Bienvenue sur le nouveau Hub de Ressources Numériques du CCB (BETA)

en-ca

Articles

Restez informé de nos dernières idées et tendances. Découvrez des articles qui vous inspirent et vous informent.

98 résultats trouvés...
Trier par Icône de la liste déroulante

Le traitement des dépôts étant localisé, il est essentiel qu'il soit placé au bon endroit, ce qui nécessite de comprendre comment l'humidité peut pénétrer dans la structure. Cela ne peut se faire que lorsque la construction est achevée ou sur le point de l'être. C'est à ce moment-là que l'on peut évaluer le degré de protection prévu par la conception et que l'on peut identifier et, si possible, éliminer les pièges à eau. Le traitement peut alors être appliqué au bon endroit pour intercepter l'humidité près de son point d'entrée.

Les traitements en profondeur sont un excellent choix pour quelques applications courantes, telles que les poutres partiellement exposées. Lorsqu'une poutre pénètre l'enveloppe du bâtiment, seule une partie est exposée à l'humidité et il est logique de ne traiter que cette partie. Les traitements en dépôt sont particulièrement utiles pour les produits qui ne se prêtent pas au traitement sous pression avec des produits de préservation à base d'eau, comme le bois lamellé-collé. De même, les traitements en dépôt sont appropriés pour les extrémités exposées des rondins dans les maisons en rondins - les rondins qui dépassent le débord de toit protecteur sont exposés au risque de pourriture.

Solides

Les traitements de dépôt utilisent le plus souvent une forme solide de conservateur. Les bâtonnets de borate, de cuivre/borate et de fluorure conviennent parfaitement à cette utilisation finale, car ils sont faciles à installer et les ingrédients actifs ne deviennent mobiles qu'en cas de pénétration de l'humidité.

Autres formats

Les pâtes peuvent être introduites dans des trous percés ou des rainures tracées - les rainures des maisons en rondins sont une application appropriée. L'injection de liquide est moins courante, car il s'agit de percer de petits trous, d'insérer une buse d'injection reliée à un réservoir ou à une pompe de 70 à 120 psi, et de forcer le conservateur le long du grain sous pression. Une série de trous de ce type est nécessaire, en particulier pour les grandes dimensions, afin d'augmenter la charge. Moins adaptés au traitement des dépôts, les fumigants n'ont pas, à notre connaissance, été utilisés dans ces applications.

Veuillez vous référer aux documents pdf ci-dessous pour les questions fréquemment posées concernant la durabilité :

Général

Pourriture du bois et réparation

Décoloration

Finition

Moule

Bois traité

La "durabilité par la conception" est l'aspect le plus important des solutions durables. Il s'agit d'abord d'utiliser du bois sec, de le stocker de manière appropriée pour s'assurer qu'il reste sec, puis de concevoir le bâtiment de manière à protéger le bois ou, si le bois est exposé, de le concevoir de manière à ce qu'il n'accumule pas d'humidité. Il faut également veiller à ce que l'enveloppe du bâtiment soit conçue de manière à évacuer l'eau en vrac, à empêcher l'eau et la vapeur de pénétrer dans l'enveloppe et à évacuer l'eau qui s'y infiltre.

Pour les applications extérieures du bois, nous avons une forte tradition, ici en Amérique du Nord, d'utilisation de nos essences naturellement durables : le Western Red Cedar, le Eastern White Cedar, le cyprès jaune et le séquoia. Ce sont des choix familiers pour les terrasses, les clôtures, les bardages et les toitures. Ces essences sont résistantes à la décomposition à l'état naturel, en raison de leur teneur élevée en produits chimiques organiques appelés matières extractibles. Les extractibles sont des substances chimiques qui se déposent dans le bois de cœur de certaines espèces d'arbres lors de la transformation de l'aubier en bois de cœur. Outre le fait qu'elles confèrent au bois une résistance à la pourriture, les substances extractives donnent souvent au bois de cœur une couleur et une odeur.

Seul le bois de cœur présente ces dépôts protecteurs. L'aubier de tous les résineux d'Amérique du Nord est sensible à la pourriture et doit être protégé par d'autres moyens lorsqu'une résistance à la pourriture est nécessaire. L'aubier est la partie la plus récente de l'arbre, plus proche de l'écorce. Il n'a pas besoin d'être protégé contre la pourriture dans l'arbre vivant, car les réactions à la blessure empêchent tout organisme envahissant de pénétrer dans l'arbre. Le bois de cœur est la partie interne, plus ancienne, de l'arbre et n'est plus en vie.

Les couches d'un arbre

Le bois de cœur se distingue souvent visiblement de l'aubier par sa couleur (le bois de cœur est généralement plus foncé), mais ce n'est pas le cas pour toutes les essences. Cependant, même si vous êtes sûr d'avoir du bois de cœur d'une espèce durable, vous n'avez peut-être pas le niveau de résistance que vous pensez. La résistance à la pourriture est souvent très variable et peut être plus faible dans les arbres cultivés en plantation. Il n'existe actuellement aucun moyen d'estimer de manière fiable la durabilité d'un morceau de bois de cœur naturellement durable.

Plus d'informations
Cliquez ici pour un tableau présentant les classements de durabilité naturelle des essences de bois résineux les plus courantes.

Méthodes de traitement

Il existe deux méthodes de base pour le traitement : avec et sans pression. Méthodes sans pression sont l'application d'un produit de conservation par brossage, pulvérisation ou trempage de la pièce à traiter. Il s'agit de traitements superficiels qui n'entraînent pas une pénétration profonde ou une absorption importante du produit de conservation. Il est préférable de limiter leur utilisation aux cas suivants traitement sur le terrain pendant la construction (par exemple, lorsqu'une pièce de bois traitée sous pression doit être coupée sur place), dans les cas où seule une partie d'une pièce doit être traitée, dans les processus de fabrication des produits à base de bois lamellaire, dans la protection de la surface contre les moisissures ou dans les cas où une pièce de bois doit être traitée sur place. traitement correctif du bois en place. Par exemple, des mélanges de borate et de glycols sont utilisés pour traiter le bois sain laissé en place lors de la réparation de problèmes de pourriture. Le glycol aide le borate à pénétrer dans le bois sec, arrêtant l'activité de tout champignon qui entre en contact avec lui. La pénétration du conservateur est encore limitée et la fonction la plus importante est d'empêcher les champignons non détectés laissés sur place de se propager au bois sain.

Une pénétration plus profonde et plus complète est obtenue en faisant pénétrer le produit de préservation dans les cellules du bois par pression. Diverses combinaisons de pression et de vide sont utilisées pour faire pénétrer des niveaux adéquats de produit chimique dans le bois. Les produits de protection sous pression sont des produits chimiques transportés dans un solvant. Le solvant, ou support, est soit de l'eau, soit de l'huile. Les produits de préservation à base d'huile sont largement utilisés pour traiter les produits industriels tels que les traverses de chemin de fer, les poteaux électriques et les poutres de pont, ainsi que pour protéger les coupes dans les champs. Les produits de préservation à base d'eau sont plus largement utilisés sur les marchés résidentiels en raison de l'absence d'odeur, de la surface plus propre du bois et de la possibilité de peindre ou de teindre le produit en bois. Lorsqu'un produit en bois est utilisé dans une application connue pour présenter un risque, par exemple à l'extérieur, traitement sous pression est recommandé.

Types de conservateurs

Les produits de préservation du bois les plus couramment utilisés en Amérique du Nord dans la construction résidentielle sont des systèmes à base de cuivre en phase aqueuse, notamment le cuivre alcalin quaternaire (ACQ), l'azole de cuivre (CA) et l'azole de cuivre micronisé (MCA). Le bois traité avec ces produits de préservation a une teinte verte naturelle, bien que celle-ci puisse être masquée par l'utilisation de colorants qui donnent le plus souvent au bois traité une couleur brun moyen. Le cuivre est le principal biocide de ces systèmes. L'ACQ contient également des composés d'ammonium quaternaire qui agissent comme co-biocide pour protéger contre les organismes tolérants au cuivre. De même, CA et MCA contiennent du tébuconazole pour protéger contre ces organismes. 

L'arséniate de cuivre chromaté (ACC) a été largement utilisé dans la construction résidentielle jusqu'en 2004, date à laquelle son utilisation dans la plupart des applications résidentielles a été progressivement abandonnée. Il est désormais largement limité aux applications industrielles, mais peut encore être utilisé dans quelques applications résidentielles telles que les bardeaux et les fondations permanentes en bois. L'arséniate ammoniacal de cuivre et de zinc (ACZA) peut également être utilisé dans la plupart de ces applications, mais il est surtout utilisé pour le traitement du Douglas taxifolié et pour les applications marines.

Les borates constituent une autre classe de conservateurs en phase aqueuse utilisés en Amérique du Nord. Leur utilisation est actuellement limitée aux applications qui sont protégées de la pluie et d'autres sources persistantes d'eau. Il s'agit notamment des charpentes dans les zones à termites et de la réparation des charpentes pourries dans les bâtiments qui fuient et où la principale source d'humidité a été éliminée. Les borates sont également utilisés dans le cadre d'un double traitement, en association avec une enveloppe de créosote ou de naphténate de cuivre, pour protéger les traverses de chemin de fer.

Les systèmes de préservation à base d'eau sans métal, tels que PTI et EL2, contiennent des fongicides et des insecticides à base de carbone. Le bois traité avec ces systèmes est utilisé dans la construction résidentielle aux États-Unis et est limité aux applications hors sol.

Les conservateurs à base d'huile comprennent la créosote, le pentachlorphénol et le naphténate de cuivre et de zinc. La créosote est le célèbre produit de préservation du bois noir et huileux, le plus ancien type de produit de préservation encore utilisé de nos jours. Au Canada, elle est utilisée presque exclusivement pour les traverses de chemin de fer, où sa résistance aux mouvements de l'humidité est un avantage clé. Le pentachlorophénol dans l'huile est principalement utilisé pour les poteaux électriques, où les caractéristiques d'assouplissement de la surface de l'huile sont utiles pour l'escalade des poteaux. Le naphténate de cuivre et le naphténate de zinc sont deux conservateurs couramment utilisés pour traiter les coupes sur le terrain. Le naphténate de cuivre est également utilisé pour traiter les traverses et le bois de construction aux États-Unis.

Modification thermique

Les propriétés du bois sont modifiées lorsqu'il est exposé à des températures élevées (160-260°C) dans des conditions d'oxygène réduit. Les fours de modification thermique utilisent des températures beaucoup plus élevées que les fours de séchage et utilisent de la vapeur (ou d'autres milieux excluant l'oxygène) pour protéger le bois de la dégradation à ces températures élevées. Le bois modifié thermiquement qui en résulte a généralement une couleur plus foncée, une stabilité dimensionnelle accrue et une meilleure résistance à la pourriture. La modification thermique peut réduire certaines propriétés mécaniques et ne protège pas le bois contre les insectes. Le bois modifié thermiquement est généralement utilisé dans des applications non structurelles, en surface, telles que le bardage, les terrasses et les meubles d'extérieur.

Plus d'informations de la part des producteurs de produits de préservation du bois
Lonza Protection du bois

Spécialités du bois 

Viance LLC 

Genics Inc. 

Kop-Coat  

Rio Tinto Minerals

Nisus  

Conseil de la créosote  

KMG Chemicals  

Préservation du bois Canada

 

Les structures en bois, correctement conçues et traitées, dureront indéfiniment. Cette section contient des conseils sur les applications spécifiques des structures qui sont constamment exposées aux éléments.

Extérieurs en bois massif

La construction moderne en bois de masse comprend des systèmes de construction connus sous le nom de poteaux et poutres, ou bois lourd, et bois lamellé-croisé (CLT). Les composants typiques sont le bois massif scié, le bois lamellé-collé (glulam), le bois de fil parallèle (PSL), le bois de placage stratifié (LVL), le bois de fil stratifié (LSL) et le CLT. La construction de poutres et poteaux en bois massif avec des murs de remplissage en divers matériaux est l'un des plus anciens systèmes de construction connus de l'homme. Les exemples historiques encore debout vont de l'Europe à l'Asie, en passant par les longues maisons des premières nations de la côte pacifique (figure 1). Les temples anciens du Japon et de la Chine, datant de plusieurs milliers d'années, sont essentiellement des constructions en bois massif dont certains éléments sont semi-exposés aux intempéries (figure 2). Des entrepôts à forte ossature en bois avec des murs en maçonnerie datant de 100 ans ou plus sont encore utilisables et recherchés comme résidences ou immeubles de bureaux dans des villes comme Toronto, Montréal et Vancouver (Koo 2013). Outre leur valeur historique, ces anciens entrepôts offrent des structures en bois visuellement impressionnantes, des planchers ouverts et la flexibilité d'utilisation et de réaffectation qui en résulte. S'appuyant sur cet héritage, la construction moderne en bois massif devient de plus en plus populaire dans certaines régions du Canada et des États-Unis pour les constructions non résidentielles, les propriétés de loisirs et même les immeubles résidentiels à plusieurs logements. Les propriétaires et les architectes ressentent généralement le besoin d'exprimer ces matériaux structurels, en particulier le bois lamellé-collé, à l'extérieur du bâtiment, où ils sont semi-exposés aux éléments (figure 3). En outre, les éléments en bois sont de plus en plus utilisés pour adoucir l'aspect extérieur des bâtiments qui ne sont pas en bois et les rendre plus attrayants (figure 4). Ils sont censés rester structurellement sains et visuellement attrayants pendant toute leur durée de vie. Cependant, l'utilisation du bois à l'extérieur crée un risque de détérioration qu'il convient de gérer. Comme pour le bois utilisé pour les aménagements paysagers, les principaux défis auxquels le bois est confronté dans ces situations sont la pourriture, les intempéries et les champignons de tache noire. Ce document aide les architectes et les prescripteurs à prendre les bonnes décisions pour maximiser la durabilité et minimiser les besoins d'entretien du bois lamellé-collé et d'autres bois de masse à l'extérieur des bâtiments résidentiels et non résidentiels. Il se concentre sur les principes généraux, plutôt que de fournir des recommandations détaillées. Il s'adresse principalement à un public canadien et accessoirement à un public nord-américain.

Cliquez ici pour en savoir plus

Logement en cas de catastrophe

Les besoins en abris après une catastrophe naturelle se présentent en trois phases :

  1. Abri immédiat : normalement fourni par des bâches ou des tentes légères.
  2. Abris de transition : il peut s'agir de tentes résistantes ou d'abris à moyen terme plus robustes.
  3. Bâtiments permanents : À terme, des abris permanents devront être construits lorsque l'économie locale se redressera.

Les abris immédiats et de transition sont généralement fournis par les organismes d'aide. L'ossature légère en bois est idéale pour la fourniture rapide d'abris à moyen et long terme après une catastrophe naturelle. Cependant, dans certains climats, la construction à ossature bois présente des difficultés qu'il convient de résoudre afin de construire des abris de manière durable et responsable. Par exemple, de nombreuses régions qui subissent des ouragans, des tremblements de terre et des tsunamis présentent également de graves risques de pourriture et de termites, notamment des espèces agressives de Coptotermes et des termites de bois sec. Dans les climats nordiques extrêmes, les charges d'occupation élevées sont courantes et, lorsqu'elles sont combinées à la nécessité d'une isolation thermique importante pour assurer des températures intérieures confortables, elles peuvent entraîner la condensation et la formation de moisissures si les systèmes de murs et de toits ne sont pas conçus avec soin.

Le désir des organisations humanitaires de maximiser le nombre d'abris livrés tend à faire baisser le coût admissible, ce qui dicte des conceptions simplifiées avec moins de caractéristiques de gestion de l'humidité. Il peut également être difficile de contrôler la qualité de la construction dans certaines régions. Une fois construites, les structures "temporaires" sont généralement utilisées bien plus longtemps que leur durée de vie prévue. Les améliorations apportées par les occupants sur le long terme peuvent potentiellement accroître les problèmes d'humidité et de termites. Tous ces facteurs signifient que le bois utilisé doit être durable.

L'une des méthodes permettant d'obtenir des produits en bois plus durables consiste à traiter le bois pour prévenir la pourriture et les attaques d'insectes et de termites. Toutefois, le bois couramment traité au Canada peut ne pas convenir à d'autres pays. Le choix du produit de préservation et du procédé de traitement doit tenir compte des réglementations en vigueur dans les pays d'exportation et de destination, et notamment du risque de contact humain avec le bois préservé, de l'emplacement du produit dans le bâtiment, de la possibilité de traiter les essences de bois et du risque local de pourriture et de termites. Des caractéristiques de conception simples, comme le fait de s'assurer que le bois n'entre pas en contact avec le sol et qu'il est protégé de la pluie, peuvent réduire les problèmes d'humidité et de termites.

La construction en béton et en acier n'élimine pas les problèmes de termites. Les termites se nourrissent volontiers de composants en bois, de meubles, d'armoires et d'autres matériaux cellulosiques, tels que le papier des cloisons sèches, les boîtes en carton, les livres, etc. dans les bâtiments en béton ou en blocs de maçonnerie. Des tubes de boue s'étendant sur 10 pieds au-dessus des fondations en béton pour atteindre les matériaux de construction cellulosiques ont été documentés. En effet, les termites ont causé des dommages économiques importants aux matériaux de construction cellulosiques, même dans des tours en béton et en acier en Floride et dans le sud de la Chine.

Cliquez ici pour en savoir plus

Ponts en bois

Les ponts en bois sont un excellent moyen de démontrer la solidité et la durabilité des structures en bois, même dans des conditions difficiles, lorsque le choix des matériaux, la conception, la construction et l'entretien sont bien faits. Ils peuvent également constituer des éléments d'infrastructure critiques qui enjambent des rivières rapides ou des gorges profondes. La défaillance de ces structures peut avoir de graves conséquences en termes de pertes de vies humaines et d'accès aux communautés. La durabilité est aussi importante que l'ingénierie pour garantir une utilisation sûre des ponts en bois pendant la durée de vie prévue, qui est généralement de 75 ans en Amérique du Nord.

Il existe de nombreux exemples de vieux ponts en bois encore en service en Amérique du Nord (figure 1). Les plus anciens sont des ponts couverts traditionnels (figure 2), dont trois ont environ 190 ans. Dans le sud-est de la Chine, les provinces de Fujian et de Zhejiang comptent de nombreux ponts couverts vieux de près de 1000 ans (figure 3). Le fait que ces ponts soient encore debout témoigne des artisans qui ont sélectionné les matériaux, conçu les structures, les ont construites, ont surveillé leur état et les ont entretenues et réparées. Ils auraient choisi les essences de bois les plus durables disponibles, probablement le châtaignier ou le cèdre en Amérique du Nord, le sapin de Chine (cèdre de Chine) dans le sud-est de la Chine. Ils auraient coupé l'aubier, mince et périssable, pour n'exposer que le bois de cœur, naturellement durable. Si les ponts couverts d'aujourd'hui se ressemblent tous, c'est parce qu'il s'agit de modèles testés et éprouvés qui ont fait leurs preuves. Ces ponts étaient clairement conçus pour évacuer l'eau, avec un toit en bardeaux de bois, un bardage vertical dépassant sous le tablier et des éléments structurels à l'abri de toutes les pluies, à l'exception des pires pluies dues au vent. Toute pluie qui ne s'égouttait pas sur le bas du bardage vertical et ne remontait pas le long du fil du bois s'asséchait également assez rapidement. Le lent pourrissement qui s'est produit à la base de ces planches n'a pas eu d'importance car il était éloigné des connexions avec les éléments structurels. La construction a dû être méticuleusement exécutée par des artisans expérimentés. Il se peut que ces artisans aient été des habitants de la région qui ont continué à surveiller le pont tout au long de sa vie et à effectuer toutes les réparations nécessaires. Bien entendu, tous les éléments de ces ponts anciens ne sont pas d'origine, en particulier les toits en bardeaux qui durent généralement de 20 à 30 ans en fonction du climat. Ces ponts ont tous été réparés en raison de leur dégradation et, dans certains cas, démantelés et reconstruits au fil des ans pour diverses raisons (par exemple, en raison de l'évolution du trafic, d'incendies criminels, d'inondations, d'incendies, d'ouragans, etc.) Le pont de Wan'an, dans le Fujian, a été construit en 1090, remplacé en 1708 et reconstruit en 1845, 1932 et 1953. La fréquence apparemment croissante des reconstructions peut suggérer une perte de connaissances et de compétences, mais il est possible que toutes les réparations et reconstructions antérieures à 1845 n'aient pas été enregistrées.

Cliquez ici pour en savoir plus

Fondations permanentes en bois

Les fondations permanentes en bois (FPC) sont une méthode de construction solide, durable et éprouvée qui présente un certain nombre d'avantages uniques par rapport à d'autres systèmes de fondations, tant pour le constructeur que pour le propriétaire. Les premiers exemples canadiens ont été construits dès 1950 et sont encore utilisés aujourd'hui. Les fondations en béton armé peuvent également être conçues pour des projets tels que les vides sanitaires, les ajouts de pièces et les fondations de murs d'appui pour les garages et les maisons mobiles. Les dalles de béton sur terre-plein, les planchers à traverses en bois et les planchers suspendus en bois peuvent tous être utilisés avec les MPO.

Une fondation permanente en bois est un système de construction technique enterré conçu pour transformer les fondations d'une maison en espace habitable utilisable. Un mur d'ossature sous le niveau du sol, constitué de contreplaqué et de bois d'œuvre traités avec un agent de conservation, soutient la structure et entoure l'espace habitable. Les MPO conviennent à tous les types de construction à ossature légère visés par la partie 9 (habitations et petits bâtiments) du Code national du bâtiment du Canada, en vertu des clauses 9.15.2.4.(1) et 9.16.5.1.(1). Cela comprend les maisons individuelles, les maisons en rangée, les appartements de faible hauteur et les bâtiments institutionnels et commerciaux. En outre, la norme CSA S406 récemment révisée, Spécifications des fondations permanentes en bois pour les habitations et les petits bâtiments, autorise les constructions de trois étages soutenues par des fondations en bois.

Cliquez ici pour en savoir plus

 

Humidité, dégradation et termites

Le bois est un matériau naturel et biodégradable. Cela signifie que certains insectes et champignons peuvent décomposer le bois pour le recycler via la terre en un nouveau matériau végétal.

La décomposition, également appelée pourriture, est la décomposition de la matière organique par l'activité fongique. Quelques espèces spécialisées de champignons peuvent agir sur le bois. Il s'agit d'un processus important dans la forêt. Mais il s'agit évidemment d'un processus à éviter pour les produits en bois en service.

La clé de la lutte contre la pourriture est le contrôle de l'humidité excessive. L'eau en elle-même n'endommage pas le bois, mais elle permet à ces organismes fongiques de se développer. Le bois est en fait assez tolérant à l'eau et pardonne de nombreuses erreurs d'humidité. Mais un excès d'humidité involontaire (par exemple, une fuite importante dans un mur) peut entraîner un risque important de pourriture. Si un produit en bois doit être utilisé dans une application qui sera fréquemment mouillée pendant de longues périodes, des mesures doivent être prises pour protéger le bois contre la pourriture.

Différents types d'insectes peuvent endommager le bois, mais les principaux responsables des problèmes sont les termites. Les termites vivent partout dans le monde où le climat est chaud ou tempéré.

FPInnovations teste la performance des produits de bois traité sur le terrain depuis des années. Cliquez sur l'une de ces catégories pour obtenir les données de performance issues de nos essais sur le terrain.

Bois traité au borate contre les termites

Articles
Poteaux en bois ronds
Articles
Poteaux en bois scié

 

 

 

 

 

Articles
Bois de construction contre termites
Articles
Secousses

 

 

 

 

 

Articles
Pilotis marins
Articles
Coupes sur le terrain

 

 

 

 

 

Espèces naturellement durables

Le bois de cœur d'espèces réputées avoir une certaine durabilité naturelle a été évalué dans des tests de contact avec le sol (piquets) et en surface (platelage). 

Articles

Produit de base : Bois d'œuvre 2×4 et 2×6 provenant d'essences naturellement durables : Thuya géant, cyprès jaune, thuya occidental, mélèze, mélèze laricin, douglas.

Espèces témoins : Aubier de pin ponderosa

Méthode d'essai : Test des piquets (AWPA E7) et test des planches (AWPA E25)

Sites d'essai : FPInnovations - Maple Ridge, BC ; Petawawa, ON

Université technologique du Michigan - Gainesville, Floride ; Kipuka, Hawaï 

Date d'installation : 2004-2005

 

Durée de vie estimée : Dans le test des piquets en contact avec le sol, après 5 ans, des niveaux modérés à élevés de pourriture ont été trouvés dans toutes les espèces sur tous les sites. Le cyprès jaune et le thuya géant étaient les plus durables sur tous les sites. Le thuya occidental présentait une durabilité similaire sur les sites du Canada et de Floride, mais était moins durable à Hawaï. Aucune différence de performance majeure n'a été observée entre les matériaux anciens et les matériaux de seconde génération utilisés dans cette étude. Le bois de cœur naturellement durable et non traité n'est pas recommandé pour des performances à long terme en contact avec le sol.

Lors de l'essai des terrasses en surface, sur les sites d'essai canadiens, après 10 ans, seules de petites quantités de pourriture ont été observées dans l'un ou l'autre des bois de cœur naturellement durables testés. En revanche, les témoins en pin ponderosa présentaient une pourriture modérée à avancée. La décomposition a été plus rapide sur les sites d'essai de Floride et d'Hawaï, avec une décomposition modérée à avancée dans tous les types de matériaux après 7 ans. Le bois de cœur naturellement durable et non traité n'est pas recommandé pour des performances à long terme dans des applications exposées au-dessus du sol dans des zones à haut risque de pourriture telles que la Floride et Hawaï. Cependant, dans les climats tempérés, ces bois de cœur naturellement durables peuvent offrir des durées de vie supérieures à 10 ans.

Références :

Morris, P. I., Ingram, J., Larkin, G. et Laks, P. (2011). Essais sur le terrain d'espèces naturellement durables. Journal des produits forestiers61(5), 344-351.

Morris, P. I., Laks, P., Larkin, G., Ingram, J. K. et Stirling, R. (2016). Résistance à la pourriture aérienne de certains résineux canadiens dans quatre sites d'essai après 10 ans d'exposition. Revue des produits forestiers66(5), 268-273.

Le bois est un matériau structurel précieux et efficace depuis les premiers jours de la civilisation humaine. Avec de bonnes pratiques normales, le bois peut offrir de nombreuses années de service fiable. Mais, comme d'autres matériaux de construction, le bois peut souffrir des erreurs commises dans les pratiques de stockage, de conception, de construction et d'entretien.

Comment assurer la longévité d'une construction en bois ? La meilleure approche consiste à se rappeler que le bois destiné à une application sèche doit rester sec. Commencez par acheter du bois sec, stockez-le soigneusement pour qu'il reste sec, concevez le bâtiment de manière à protéger les éléments en bois, gardez le bois au sec pendant la construction et entretenez bien le bâtiment. Cette approche est appelée la durabilité par la conception.

Si le bois ne reste pas sec, deux solutions s'offrent à vous. Le bois humide étant exposé au risque de pourriture, vous devez choisir un produit résistant à la pourriture. L'une des solutions consiste à choisir une essence naturellement durable, comme le Western Red Cedar. Cette approche est appelée la durabilité par nature.

La plupart de nos bois de construction ne sont pas naturellement durables, mais nous pouvons les rendre résistants à la pourriture en les traitant avec un produit de préservation. Le bois d'œuvre traité avec un agent de conservation résiste mieux à la pourriture que le bois d'œuvre naturellement durable. Cette approche est appelée la durabilité du bois traité.

Le niveau d'attention que vous accordez aux questions de durabilité au cours de la conception dépend du risque de pourriture. En d'autres termes, plus les circonstances exposent le bois à un risque, plus vous devez prendre soin de le protéger contre la pourriture. Dans les applications extérieures, par exemple, tout bois en contact avec le sol présente un risque élevé de pourriture et doit être traité sous pression à l'aide d'un produit de préservation. Pour le bois exposé aux intempéries mais qui n'est pas en contact direct avec le sol, le degré de risque est lié au climat. Les champignons qui attaquent le bois se développent généralement mieux dans des environnements humides et à des températures chaudes. Des chercheurs ont établi des zones de danger en Amérique du Nord en se basant sur la température mensuelle moyenne et le nombre de jours de pluie. Cette carte montre en particulier les risques liés aux précipitations et s'applique aux utilisations exposées du bois, telles que les terrasses, les bardeaux et les planches de clôture. Un degré élevé de risque indique qu'il faut choisir avec soin une essence de bois ou un traitement de préservation pour obtenir une durée de vie maximale. À l'avenir, les codes de construction pourront fournir des directives plus spécifiques en fonction du risque de pourriture. Pour le bois non exposé aux intempéries, comme le bois de charpente, cette carte n'est que modérément utile. En effet, les conditions environnementales à l'intérieur du mur peuvent être très différentes de celles de l'extérieur.

En plus des constructions combustibles, des constructions en bois massif et des constructions incombustibles, un nouveau type de construction est actuellement envisagé pour être inclus dans le Code national du bâtiment du Canada (CNB). Il est proposé de définir la construction en bois massif encapsulé (EMTC) comme le "type de construction dans lequel un degré de sécurité incendie est atteint par l'utilisation d'éléments en bois massif encapsulé avec un indice d'encapsulation et des dimensions minimales pour les éléments structuraux en bois et les autres assemblages du bâtiment". L'EMTC n'est ni une "construction combustible", ni une "construction en bois massif", ni une "construction incombustible", telles que définies dans le CNB.

L'EMTC doit avoir un indice d'encapsulation. L'indice d'encapsulation est le temps, en minutes, pendant lequel un matériau ou un assemblage de matériaux retardera l'inflammation et la combustion d'éléments de bois de masse encapsulés lorsqu'il est exposé au feu dans des conditions d'essai et selon des critères de performance spécifiés, ou selon d'autres prescriptions du CNB. L'indice d'encapsulation de l'EMTC est déterminé par la méthode d'essai ULC S146.

Pour que les éléments structurels en bois soient considérés comme du "bois de masse", ils doivent répondre à des exigences minimales de taille, qui sont différentes pour les éléments porteurs horizontaux (murs, planchers, toits, poutres) et verticaux (colonnes, arcs) et qui dépendent du nombre de côtés où l'élément est exposé au feu.

Au Canada, la construction d'un EMTC devrait être limitée à une hauteur de douze étages, c'est-à-dire que le niveau le plus élevé ne pourra pas dépasser 42 m (137 pieds) au-dessus du premier étage. Un bâtiment EMTC doit être équipé de gicleurs conformément à la norme NFPA 13 et il est probable qu'une partie du bois de charpente puisse être exposée dans les suites. Tous les éléments de l'EMTC devraient avoir une résistance au feu d'au moins deux heures et la surface au sol du bâtiment devrait être limitée à 6 000 mètres carrés.2 pour les occupants du groupe C et 7 200 m2 pour l'occupation du groupe D.

Il existe des restrictions sur l'utilisation d'éléments de revêtement extérieur dans les EMTC, ainsi que d'autres restrictions sur l'utilisation de matériaux de couverture combustibles, de châssis et de cadres de fenêtres combustibles, d'éléments combustibles dans les murs extérieurs, d'éléments de clouage, d'éléments de plancher combustibles, d'escaliers combustibles, de finitions intérieures combustibles, d'éléments combustibles dans les cloisons et d'espaces dissimulés.

Si un matériau d'encapsulation est endommagé ou enlevé, il devra être réparé ou remplacé de manière à ce que l'indice d'encapsulation des matériaux soit maintenu.

En outre, les exigences relatives à la sécurité incendie sur les chantiers doivent être appliquées à l'accès aux chantiers, à l'installation des bornes-fontaines et à l'encapsulation protectrice.

L'EMTC et ses dispositions connexes devraient être incluses dans le CNB 2020.

 

Définitions NBC :

Combustible signifie qu'un matériau ne répond pas aux critères d'acceptation de la norme CAN/ULC-S114, "Test de détermination de l'incombustibilité des matériaux de construction".

Construction combustible désigne un type de construction qui ne répond pas aux exigences en matière de construction incombustible.

Construction en bois lourd signifie que ce type de construction combustible dans lequel un certain degré de sécurité incendie est atteint en limitant les dimensions des éléments structurels en bois ainsi que l'épaisseur et la composition des planchers et des toits en bois, et en évitant les espaces cachés sous les planchers et les toits.

Construction incombustible désigne le type de construction dans lequel un certain degré de sécurité incendie est atteint par l'utilisation de incombustible des matériaux pour les éléments structurels et autres assemblages de construction.

Incombustible signifie qu'un matériau répond aux critères d'acceptation de la norme CAN/ULC-S114, "Test de détermination de l'incombustibilité des matériaux de construction".

 

Pour plus d'informations, consultez les ressources suivantes :

ULC S146 Méthode d'essai normalisée pour l'évaluation des matériaux d'encapsulation et des assemblages de matériaux pour la protection des éléments de structure et des assemblages en bois massif

Performance au feu des méthodes d'encapsulation du bois de masse et effet de l'encapsulation sur le taux de carbonisation du bois lamellé-croisé (Hasburgh et al., 2016)

CAN/ULC-S114 Essai de détermination de l'incombustibilité des matériaux de construction

NFPA 13 Norme pour l'installation de systèmes d'extinction automatique

Le Code national de l'énergie pour les bâtiments (CNÉB) vise à aider à économiser sur les factures d'énergie, à réduire la demande d'énergie de pointe et à améliorer la qualité et le confort de l'environnement intérieur des bâtiments. À travers chaque cycle d'élaboration du code, le CNÉB entend mettre en œuvre une approche progressive pour atteindre l'objectif du Canada pour les nouveaux bâtiments, tel que présenté dans le " Cadre pancanadien sur la croissance propre et le changement climatique ", à savoir la réalisation de bâtiments " prêts pour une consommation énergétique nette zéro " d'ici à 2030.

Le CNÉB est disponible gratuitement en ligne ; il est publié par le Conseil national de recherches du Canada (CNRC) et élaboré par la Commission canadienne des codes du bâtiment et de prévention des incendies en collaboration avec Ressources naturelles Canada (RNCan). La CCB participe en permanence à l'élaboration et à la mise à jour du CNÉB.

Le CMNÉB définit les exigences techniques en matière de conception et de construction efficaces sur le plan énergétique, ainsi que les niveaux minimaux d'efficacité énergétique pour la conformité au code de tous les nouveaux bâtiments. Le CNEB s'applique à tous les types de bâtiments, à l'exception des logements et des petits bâtiments, qui relèvent de l'article 9.36 du Code national du bâtiment du Canada. Le CNEB offre trois voies de conformité : normative, de compromis et de performance.

Le moment le plus rentable pour intégrer des mesures d'efficacité énergétique dans un bâtiment est la phase initiale de conception et de construction. Il est beaucoup plus coûteux de procéder à des travaux de rénovation ultérieurement. Cela est particulièrement vrai pour l'enveloppe du bâtiment, qui comprend les murs extérieurs, les fenêtres, les portes et la toiture. Le CMNÉB aborde des considérations telles que les taux d'infiltration d'air (fuites d'air) et la transmission de la chaleur à travers l'enveloppe du bâtiment. Compte tenu des différentes zones climatiques du Canada, le CMNÉB fournit également des exigences relatives à la transmission thermique globale (effective) maximale pour les parois opaques au-dessus du sol et à la résistance thermique effective des assemblages en contact avec le sol, par exemple les fondations permanentes en bois. En outre, le CMNÉB spécifie la fenestration maximale et le rapport porte/mur en fonction de la zone climatique dans laquelle le bâtiment est situé.

Les exigences en matière d'efficacité énergétique des bâtiments étant de plus en plus strictes, le bois est une solution naturelle à associer à d'autres matériaux d'isolation et de protection contre les intempéries pour créer des bâtiments à haute performance énergétique opérationnelle et assurer un confort intérieur constant aux occupants.

Pour plus d'informations sur le CNEB, visitez le site Codes Canada du Conseil national de la recherche du Canada.

On estime que 30 à 40 % de l'énergie utilisée en Amérique du Nord est consommée par les bâtiments. Au Canada, la majorité de l'énergie opérationnelle des bâtiments résidentiels est fournie par le gaz naturel, le mazout ou l'électricité, et est consommée pour le chauffage des locaux. Étant donné que les bâtiments sont une source importante de consommation d'énergie et d'émissions de gaz à effet de serre au Canada, l'efficacité énergétique dans le secteur des bâtiments est essentielle pour atteindre les objectifs d'atténuation du changement climatique.

Comme le souligne le Cadre pancanadien sur la croissance propre et le changement climatique, les gouvernements fédéral, provinciaux et territoriaux se sont engagés à investir dans des initiatives visant à favoriser l'efficacité énergétique des maisons et des bâtiments, ainsi que dans des programmes d'étalonnage et d'étiquetage énergétique.

Malgré le nombre croissant de choix offerts aux consommateurs, la manière la plus rentable d'améliorer la performance énergétique des bâtiments est restée inchangée au fil des décennies :

- maximiser la performance thermique de l'enveloppe du bâtiment en ajoutant plus d'isolation et en réduisant les ponts thermiques ; et

- augmenter l'étanchéité à l'air de l'enveloppe du bâtiment.

L'enveloppe du bâtiment est généralement définie comme l'ensemble des composants qui séparent l'espace conditionné de l'espace non conditionné (air extérieur ou sol). La performance thermique et l'étanchéité à l'air de l'enveloppe du bâtiment (également connue sous le nom d'enceinte du bâtiment) influencent l'efficacité énergétique de l'ensemble du bâtiment et influencent de manière significative la quantité de pertes et de gains de chaleur. Les codes et normes du bâtiment et de l'énergie au Canada ont fait ou font actuellement l'objet de révisions, et les exigences minimales en matière de performance thermique pour les enveloppes de bâtiments à ossature en bois sont désormais plus strictes. Les bâtiments les plus efficaces sur le plan énergétique sont construits avec des matériaux qui résistent au flux de chaleur et sont construits avec précision pour tirer le meilleur parti de l'isolation et des barrières d'air.

Pour maximiser l'efficacité énergétique, les murs extérieurs et les toits doivent être conçus avec des matériaux d'ossature qui résistent au flux de chaleur, et doivent inclure des barrières d'air continues, des matériaux d'isolation et des barrières météorologiques pour empêcher les fuites d'air à travers l'enveloppe du bâtiment.

La résistance au flux de chaleur des assemblages de l'enveloppe du bâtiment dépend des caractéristiques des matériaux utilisés. Les assemblages isolés ne sont généralement pas homogènes dans l'ensemble de l'enveloppe du bâtiment. Dans les murs ou les toits à ossature légère, les éléments d'ossature se trouvent à intervalles réguliers et, à ces endroits, le taux de transfert de chaleur est différent de celui des espaces entre les éléments d'ossature. Les éléments d'ossature réduisent la résistance thermique de l'ensemble du mur ou du plafond. Le taux de transfert de chaleur à l'emplacement des éléments d'ossature dépend des propriétés thermiques ou isolantes du matériau d'ossature. Le taux élevé de transfert de chaleur à l'emplacement des éléments d'ossature est appelé pont thermique. Les éléments d'ossature d'un mur ou d'un toit peuvent représenter 20 % ou plus de la surface d'un mur extérieur ou d'un toit, et comme la performance thermique de l'ensemble dépend de l'effet combiné de l'ossature et de l'isolation, les propriétés thermiques des matériaux d'ossature peuvent avoir un effet significatif sur la résistance thermique globale (effective) de l'ensemble.

Le bois est un isolant thermique naturel grâce aux millions de minuscules poches d'air présentes dans sa structure cellulaire. La conductivité thermique augmentant avec la densité relative, le bois est un meilleur isolant que les matériaux de construction denses. En ce qui concerne les performances thermiques, les bâtiments à ossature bois sont intrinsèquement plus efficaces que les autres matériaux de construction courants, principalement en raison de la réduction des ponts thermiques à travers les éléments structurels en bois, y compris les montants, les colonnes, les poutres et les planchers en bois. Le bois perd moins de chaleur par conduction que les autres matériaux de construction et les techniques de construction à ossature bois permettent une large gamme d'options d'isolation, y compris l'isolation des cavités des montants et l'isolation rigide extérieure.

La recherche et le suivi des bâtiments démontrent de plus en plus l'importance de la réduction des ponts thermiques dans les nouvelles constructions et dans les bâtiments existants. L'impact des ponts thermiques peut contribuer de manière significative à la consommation d'énergie de l'ensemble du bâtiment, au risque de condensation sur les surfaces froides et au confort des occupants.

Il est logique de se concentrer sur l'enveloppe du bâtiment et la ventilation au moment de la construction, car il est difficile d'apporter des modifications à ces systèmes à l'avenir. Les bâtiments à haute performance coûtent généralement plus cher à construire qu'une construction conventionnelle, mais le prix d'achat plus élevé est compensé, du moins en partie, par des coûts de consommation d'énergie plus faibles tout au long du cycle de vie. De plus, les bâtiments à haute performance sont souvent de meilleure qualité et plus confortables à vivre et à travailler. L'amélioration de l'efficacité énergétique des bâtiments s'est également avérée être l'une des possibilités les moins coûteuses de contribuer aux objectifs de réduction de la consommation d'énergie et d'atténuation du changement climatique.

Plusieurs programmes de certification et d'étiquetage sont proposés aux constructeurs et aux consommateurs pour réduire la consommation d'énergie dans les bâtiments.

Ressources naturelles Canada (RNCan) administre le programme R-2000, qui vise à réduire les besoins énergétiques des maisons de 50 % par rapport à une maison construite selon le code. Un autre programme administré par RNCan, ENERGY STAR®, vise à obtenir une efficacité énergétique de 20 à 25 % supérieure à celle prévue par le code. Le système de cotation ÉnerGuide évalue les performances énergétiques d'une maison et peut être utilisé à la fois pour les maisons existantes et dans la phase de planification d'une nouvelle construction.

D'autres programmes de certification et systèmes d'étiquetage ont des objectifs de performance fixes. La maison passive est une norme rigoureuse pour l'efficacité énergétique des bâtiments, qui vise à réduire la consommation d'énergie et à améliorer les performances globales. La charge de chauffage des locaux doit être inférieure à 15 kWh/m2 et l'étanchéité à l'air doit être inférieure à 0,6 changement d'air par heure à 50 Pa, ce qui permet de créer des bâtiments à très faible consommation d'énergie qui nécessitent jusqu'à 90 % d'énergie de chauffage et de refroidissement en moins que les bâtiments conventionnels.

Le NetZero Energy Building Certification, un programme géré par l'International Living Future Institute, est un programme basé sur la performance et exige que le bâtiment ait une consommation énergétique nette nulle pendant douze mois consécutifs.

Green Globes et Leadership in Energy and Environmental Design (LEED) sont d'autres systèmes d'évaluation des bâtiments qui prévalent sur le marché de la conception et de la construction.

 

Pour plus d'informations, consultez les ressources suivantes :

Performance thermique des assemblages à ossature légère - IBS No.5 (Conseil canadien du bois)

Code national de l'énergie pour les bâtiments

Ressources naturelles Canada

Logement en C.-B.

Maison passive Canada

Globes verts

Conseil du bâtiment durable du Canada

Association nord-américaine des fabricants d'isolants (NAIMA)

Institut international du futur vivant

1 2 3 4 5 6 7 8 9

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône Persona
Persona
Tags Icône
Tags
Rapports annuels Icône Plus
Livre des prix Icône Plus
Études de cas Icône Plus
Publications gratuites Icône Plus
Revue Icône Plus
Systèmes de construction Icône Plus
Codes et normes Icône Plus
Nouvelles de l'industrie Icône Plus
Pourquoi le bois (FAQ) Icône Plus
Produits du bois Icône Plus
Acoustique Icône Plus
Exemples de conception Icône Plus
Ingénierie Icône Plus
Résistance au feu Icône Plus
Assurance Icône Plus
Bois massif Icône Plus
Icône de date
Date
Séparateur de ligne