nests can occur in buildings, their main nests are normally in soil or wood in contact with soil. Subterranean termites build characteristic shelter-tubes (tunnels) of mud, wood fragments and bodily secretions, which allow them to pass from the soil to wood above ground without being exposed to drying air or predators. These shelter tubes can extend for several metres over inert substrates, such as concrete foundation walls. Termites can also pass through cracks in concrete as narrow as 1.5 mm. Within the subterranean group, one particular species: the Formosan termite (Coptotermes formosanus Shiraki), is the most problematic for wooden infrastructure. Although individuals are smaller than the species mentioned above, because of sheer numbers Formosan termite colonies can be nine times more aggressive in terms of wood consumption. This species is particularly problematic in parts of Southeastern USA, particularly Florida, where it was introduced after WWII. It is unlikely to spread north into Canada although Canada does have other, less-aggressive species of subterranean termites. Subterranean termites are the most economically important group worldwide. More Information Click here for a termite map of Canada. Click here for a termite map of SW Ontario. Click here for a termite map of British Columbia.    Additional Sources of Information on Termites Louisiana State University Agricultural Center City of Guelph Municipality of Kincardine  

Lutte contre les termites

Lutte contre les termites

Heureusement pour le Canada, la majeure partie du pays se trouve au nord de la limite des termites sur le continent nord-américain. Cependant, comme les termites et les humains préfèrent les régions chaudes du pays, 20% de la population canadienne vit dans des régions où les termites sont présentes. Les longs hivers limitent l'activité des termites dans la nature, mais la chaleur de nos bâtiments semble favoriser l'apparition de problèmes plus graves en milieu urbain. Les dégâts causés par le termite souterrain de l'Est (Reticulitermes flavipes Kollar) ont atteint des niveaux économiquement importants dans des zones de Toronto et d'autres villes du sud de l'Ontario. Il semblerait que le termite souterrain occidental (Reticulitermes hesperus Banks) soit à l'origine de dégâts importants dans la région de l'Okanagan, en Colombie-Britannique. Les termites représentent une menace beaucoup plus sérieuse sur bon nombre de nos marchés d'exportation tels que le sud-est des États-Unis, le Japon et l'Asie du Sud-Est. Bien que les mesures de lutte contre les termites adaptées à chaque région soient spécifiées dans les codes de construction locaux et régionaux, une vue d'ensemble de ces mesures peut être utile aux distributeurs canadiens de produits du bois et de maisons préfabriquées. Les mesures de lutte contre les termites peuvent être regroupées en six catégories : Suppression Gestion du site Barrière de sol Détails de la dalle/fondation Durabilité de la structure Surveillance et remédiation Cliquez ici pour plus de détails sur les 6 stratégies Plus d'informations Lutte contre les termites et bâtiments à ossature en bois - Bulletin illustré de 11 pages de CWC, couvrant plus en détail la stratégie intégrée en 6 points discutée. Inclut des photos de produits de lutte contre les termites. Lutte intégrée contre les termites souterrains : L'approche en 6 points. Ce document de 20 pages de Forintek présente et discute en profondeur la stratégie intégrée en 6 points. Il contient des conseils très précis en matière de conception et d'entretien. Termite Map of North America Combatting Termites - fiche d'information très courte et simple de Forintek.

Application du traitement

Application du traitement

Cliquez ici pour plus d'informations sur le traitement sur le terrain Les trous percés pour appliquer des traitements de dépôt, complémentaires ou correctifs doivent être situés sur des surfaces verticales ou en dessous, si possible, afin d'éviter de créer des voies supplémentaires pour la pénétration de l'humidité. Dans le cas d'un traitement complémentaire, les extrémités coupées doivent être placées de manière à ne pas être en contact avec le sol, dans la mesure du possible. Les trous destinés au traitement ne doivent pas être percés sous le niveau du sol si cela peut être évité. Tous les trous doivent être fermés par un bouchon étanche. Dans l'idéal, ce bouchon doit être amovible pour permettre un nouveau traitement. Les trous pour les traitements hydrosolubles doivent être placés au bon endroit pour intercepter l'humidité près de ses points d'entrée. Examinez attentivement la structure et pensez aux sources d'humidité, aux pièges à eau, aux points d'entrée de l'humidité, aux flux d'humidité et aux signes d'entrée de l'humidité. Les sources d'humidité comprennent les précipitations directes, les précipitations détournées (par les fenêtres, les revêtements, les surfaces des balcons et des passerelles, les avancées de toit, les solins, les parapets, les gouttières et les tuyaux de descente), la pénétration de la pluie dans les barrières d'humidité par les trous de clouage, les fentes, la défaillance des joints ou la détérioration du calfeutrage, les éclaboussures de pluie, la poudrerie, les digues de glace, la condensation, les fondations en béton, le contact avec le sol, les systèmes d'irrigation, les fuites dans les canalisations et la plomberie. Les pièges à eau comprennent les "sabots" en métal, les joints en V, les carreaux, les planches en creux, les surfaces horizontales en cuvette et tout endroit où un rebord est créé sur le bord d'une surface horizontale. L'accumulation de saletés et de débris indique souvent la présence d'un piège à eau. La croissance d'algues indique également les endroits où l'humidité reste plus longtemps après la pluie. Les points d'entrée de l'humidité comprennent tous les endroits où le bois est en bout de chaîne, autour des clous, des vis et des boulons, ainsi que tous les autres trous ou pénétrations, les fissures et les décollements. Le flux d'humidité dans le bois peut être 100 à 1000 fois plus rapide le long du fil que dans le sens transversal. Les schémas de distribution de l'humidité dans le bois sont donc généralement des cônes allongés ou des formes de lentilles centrées sur le point d'entrée. Les signes de pénétration de l'humidité sont le gonflement, la coloration plus foncée, les taches fongiques, les taches de fer autour des fixations, l'éclatement des clous et l'écaillage des finitions de surface filmogènes. La confirmation de la teneur en humidité propice à la pourriture peut être effectuée à l'aide d'humidimètres à résistance électrique. Les humidimètres de type capacitif peuvent également être utiles, mais ils peuvent donner des résultats erronés dans la zone des raccords métalliques.

Humidité et bois

Humidité et bois

The durability of wood is often a function of water, but that doesn’t mean wood can never get wet. Quite the contrary, wood and water usually live happily together. Wood is a hygroscopic material, which means it naturally takes on and gives off water to balance out with its surrounding environment. Wood can safely absorb large quantities of water before reaching moisture content levels that will be inviting for decay fungi. Moisture content (MC) is a measure of how much water is in a piece of wood relative to the wood itself. MC is expressed as a percentage and is calculated by dividing the weight of the water in the wood by the weight of that wood if it were oven dry. For example, 200% MC means a piece of wood has twice as much of its weight due to water than to wood. Two important MC numbers to remember are 19% and 28%. We tend to call a piece of wood dry if it is at 19% or less moisture content. Fiber saturation averages around 28%. Fiber saturation is an important benchmark for both shrinkage and for decay. The fibers of wood (the cells that run the length of the tree) are shaped like tapered drinking straws. When fibers absorb water, it first is held in the cell walls themselves. When the cell walls are full, any additional water absorbed by the wood will now go to fill up the cavities of these tubular cells. Fiber saturation is the level of moisture content where the cell walls are holding as much water as they can. Water held in the cell walls is called bound water, while water in the cell cavities is called free water. As the name implies, the free water is relatively accessible, and an accessible source of water is one necessity for decay fungi to start growing. Therefore, decay can generally only get started if the moisture content of the wood is above fiber saturation. The fiber saturation point is also the limit for wood shrinkage. Wood shrinks or swells as its moisture content changes, but only when water is taken up or given off from the cell walls. Any change in water content in the cell cavity will have no effect on the dimension of the wood. Therefore, wood only shrinks and swells when it changes moisture content below the point of fiber saturation. Like other hygroscopic materials, wood placed in an environment with stable temperature and relative humidity will eventually reach a moisture content that yields no vapor pressure difference between the wood and the surrounding air. In other words, its moisture content will stabilize at a point called the equilibrium moisture content (EMC). Wood used indoors will eventually stabilize at 8-14% moisture content; outdoors at 12-18%. Hygroscopicity isn’t necessarily a bad thing – this allows wood to function as a natural humidity controller in our homes. When the indoor air is very dry, wood will release moisture. When the indoor air is too humid, wood will absorb moisture. Wood shrinks/swells when it loses/gains moisture below its fiber saturation point. This natural behaviour of wood is responsible for some of the problems sometimes encountered when wood dries. For example, special cracks called checks can result from stresses induced in a piece of wood that is drying. As the piece dries, it develops a moisture gradient across its section (dry on the outside, wet on the inside). The dry outer shell wants to shrink as it dries below fiber saturation, however, the wetter core constrains the shell. This can cause checks to form on the surface. The shell is now set in its dimension, although the core is still drying and will in turn want to shrink. But the fixed shell constrains the core and checks can thus form in the core. Another problem associated with drying is warp. A piece of wood can deviate from its expected shape as it dries due to the fact that wood shrinks different amounts in different directions. It shrinks the most in the direction tangential to the rings, about half as much in the direction perpendicular to the rings, and hardly at all along the length of the tree. Where in the log a piece was cut will be a factor in how it changes shape as it shrinks. One advantage of usingdry lumber is that most of the shrinkage has been achieved prior to purchase. Dry lumber is lumber with a moisture content no greater than 19%; wood does most of its shrinking as it drops from 28-19%. Dry lumber will have already shown its drying defects, if any. It will also lead to less surprises in a finished building, as the product will stay more or less at the dimension it was upon installation. Dry lumber will be stamped with the letters S-DRY (for surfaced dry) or KD (for kiln dry). Another way to avoid shrinkage and warp is to use composite wood products, also called engineered wood products. These are the products that are assembled from smaller pieces of wood glued together – for example, plywood, OSB, finger-jointed studs and I-joists. Composite products have a mix of log orientations within a single piece, so one part constrains the movement of another. For example, plywood achieves this crossbanding form of self-constraint. In other products, movements are limited to very small areas and tend to average out in the whole piece, as with finger-jointed studs.

Bois traité ignifuge

bois traité ignifuge

“Fire-retardant treated wood” (FRTW), as defined by the National Building Code of Canada (NBC), is ‘…wood or a wood product that has had its surface-burning characteristics, such as flame spread, rate of fuel contribution and density of smoke developed, reduced by impregnation with fire-retardant chemicals.’ FRTW must be pressure impregnated with fire-retardant chemicals in accordance with the CAN/CSA-O80 Series of Standards, Wood Preservation and when fire-tested for its surface flammability, must have a flame spread rating not more than 25. Fire-retardant chemical treatments applied to FRTW retard the spread of flame and limit smoke production from wood in fire situations. FRTW products are harder to ignite than untreated wood products and preservative treated wood products. Fire-retardant treatments applied to FRTW enhances the fire performance of the products by reducing the amount of heat released during the initial stages of fire. The treatments also reduce the amount of flammable volatiles released during fire exposure. This results in a reduction in the rate of flame spread over the surface. When the flame source is removed, FRTW ceases to char. FRTW contains different chemicals than preservative treated wood. However, the same manufacturing process is used to apply the chemicals. FRTW must be kiln-dried after treatment to a moisture content of 19% for lumber and 15% for plywood. The fire-retardant treatments used in FRTW do not generally interfere with the adhesion of surface paints and coatings unless the FRTW has an increased moisture content. The finishing characteristics of specific products should be discussed with the manufacturer. Typical interior applications of FRTW include architectural millwork, paneling, roof assemblies/trusses, beams, interior load bearing and non-load bearing partitions. Exterior-type fire retardants use different chemical formulations from those used for interior applications, since they must pass an accelerated weathering test (ASTM D2898), which exposes FRTW to regular wetting and drying cycles to represent actual long-term outdoor conditions. Generally, exterior-type fire retardants are applied to shingles and shakes. FRTW can be crosscut to length (not ripped) and drilled for holes following treatment without reducing its effectiveness. End cuts in the field, whether exposed or butt jointed, do not require treatment, since any untreated areas are relatively small compared to the total surface area and the flame spread rating remains unaffected. Plywood can be both crosscut and ripped without concern, since the chemical treatment has penetrated throughout the individual layers/plys. FRTW is not excessively corrosive to metal fasteners and other hardware, even in areas of high relative humidity. In fact, testing has demonstrated that FRTW is no more corrosive than untreated wood.   Exterior use of FRTW Fire retardant coatings Fire-retardant-treated wood roof systems Flame-spread rating   For more information on FRTW, visit the manufacture’s websites: Arch Wood Protection, Lonza: www.wolmanizedwood.com Viance LLC: www.treatedwood.com

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône Persona
Persona
Tags Icône
Tags
Rapports annuels Icône Plus
Livre des prix Icône Plus
Études de cas Icône Plus
Publications gratuites Icône Plus
Revue Icône Plus
Systèmes de construction Icône Plus
Codes et normes Icône Plus
Nouvelles de l'industrie Icône Plus
Pourquoi le bois (FAQ) Icône Plus
Produits du bois Icône Plus
Acoustique Icône Plus
Exemples de conception Icône Plus
Ingénierie Icône Plus
Résistance au feu Icône Plus
Assurance Icône Plus
Bois massif Icône Plus
Icône de date
Date
Séparateur de ligne