en-ca

Fire-Retardant-Treated Wood

fire-retardant-treated wood

“Fire-retardant treated wood” (FRTW), as defined by the National Building Code of Canada (NBC), is ‘…wood or a wood product that has had its surface-burning characteristics, such as flame spread, rate of fuel contribution and density of smoke developed, reduced by impregnation with fire-retardant chemicals.’ FRTW must be pressure impregnated with fire-retardant chemicals in accordance with the CAN/CSA-O80 Series of Standards, Wood Preservation and when fire-tested for its surface flammability, must have a flame spread rating not more than 25. Fire-retardant chemical treatments applied to FRTW retard the spread of flame and limit smoke production from wood in fire situations. FRTW products are harder to ignite than untreated wood products and preservative treated wood products. Fire-retardant treatments applied to FRTW enhances the fire performance of the products by reducing the amount of heat released during the initial stages of fire. The treatments also reduce the amount of flammable volatiles released during fire exposure. This results in a reduction in the rate of flame spread over the surface. When the flame source is removed, FRTW ceases to char. FRTW contains different chemicals than preservative treated wood. However, the same manufacturing process is used to apply the chemicals. FRTW must be kiln-dried after treatment to a moisture content of 19% for lumber and 15% for plywood. The fire-retardant treatments used in FRTW do not generally interfere with the adhesion of surface paints and coatings unless the FRTW has an increased moisture content. The finishing characteristics of specific products should be discussed with the manufacturer. Typical interior applications of FRTW include architectural millwork, paneling, roof assemblies/trusses, beams, interior load bearing and non-load bearing partitions. Exterior-type fire retardants use different chemical formulations from those used for interior applications, since they must pass an accelerated weathering test (ASTM D2898), which exposes FRTW to regular wetting and drying cycles to represent actual long-term outdoor conditions. Generally, exterior-type fire retardants are applied to shingles and shakes. FRTW can be crosscut to length (not ripped) and drilled for holes following treatment without reducing its effectiveness. End cuts in the field, whether exposed or butt jointed, do not require treatment, since any untreated areas are relatively small compared to the total surface area and the flame spread rating remains unaffected. Plywood can be both crosscut and ripped without concern, since the chemical treatment has penetrated throughout the individual layers/plys. FRTW is not excessively corrosive to metal fasteners and other hardware, even in areas of high relative humidity. In fact, testing has demonstrated that FRTW is no more corrosive than untreated wood.   Exterior use of FRTW Fire retardant coatings Fire-retardant-treated wood roof systems Flame-spread rating   For more information on FRTW, visit the manufacture’s websites: Arch Wood Protection, Lonza: www.wolmanizedwood.com Viance LLC: www.treatedwood.com

Framing Connectors

Framing Connectors

Framing connectors are proprietary products and include fastener types such as; framing anchors, framing angles, joist, purling and beam hangers, truss plates, post caps, post anchors, sill plate anchors, steel straps and nail-on steel plates. Framing connectors are often used for different reasons, such as; their ability to provide connections within prefabricated light-frame wood trusses, their ability to resist wind uplift and seismic loads, their ability to reduce the overall depth of a floor or roof assembly, or their ability to resist higher loads than traditional nailed connections. Examples of some common framing connectors are shown in Figure 5.6, below. Framing connectors are made of sheet metal and are manufactured with pre-punched holes to accept nails. Standard framing connectors are commonly manufactured using 20- or 18-gauge zinc coated sheet steel. Medium and heavy-duty framing connectors can be made from heavier zinc-coated steel, usually 12-gauge and 7-gauge, respectively. The load transfer capacity of framing connectors is related to the thickness of the sheet metal as well as the number of nails used to fasten the framing connector to the wood member. Framing connectors are suitable for most connection geometries that use dimensional lumber that is 38 mm (2″ nom.) and thicker lumber. In light-frame wood construction, framing connectors are commonly used in connections between joists and headers; rafters and plates or ridges; purlins and trusses; and studs and sill plates. Certain types of framing connectors, manufactured to fit larger wood members and carry higher loads, are also suitable for mass timber and post and beam construction. Manufacturers of the framing connectors will specify the type and number of fasteners, along with the installation procedures that are required in order to achieve the tabulated resistance(s) of the connection. The Canadian Construction Materials Centre (CCMC), Institute for Research in Construction (IRC), produce evaluation reports that document resistance values of framing connectors, which are derived from testing results.   Figure 5.6 Framing Connectors   For more information, refer to the following resources: Canadian Construction Material Centre, National Research Council of Canada Truss Plate Institute of Canada CSA S347 Method of Test for Evaluation of Truss Plates used in Lumber Joints ASTM D1761 Standard Test Methods for Mechanical Fasteners in Wood Canadian Wood Truss Association

Glulam

Glulam

Glulam (glued-laminated timber) is an engineered structural wood product that consists of multiple individual layers of dimension lumber that are glued together under controlled conditions. All Canadian glulam is manufactured using waterproof adhesives for end jointing and for face bonding and is therefore suitable for both exterior and interior applications. Glulam has high structural capacity and is also an attractive architectural building material. Glulam is commonly used in post and beam, heavy timber and mass timber structures, as well as wood bridges. Glulam is a structural engineered wood product used for headers, beams, girders, purlins, columns, and heavy trusses. Glulam is also manufactured as curved members, which are typically loaded in combined bending and compression. It can also be shaped to create pitched tapered beams and a variety of load bearing arch and trusses configurations. Glulam is often employed where the structural members are left exposed as an architectural feature. Available sizes of glulam Standard sizes have been developed for Canadian glued-laminated timber to allow optimum utilization of lumber which are multiples of the dimensions of the lamstock used for glulam manufacture. Suitable for most applications, standard sizes offer the designer economy and fast delivery. Other non-standard dimensions may be specially ordered at additional cost because of the extra trimming required to produce non-standard sizes. The standard widths and depths of glulam are shown in Table 6.7, below. The depth of glulam is a function of the number of laminations multiplied by the lamination thickness. For economy, 38 mm laminations are used wherever possible, and 19 mm laminations are used where greater degrees of curvature are required. Standard widths of glulam Standard finished widths of glulam members and common widths of the laminating stock they are made from are given in Table 4 below. Single widths of stock are used for the complete width dimension for members less than 275 mm (10-7/8″) wide. However, members wider than 175 mm (6-7/8″) may consist of two boards laid side by side. All members wider than 275 mm (10-7/8″) are made from two pieces of lumber placed side by side, with edge joints staggered within the depth of the member. Members wider than 365 mm (14-1/4″) are manufactured in 50 mm (2″) width increments, but will be more expensive than standard widths. Manufacturers should be consulted for advice. Initial width of glulam stock Finished width of glulam stock mm. in. mm. in. 89 3-1/2 80 3 140 5-1/2 130 5 184 7-1/4 175 6-7/8 235 (or 89 + 140) 9-1/4 (or 3-1/2 + 5-1/2) 225 (or 215) 8-7/8 (or 8-1/2) 286 (or 89 + 184) 11-1/4 (or 3-1/2 + 7-1/4) 275 (or 265) 10-7/8 (or 10-1/4) 140 + 184 5-1/2 + 7-1/4 315 12-1/4 140 + 235 5-1/2 + 9-1/4 365 14-1/4 Notes: Members wider than 365 mm (14-1/4″) are available in 50 mm (2″) increments but require a special order. Members wider than 175 mm (6-7/8″) may consist of two boards laid side by side with logitudinal joints staggered in adjacent laminations. Standard depths of glulam Standard depths for glulam members range from 114 mm (4-1/2″) to 2128 mm (7′) or more in increments of 38 mm (1-1/2″) and l9 mm (3/4″). A member made from 38 mm (1-1/2″) laminations costs significantly less than an equivalent member made from l9 mm (3/4″) laminations. However, the l9 mm (3/4″) laminations allow for a greater amount of curvature than do the 38 mm (1-1/2″) laminations. Width in. Depth range mm in. 80 3 114 to 570 4-1/2 to 22-1/2 130 5 152 to 950 6 to 37-1/2 175 6-7/8 190 to 1254 7-1/2 to 49-1/2 215 8-1/2 266 to 1596 10-1/2 to 62-3/4 265 10-1/4 342 to 1976 13-1/2 to 77-3/4 315 12-1/4 380 to 2128 15 to 83-3/4 365 14-1/4 380 to 2128 15 to 83-3/4 Note: 1. Intermediate depths are multiples of the lamination thickness, which is 38 mm (1-1/2″ nom.) except for some curved members that require 19 mm (3/4″ nom.) laminations. Laminating stock may be end jointed into lengths of up to 40 m (130′) but the practical limitation may depend on transportation clearance restrictions. Therefore, shipping restrictions for a given region should be determined before specifying length, width or shipping height. Glulam appearance grades In specifying Canadian glulam products, it is necessary to indicate both the stress grade and the appearance grade required. The appearance of glulam is determined by the degree of finish work done after laminating and not by the appearance of the individual lamination pieces. Glulam is available in the following appearance grades: Industrial Commercial Quality The appearance grade defines the amount of patching and finishing work done to the exposed surfaces after laminating (Table 6.8) and has no strength implications. Quality grade provides the greatest degree of finishing and is intended for applications where appearance is important. Industrial grade has the least amount of finishing. Grade Description Industrial Grade Intended for use where appearance is not a primary concern such as in industrial buildings; laminating stock may contain natural characteristics allowed for specified stress grade; sides planed to specified dimensions but occasional misses and rough spots allowed; may have broken knots, knot holes, torn grain, checks, wane and other irregularities on surface. Commercial Grade Intended for painted or flat-gloss varnished surfaces; laminating stock may contain natural characteristics allowed for specified stress grade; sides planed to specified dimensions and all squeezed-out glue removed from surface; knot holes, loose knots, voids, wane or pitch pockets are not replaced by wood inserts or filler on exposed surface. Quality Grade Intended for high-gloss transparent or polished surfaces, displays natural beauty of wood for best aesthetic appeal; laminating stock may contain natural characteristics allowed for specified stress grade; sides planed to specified dimensions and all squeezed-out glue removed from surface; may have tight knots, firm heart stain and medium sap stain on sides; slightly broken or split knots, slivers, torn grain or checks on surface filled; loose knots, knot holes, wane and pitch pockets removed and replaced with non-shrinking

Grades

Grades

Visual grading of dimension lumber In Canada, we are fortunate to have forests that are capable of producing dimension lumber that is desirable for use as structural wood products. Some primary factors that contribute to the production of lumber that is desirable for structural uses include; a favourable northern climate that is conducive to tree growth, many Canadian species contain small knots, and many of the Western Canadian species grow to heights of thirty meters or more, providing long sections of clear knot free wood and straight grain. The majority of the structural wood products are grouped within the spruce-pine-fir (S-P-F) species combination, which has the following advantages for structural applications: straight grain good workability light weight moderate strength small knots ability to hold nails and screws There are more than a hundred softwood species in North America. To simplify the supply and use of structural softwood lumber, species having similar strength characteristics, and typically grown in the same region, are combined. Having a smaller number of species combinations makes it easier to design and select an appropriate species and for installation and inspection on the job site. In contrast, non-structural wood products are graded solely on the basis of appearance quality and are typically marked and sold under an individual species (e.g., Eastern White Pine, Western Red Cedar). Canadian dimension lumber is manufactured in accordance with CSA O141 Canadian Standard Lumber and must conform to the requirements of the Canadian and US lumber grading rules. Each piece of dimension lumber is inspected to determine its grade and a stamp is applied indicating the assigned grade, the mill identification number, a green (S-Grn) or dry (S-Dry) moisture content at time of surfacing, the species or species group, the grading authority having jurisdiction over the mill of origin, and the grading rule used, where applicable. Dimension lumber is generally grade stamped on one face at a distance of approximately 600 mm (2 ft) from one end of the piece, in order to ensure that the stamp will be clearly visible during construction. Specialty items, such as lumber manufactured for millwork or for decorative purposes, are seldom marked. To ensure this uniform quality of dimension lumber, Canadian mills are required to have each piece of lumber graded by lumber graders who are approved by an accredited grading agency. Grading agencies are accredited by the CLSAB. NLGA Standard Grading Rules for Canadian Lumber provide a list of the permitted characteristics within each grade of dimension lumber. The grade of a given piece of dimension lumber is based on the visual observations of certain natural characteristics of the wood. Most softwood lumber is assigned either an appearance grade or a structural grade based on a visual review performed by a lumber grader.   The lumber grader is an integral part of the lumber manufacturing process. Using established correlations between appearance and strength, lumber graders are trained to assign a strength grade to dimensional lumber based on the presence or absence of certain natural characteristics. Examples of such characteristics include; the presence of wane (bark remnant on the outer edge), size and location of knots, the slope of the grain relative to the long axis and the size of shakes, splits and checks. Other characteristics are limited by the grading rules for appearance reasons only. Some of these include sap and heart stain, torn grain and planer skips. The table below shows a sample of a few of the criteria used to assess grades for 2×4 dimensional lumber that is categorized as ‘structural light framing’ or as ‘structural joist and plank’. Grades Characteristic Select Structural No.1 & No. 2 No. 3 Edge of wide face knots ¾” 1 ¼” 1 ¾” Slope of grain 1 in 12 1 in 8 1 in 4 To keep sorting cost to a minimum, grades may be grouped together. For example, there is an appearance difference between No.1 and No.2 visually graded dimension lumber, but not a difference in strength. Therefore, the grade mark ‘No.2 and better’ is commonly used where the visual appearance of No.1 grade dimensional lumber is not required, for example, in the construction of joists, rafters or trusses. Pieces of the same grade must be bundled together with the engineering properties dictated by the lowest strength grade in the bundle. Dimension lumber is aggregated into the following four grade categories: Structural light framing, Structural joists and planks, Light framing, and Stud. The table below shows the grades and uses for these categories.   Grade Category Size Grades Common Grade Mix Principal Uses Structural Light Framing 38 to 89mm (2″ to 4″ nom.) thick and wide Select Structural, No.1, No.2, No.3 No.2 and Better Used for engineering applications such as for trusses, lintels, rafters, and joists in the smaller dimensions. Structural Joists and Planks 38 to 89mm (2″ to 4″ nom.) thick and 114mm (5″ nom.) or more wide Select Structural, No.1, No.2, No.3 No.2 and Better Used for engineering applications such as for trusses, lintels, rafters, and joists in the dimensions greater than 114mm (5″ nom.). Light Framing 38 to 89mm (2″ to 4″ nom.) thick and wide Construction, Standard, Utility Standard and Better (Std. & Btr.) Used for general framing where high strength values are not required such as for plates, sills, and blocking. Studs 38 to 89mm (2″ to 4″ nom.) thick and 38 to 140mm (2″ to 6″ nom.) wide and 3m (10′) or less in length Stud, Economy Stud Made principally for use in walls. Stud grade is suitable for bearing wall applications. Economy grade is suitable for temporary applications. Notes: Grades may be bundled individually or they may be individually stamped, but they must be grouped together with the engineering properties dictated by the lowest strength grade in the bundle. The common grade mix shown is the most economical blending of strength for most applications where appearance is not a factor and average strength is acceptable. Except for economy grade, all grades are stress graded, meaning specified strengths have been

Get Access to Our Resources

Stay in the loop and don’t miss a thing!

1
2
3

Get Access to Our Resources

Stay in the loop and don’t miss a thing!

What’s Your Occupation?

Help us personalize the content for you.

What Interests You the Most?

Help us personalize the content for you.

Filters

Persona Icon
Persona
Tags Icon
Tags
Annual Reports Plus Icon
Award Book Plus Icon
Case Studies Plus Icon
Free Publications Plus Icon
Magazine Plus Icon
Building Systems Plus Icon
Codes & Standards Plus Icon
Industry News Plus Icon
Why Wood (FAQ) Plus Icon
Wood Products Plus Icon
Acoustics Plus Icon
Design Examples Plus Icon
Engineering Plus Icon
Fire Resistance Plus Icon
Insurance Plus Icon
Mass Timber Plus Icon
Date Icon
Date
Line Separator