Bienvenue sur le nouveau Hub de Ressources Numériques du CCB (BETA)

en-ca

Articles

Restez informé de nos dernières idées et tendances. Découvrez des articles qui vous inspirent et vous informent.

98 résultats trouvés...
Trier par Icône de la liste déroulante

En utilisant du bois rond qui n'est souvent pas adapté à la production de bois d'œuvre, les panneaux à base de bois permettent d'utiliser efficacement les ressources forestières en fournissant des produits en bois d'ingénierie avec des propriétés de résistance et de rigidité définies.

Les panneaux structuraux à base de bois, tels que le contreplaqué et les panneaux à copeaux orientés (OSB), sont largement utilisés dans la construction résidentielle et commerciale. Les panneaux à base de bois sont souvent superposés sur des solives ou des fermes légères et utilisés comme revêtement structurel pour les planchers, les toits et les murs. Ces produits assurent la rigidité des principaux éléments structurels qui les soutiennent, en plus de leur fonction d'élément de l'enveloppe du bâtiment. En outre, ils font souvent partie intégrante du système de résistance aux forces latérales d'un bâtiment en bois.

Afin de pouvoir être utilisés pour un usage final particulier, tel qu'un revêtement structurel, un plancher ou un bardage extérieur, les panneaux à base de bois doivent répondre à des critères de performance portant sur trois aspects : la performance structurelle, les propriétés physiques et la performance d'adhérence. Pour plus d'informations sur le classement des performances et les utilisations finales potentielles des panneaux à base de bois, consultez le site de l'APA - The Engineered Wood Association.

Bois de sciage à fils parallèles (PSL)

Le bois de sciage à fils parallèles (PSL) présente des caractéristiques telles qu'une grande résistance, une grande rigidité et une grande stabilité dimensionnelle. Le processus de fabrication de l'OSL permet de fabriquer de grandes pièces à partir d'arbres relativement petits, ce qui permet une utilisation efficace des ressources forestières. Au Canada, le PSL est fabriqué à partir de sapin de Douglas.

Le PSL est principalement utilisé comme ossature structurelle dans la construction résidentielle, commerciale et industrielle. Les applications courantes du PSL dans la construction comprennent les chevêtres, les poutres et les linteaux dans les constructions à ossature légère, ainsi que les poutres et les colonnes dans les constructions à poteaux et à poutres. Le PSL est un matériau structurel attrayant qui convient aux applications où l'aspect fini est important.

Similaire à bois d'œuvre stratifié (LSL) et Bois de construction orienté (OSL)Le PSL est fabriqué à partir de lamelles de bois disposées parallèlement à l'axe longitudinal de l'élément et dont le rapport longueur/épaisseur est d'environ 300. Les lamelles de bois utilisées dans le PSL sont plus longues que celles utilisées pour fabriquer le LSL et l'OSL. Combinées à un adhésif phénol-formaldéhyde imperméable à l'extérieur, les lamelles sont orientées et formées en une grande billette, puis pressées ensemble et durcies à l'aide d'un rayonnement micro-ondes.

Les poutres PSL sont disponibles en épaisseurs de 68 mm (2-11/16 in), 89 mm (3-1/2 in), 133 mm (5-1/4 in), et 178 mm (7 in) et une profondeur maximale de 457 mm (18 in). Les colonnes PSL sont disponibles en dimensions carrées ou rectangulaires de 89 mm (3-1/2 po), 133 mm (5-1/4 po) et 178 mm (7 po). Les épaisseurs les plus faibles peuvent être utilisées individuellement en tant que couches simples ou être combinées pour des applications multicouches. Le PSL peut être fabriqué en grandes longueurs, mais il est généralement limité à 20 m par les contraintes de transport.

Le PSL est un produit de bois d'ingénierie solide, hautement prévisible et uniforme, car les défauts naturels tels que les nœuds, l'inclinaison du grain et les fentes ont été dispersés dans tout le matériau ou ont été complètement éliminés au cours du processus de fabrication. Comme les autres produits SCL (LVL, LSL et OSL), le PSL offre des propriétés de résistance et de rigidité prévisibles ainsi qu'une stabilité dimensionnelle. Fabriqué à un taux d'humidité de 11 %, le PSL est moins sujet au rétrécissement, au gauchissement, à la déformation, à la courbure et au fendillement.

Toutes les coupes, entailles ou perçages spéciaux doivent être effectués conformément aux recommandations du fabricant. Les catalogues et les rapports d'évaluation des fabricants sont les principales sources d'information pour la conception, les détails d'installation typiques et les caractéristiques de performance.

Le PSL présente une texture riche et conserve de nombreuses lignes de colle foncées. Le PSL peut être usiné, teinté et fini en utilisant les techniques applicables au bois de sciage. Les membres du PSL acceptent facilement la teinture pour rehausser la chaleur et la texture du bois. Tous les PSL sont poncés à la fin du processus de production afin de garantir des dimensions précises et de fournir une surface de haute qualité pour l'apparence.

Comme tout autre produit en bois, le PSL doit être protégé des intempéries pendant le stockage sur le chantier et après l'installation. L'emballage du produit avant son expédition sur le chantier est important pour assurer la protection contre l'humidité. Le scellement des extrémités et des bords du produit renforce sa résistance à la pénétration de l'humidité. Le PSL accepte facilement un traitement de préservation et il est possible d'obtenir un degré élevé de pénétration du produit. Le PSL traité peut être spécifié pour les expositions à une humidité élevée.

Le PSL est un produit breveté et, par conséquent, les propriétés techniques et les dimensions spécifiques sont propres à chaque fabricant. Il n'existe donc pas de norme commune de production ni de valeurs de conception communes pour les PSL. Les valeurs de conception sont dérivées des résultats d'essais analysés conformément à la norme CSA O86 et à la norme ASTM D5456 et les valeurs de conception sont examinées et approuvées par le Centre canadien des matériaux de construction (CCMC). Les produits conformes aux directives du CCMC reçoivent un numéro d'évaluation et un rapport d'évaluation comprenant les résistances nominales spécifiées, qui sont ensuite répertoriées dans le registre des évaluations de produits du CCMC. Le nom du fabricant ou l'identification du produit et la classe de résistance sont marqués sur le matériau à différents intervalles, mais en raison de la coupe en bout, ils peuvent ne pas être présents sur chaque pièce.

Le Centre canadien des matériaux de construction (CCMC) a accepté que le PSL soit utilisé comme construction en bois lourd, conformément aux dispositions de la partie 3 du Code national du bâtiment du Canada.

 

Bloc de bois de sciage à fils parallèles

 

Pour plus d'informations, consultez les ressources suivantes :

APA - The Engineered Wood Association (Association du bois d'ingénierie)

Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction

CSA O86 Conception technique en bois

ASTM D5456 Spécification standard pour l'évaluation des produits de bois de charpente composite

Quelle est la durée de vie d'un revêtement extérieur pour le bois ? De quelques mois à 20 ans ou plus, en fonction du choix du produit, de la façon dont il a été appliqué et de la sévérité de l'environnement.

Les peintures ont tendance à durer le plus longtemps, à condition d'être appliquées correctement (voir Choix et application des revêtements extérieurs pour le bois page). Mais la durée de vie d'un revêtement de peinture est très variable. Un produit de qualité médiocre mal appliqué sur une surface en bois usée par les intempéries peut à peine durer deux ans. Si tout est bien fait, le revêtement peut durer 20 ans. Les peintures et les teintures de haute qualité ont généralement une durée de vie plus longue, et les revêtements qui se trouvent dans des endroits protégés de la lumière du soleil et de l'eau ont tendance à durer plus longtemps.

Les teintures et les hydrofuges ont une durée de vie beaucoup plus courte que les peintures, mais sont plus faciles à entretenir. C'est l'une des raisons pour lesquelles ils constituent un choix populaire pour les escaliers et les terrasses. En fonction du degré d'exposition au soleil, à l'eau, au piétinement et de la quantité de pigments dans la teinture, la durée de vie d'une teinture appliquée sur des planches de terrasse est de 1 à 2 ans et de 2 à 5 ans pour une teinture appliquée sur des produits qui ne sont pas soumis à l'usure. Les hydrofuges ont généralement une durée de vie de 6 à 12 mois.

Les résultats des nombreux tests effectués sur les finitions extérieures en bois par de nombreux experts dans ce domaine, en particulier par le laboratoire américain des produits forestiers (USFPL), sont résumés ci-dessous. Voir le site web de l'USFPL Lien USFPL pour plus d'informations.

Effet de l'anatomie du bois

  • Les revêtements, en particulier les teintures et les peintures de couleur unie, ont tendance à durer plus longtemps sur les essences dimensionnellement stables telles que le Western Red Cedar, l'Eastern White Cedar et l'Alaska Yellow Cedar, car elles se rétractent et gonflent moins que les autres essences et exercent donc moins de pression sur l'adhérence du revêtement. En revanche, les teintures pour terrasses ne durent pas aussi longtemps sur les essences de faible densité telles que le Western Red Cedar, en raison de l'usure.
  • Les revêtements durent plus longtemps sur le bois présentant des bandes étroites de bois tardif (la partie sombre du cerne annuel) en raison des différences de densité entre le bois initial (la partie claire du cerne) et le bois tardif plus dense. Les pins méridionaux se caractérisent par leurs larges bandes de bois tardif, et ces essences sont donc considérées comme peu propices à la peinture.
  • La quantité d'extractibles ou de résine dans le bois affecte également les performances du revêtement. Des apprêts spéciaux peuvent être utilisés pour bloquer les extractibles solubles dans l'eau, et le séchage au four est le plus efficace pour fixer la résine dans le bois. Les nutriments présents dans le bois peuvent migrer à travers le revêtement pour favoriser la croissance fongique à la surface, et le bois de cœur peut être choisi pour minimiser la teneur en nutriments du bois.

Effet des céréales

  • Les finitions durent plus longtemps sur les grains verticaux (également appelés grains de bordure) que sur les grains plats, car ces surfaces se rétractent et gonflent moins et exercent donc moins de pression sur l'adhérence du revêtement. Cependant, il peut être difficile de spécifier le type de grain lors de la commande d'un produit. Le cèdre rouge occidental et le séquoia peuvent être disponibles dans une qualité supérieure, qui sera probablement composée uniquement de bois de cœur, avec des veines verticales.
  • Si vous utilisez des produits à grain plat, placez-les si possible côté écorce vers l'extérieur ou vers le haut, car le grain est moins susceptible de se soulever de ce côté, en particulier pour les essences dont les bandes de bois final sont denses, comme les pins du sud, et le grain soulevé est un problème pour l'adhérence du revêtement. Ce problème ne se pose pas lorsque l'on utilise des produits à grain vertical. Le fait de placer l'écorce vers l'extérieur permet également de minimiser les fissures.

Effet de la rugosité de la surface

  • Le bois brut de sciage ou rugueux permet une meilleure adhérence du revêtement et une accumulation plus importante que le bois lisse. La durée de vie d'un revêtement peut être considérablement prolongée si le bois est rendu rugueux.

Effet du ponçage

  • Le ponçage (grain 100) peut doubler la durée de vie d'un revêtement, tant pour le bois altéré que pour le bois fraîchement raboté. En effet, le ponçage élimine les fibres de surface endommagées et modifie également la composition chimique de la surface afin d'améliorer l'adhérence du revêtement.

Effet des produits de préservation du bois

  • Les teintures semi-transparentes durent plus longtemps lorsqu'elles sont appliquées sur du bois traité à l'ACC - le bois traité acheté avant 2004 a probablement été traité à l'ACC. Des recherches sont en cours sur la finition du bois traité avec de nouveaux produits de conservation. Les mesures de protection concernant l'utilisation du bois traité s'appliquent lors de l'application d'un revêtement sur du bois traité avec des produits de conservation.

Effet de la bleusaille

  • La bleuissement est causé par des champignons, et le bois bleui est plus perméable que le bois non teinté, il peut donc absorber plus de vernis. Veillez à appliquer une quantité suffisante de vernis.

Effet de l'altération

  • La lumière du soleil dégrade rapidement la capacité d'une surface en bois à adhérer à un revêtement. Des recherches ont montré une énorme différence dans la performance de la peinture sur du bois exposé aux intempéries par rapport à du bois non exposé aux intempéries. La peinture sur des planches qui n'avaient pas été exposées aux intempéries avant d'être peintes a duré au moins 20 ans. Les planches qui avaient été exposées aux intempéries pendant 16 semaines avant d'être peintes ont commencé à présenter des fissures au bout de 3 ans seulement. Pour une durée de vie maximale du revêtement, poncez la surface si le bois a été exposé à la lumière du soleil, en particulier pendant plus de deux semaines.

Effet de la fabrication du produit

  • Contreplaqué : Les revêtements sur le contreplaqué sont mis à mal par les petites fissures (face checks) sur la surface qui sont causées par le tour lorsque le placage est découpé dans la grume au cours de la fabrication. Lorsque le contreplaqué subit des cycles d'humidité à l'extérieur, ces fissures ont tendance à s'agrandir et à compromettre l'adhérence du revêtement. La surface, les bords et les joints du contreplaqué dans les applications extérieures doivent être protégés, et des revêtements et autres produits destinés à aider le contreplaqué à résister aux fissures peuvent être appliqués pour empêcher la pénétration de l'humidité. En général, une bonne teinture protège efficacement le contreplaqué. Étant donné que les fissures dans le contreplaqué teinté se produisent généralement au cours des six premiers mois d'exposition à l'extérieur, les meilleurs résultats de revêtement peuvent être obtenus en appliquant une première couche et en laissant les fissures se produire, puis en appliquant une deuxième couche environ six mois plus tard. Les peintures peuvent s'abîmer rapidement sur le contreplaqué, sauf si l'on s'efforce de réduire l'absorption d'humidité et d'utiliser des produits flexibles pour s'adapter aux changements dimensionnels du bois. Il est également important de rendre la surface rugueuse. Pour la protection du contreplaqué et d'autres questions relatives au contreplaqué, voir les recommandations de l'Association canadienne du contreplaqué (http://www.canply.org/pdf/main/plywood_handbookcanada.pdf).
  • Produits assemblés par entures multiples : Les revêtements peuvent avoir des performances différentes sur les différentes parties de ces produits, étant donné qu'ils ne sont probablement pas uniformes en termes d'orientation du grain, de teneur en bois de cœur par rapport à l'aubier, ou même en termes d'espèces. Rendre la surface rugueuse permet de prolonger la durée de vie du revêtement et de minimiser ces différences. Appliquez un apprêt et peignez toutes les faces si possible afin de minimiser l'absorption d'humidité.

Effet de l'amorçage

  • Des essais sur le terrain ont montré que les revêtements durent beaucoup plus longtemps lorsqu'une couche d'apprêt est utilisée.
  • Des essais sur le terrain ont montré que les bardages et les bardeaux durent beaucoup plus longtemps s'ils sont recouverts d'une couche d'apprêt.

Effet de la conception et de l'installation

  • Utiliser de bonnes pratiques de conception et d'installation pour protéger le bois du soleil et de l'eau, et empêcher l'accumulation d'humidité dans les structures en bois.
  • En prévoyant un dégagement suffisant par rapport au sol, un débord de toit adéquat, un mur pare-pluie et une couche d'apprêt, la durée de vie du revêtement du bardage peut être prolongée de manière efficace.
  • Si vous utilisez des grains plats, placez si possible l'écorce vers l'extérieur afin d'éviter que les grains ne soient surélevés.
  • Utiliser des fixations résistantes à la corrosion.

Une fondation permanente en bois (CPB) est un système de construction technique qui utilise des murs porteurs extérieurs en bois à ossature légère dans une application sous le niveau du sol. Une fondation permanente en bois se compose d'un mur à colombages et d'une sous-structure de semelle, construits en contreplaqué et en bois d'œuvre traités avec des produits de préservation approuvés, qui soutiennent une superstructure située au-dessus du niveau du sol. En plus de fournir un support structurel vertical et latéral, le système PWF offre une résistance aux flux de chaleur et d'humidité. Les premiers exemples de PWF ont été construits dès 1950 et nombre d'entre eux sont encore utilisés aujourd'hui.

Le PWF est un système technique solide, durable et éprouvé qui présente un certain nombre d'avantages uniques :

  • les économies d'énergie résultant de niveaux d'isolation élevés, réalisables grâce à l'application d'une isolation des cavités des montants et d'une isolation extérieure rigide (jusqu'à 20% de transfert de chaleur peuvent se produire à travers les fondations) ;
  • un espace de vie sec et confortable grâce à un système de drainage supérieur (qui ne nécessite pas de tuiles pleureuses) ;
  • une augmentation de l'espace habitable puisque les cloisons sèches peuvent être fixées directement sur les montants des murs de fondation ;
  • résistance à la fissuration due aux cycles de gel/dégel ;
  • s'adapte à la plupart des constructions, y compris les vides sanitaires, les annexes et les sous-sols aménagés ;
  • un seul corps de métier pour une planification plus efficace de la construction ;
  • constructible en hiver avec une protection minimale autour des semelles pour les protéger du gel ;
  • une construction rapide, qu'il s'agisse d'une ossature sur place ou d'une préfabrication hors site ;
  • les matériaux sont facilement disponibles et peuvent être expédiés efficacement vers les sites de construction ruraux ou éloignés ; et
  • une longue durée de vie, sur la base de l'expérience acquise sur le terrain et en ingénierie.

Les MPO conviennent à tous les types de construction à ossature légère couverts par la partie 9 "Logements et petits bâtiments" du Code national du bâtiment du Canada (CNB), c'est-à-dire que les MPO peuvent être utilisés pour des bâtiments d'une hauteur maximale de trois étages au-dessus des fondations et dont la surface de construction ne dépasse pas 600 mètres.2. Les MPO peuvent être utilisés comme systèmes de fondation pour les maisons individuelles, les maisons en rangée, les appartements de faible hauteur et les bâtiments institutionnels et commerciaux. Ils peuvent également être conçus pour des projets tels que les vides sanitaires, les ajouts de pièces et les fondations de murs de genoux pour les garages et les maisons préfabriquées.

Il existe trois types différents de PWF : le sous-sol à dalle de béton ou à plancher de bois, le sous-sol à plancher de bois suspendu et le vide sanitaire non excavé ou partiellement excavé. Les montants de bois utilisés dans les CPE sont généralement de 38 x 140 mm (2 x 6 pouces) ou de 38 x 184 mm (2 x 8 pouces), de qualité n° 2 ou supérieure.

Des méthodes améliorées de contrôle de l'humidité autour et sous le PWF permettent d'obtenir un espace de vie confortable et sec sous le niveau du sol. Le PWF est placé sur une couche de drainage granulaire qui s'étend sur 300 mm au-delà des semelles. Un pare-vapeur extérieur, appliqué à l'extérieur des murs, assure la protection contre les infiltrations d'humidité. Les joints calfeutrés entre tous les panneaux muraux extérieurs en contreplaqué et au bas des murs extérieurs ont pour but de contrôler les fuites d'air à travers le PWF, mais aussi d'éliminer les voies de pénétration de l'eau. Le résultat est un sous-sol sec qui peut être facilement isolé et aménagé pour un maximum de confort et d'économies d'énergie.

Tout le bois d'œuvre et le contreplaqué utilisés dans un PWF, à l'exception d'éléments ou de conditions spécifiques, doivent être traités à l'aide d'un produit de préservation du bois à base d'eau et identifiés comme tels par une marque de certification attestant de leur conformité à la norme CSA O322. Les clous résistants à la corrosion, les ancrages d'ossature et les sangles utilisés pour fixer les matériaux traités à l'aide d'un produit de préservation du bois doivent être galvanisés par immersion à chaud ou en acier inoxydable. Les pare-vapeur et les pare-humidité extérieurs doivent avoir une épaisseur d'au moins 0,15 mm (6 mil). Les panneaux de drainage à excroissances sont souvent utilisés comme pare-vapeur extérieur.

 

Pour plus d'informations, voir les références suivantes :

Fondations permanentes en bois (Conseil canadien du bois)

Fondations permanentes en bois 2023 - Durable, confortable, adaptable, économe en énergie, économique (Préservation du bois Canada et Conseil canadien du bois)

Manuel de conception en bois (Conseil canadien du bois)

Préservation du bois Canada

CSA S406 Spécification des fondations permanentes en bois pour les habitations et les petits bâtiments

CSA O322 Procédure de certification des matériaux en bois traité sous pression destinés à être utilisés dans des fondations permanentes en bois

CSA O86 Conception technique en bois

Code national du bâtiment du Canada

Les lames de terrasse peuvent être utilisées pour porter plus loin et supporter des charges plus importantes que les panneaux tels que le contreplaqué et les panneaux à copeaux orientés (OSB). Le platelage en planches est souvent utilisé lorsque l'apparence du platelage est souhaitée en tant qu'élément architectural ou lorsque la performance au feu doit répondre aux exigences de construction en bois lourd décrites dans la partie 3 du Code national du bâtiment du Canada. Le platelage est généralement utilisé dans les structures en bois massif ou en poteaux et poutres et est posé avec la face plate ou large sur les supports afin de fournir un platelage structurel pour les planchers et les toits.

Les lames de terrasse peuvent être utilisées dans des conditions humides ou sèches et peuvent être traitées avec des produits de préservation, en fonction de l'essence de bois. Les clous et les pointes de terrasse sont utilisés pour fixer les pièces adjacentes d'une terrasse en planches les unes aux autres et pour fixer la terrasse à ses supports.

Les lames de terrasse sont généralement disponibles dans les essences suivantes :

  • Sapin de Douglas (combinaison d'espèces D.Fir-L)
  • Ciguë de la côte pacifique (combinaison d'espèces Hem-Fir)
  • Diverses espèces d'épicéas, de pins et de sapins (combinaison d'espèces S-P-F)
  • Western red cedar (combinaison d'espèces nordiques)

Pour produire des lames de terrasse, le bois scié est fraisé en un profil à rainure et languette avec un usinage spécial de la surface, tel qu'un joint en V. Les lames de terrasse sont généralement produites en trois épaisseurs. Les lames de terrasse sont normalement produites en trois épaisseurs : 38 mm, 64 mm et 89 mm. Les planches de 38 mm ont une languette et une rainure simples, tandis que les planches plus épaisses ont une double languette et une rainure. Les épaisseurs supérieures à 38 mm comportent également des trous de 6 mm de diamètre, espacés de 760 mm, afin que chaque pièce puisse être clouée à la pièce adjacente à l'aide de pointes de terrasse. Les dimensions et profils standard sont indiqués ci-dessous.

Les lames de terrasse sont le plus souvent disponibles en longueurs aléatoires de 1,8 à 6,1 m (6 à 20 pieds). Il est possible de commander des planches dans des longueurs spécifiques, mais il faut s'attendre à une disponibilité limitée et à des coûts supplémentaires. Une spécification typique pour les longueurs aléatoires pourrait exiger qu'au moins 90 % des lames de terrasse soient de 3,0 m (10 pieds) et plus, et qu'au moins 40 % soient de 4,9 m (16 pieds) et plus.

Les lames de terrasse sont disponibles en deux qualités :

  • Sélection du grade (Sel)
  • Qualité commerciale (Com)

Les produits de qualité supérieure ont un aspect plus noble et sont également plus solides et plus rigides que les produits de qualité commerciale.

Les planches de terrasse doivent être fabriquées conformément à la norme CSA O141 et classées selon les règles de classement standard de la NLGA pour le bois d'œuvre canadien. Étant donné que les planches de terrasse ne sont pas estampillées comme le bois de construction, la vérification de la qualité doit être obtenue par écrit auprès du fournisseur ou une agence de classement qualifiée doit être retenue pour vérifier le matériau fourni.

Pour minimiser le retrait et le gauchissement, les lames de terrasse sont constituées d'éléments de bois sciés qui sont séchés à un taux d'humidité de 19 % ou moins au moment du surfaçage (S-Dry). L'utilisation de platelages verts peut entraîner un relâchement de l'assemblage à rainure et languette au fil du temps et une réduction de la performance structurelle et de la facilité d'utilisation.

Les planches individuelles peuvent s'étendre simplement entre les supports, mais elles sont généralement de longueur aléatoire et s'étendent sur plusieurs supports par souci d'économie et pour profiter d'une plus grande rigidité. Il existe trois méthodes d'installation des lames de terrasse : la méthode aléatoire contrôlée, la méthode de la travée simple et la méthode de la travée continue à deux travées. Une règle générale de conception pour le platelage aléatoire contrôlé est que les travées ne doivent pas dépasser de plus de 600 mm (2 pieds) la longueur que 40 % de l'expédition du platelage dépasse. Ces deux dernières méthodes d'installation nécessitent des planches de longueur prédéterminée et, par conséquent, peuvent entraîner un surcoût.

 

Articles

 

Profils et dimensions des planches de terrasse

Articles

Le contreplaqué est un panneau à base de bois d'ingénierie largement reconnu et utilisé dans les projets de construction canadiens depuis des décennies. Les panneaux de contreplaqué fabriqués pour des applications structurelles sont constitués de plusieurs couches ou plis de placage de bois résineux qui sont collés ensemble de manière à ce que le sens du grain de chaque couche de placage soit perpendiculaire à celui des couches adjacentes. Ces feuilles de placage croisées sont collées à l'aide d'un adhésif imperméable à base de résine phénol-formaldéhyde et durcies sous l'effet de la chaleur et de la pression.

Les panneaux de contreplaqué présentent une stabilité dimensionnelle supérieure, des propriétés de résistance et de rigidité dans les deux sens et un excellent rapport résistance/poids. Ils sont également très résistants aux chocs, aux produits chimiques et aux variations de température et d'humidité relative. Le contreplaqué reste plat pour donner une surface lisse et uniforme qui ne se fissure pas, ne se tasse pas et ne se tord pas. Le contreplaqué peut être peint, teinté ou commandé avec des teintures ou des finitions appliquées en usine. Le contreplaqué est disponible avec des bords équarris ou avec des rainures et languettes, ces dernières permettant de réduire les coûts de main-d'œuvre et de matériaux en éliminant la nécessité de bloquer les bords des panneaux dans certains scénarios de conception.

Le contreplaqué convient à une variété d'utilisations finales dans des conditions de service humides et sèches, notamment : sous-plancher, plancher à couche unique, revêtement de mur, de toit et de plancher, panneaux isolés structurels, applications marines, âmes de poutrelles en I en bois, coffrage en béton, palettes, conteneurs industriels et meubles.

Les panneaux de contreplaqué utilisés comme revêtement extérieur des murs et des toits remplissent de multiples fonctions : ils peuvent offrir une résistance aux forces latérales telles que les charges dues au vent et aux tremblements de terre et font également partie intégrante de l'enveloppe du bâtiment. Le contreplaqué peut être utilisé à la fois comme revêtement structurel et comme revêtement de finition. Pour les applications de revêtement extérieur, les contreplaqués spécialisés sont disponibles dans une large gamme de motifs et de textures, combinant les caractéristiques naturelles du bois avec des propriétés de résistance et de rigidité supérieures. Lorsqu'il est traité avec des produits de préservation du bois, le contreplaqué convient également à une utilisation dans des conditions d'exposition extrême et prolongée à l'humidité, comme les fondations permanentes en bois.

Le contreplaqué est disponible dans une grande variété de qualités d'aspect, allant de surfaces lisses et naturelles adaptées aux travaux de finition à des qualités non poncées plus économiques utilisées pour les revêtements. Le contreplaqué est disponible dans plus d'une douzaine d'essences courantes. épaisseurs et plus de vingt grades.

Le contreplaqué de sapin de Douglas non poncé, conforme à la norme CSA O121, et le contreplaqué de résineux canadien, conforme à la norme CSA O151, sont les deux types de contreplaqués de résineux les plus couramment produits au Canada. Tous les contreplaqués structuraux sont marqués d'une estampille lisible et durable indiquant : la conformité aux normes CSA O121, CSA O151 ou CSA O153, le fabricant, le type de liant (EXTERIOR), l'essence (DFP) ou (CSP), et la qualité.

Le contreplaqué peut être traité chimiquement pour améliorer sa résistance à la pourriture ou au feu. Le traitement de préservation doit être effectué par un procédé sous pression, conformément à la norme CSA O80. Les fabricants de contreplaqué doivent effectuer des tests conformément aux normes ASTM D5516 et ASTM D6305 pour déterminer les effets des produits ignifuges ou de tout autre produit chimique susceptible de réduire la résistance.

 

Pour plus d'informations, consultez les ressources suivantes :

APA - The Engineered Wood Association (Association du bois d'ingénierie)

CSA O121 Douglas contreplaqué de sapin,

CSA O151 Contreplaqué de résineux canadien

CSA O153 Contreplaqué de peuplier

CSA O86 Conception technique en bois

CSA O80 Préservation du bois

ASTM D5516 Méthode d'essai normalisée pour l'évaluation des propriétés de flexion du contreplaqué de résineux traité ignifuge exposé à des températures élevées

ASTM D6305 Méthode normalisée de calcul des facteurs d'ajustement de la résistance à la flexion pour les revêtements de toiture en contreplaqué ignifugé

Code national du bâtiment du Canada

coin d'une feuille de contreplaqué montrant l'épaisseur

Exemple de spécifications pour le contreplaqué
Grades de contreplaqué
Manutention et stockage du contreplaqué
Fabrication de contreplaqué
Dimensions du contreplaqué
Contrôle de la qualité du contreplaqué

Le bois traité avec des produits de préservation est recouvert en surface ou imprégné sous pression de produits chimiques qui améliorent la résistance aux dommages pouvant résulter de la détérioration biologique (pourriture) due à l'action des champignons, des insectes et des micro-organismes. Le traitement de préservation offre un moyen d'améliorer la résistance et de prolonger la durée de vie des essences de bois qui n'ont pas une résistance naturelle suffisante dans certaines conditions d'utilisation. Il est possible de multiplier par dix la durée de vie des produits en bois non traités grâce à un traitement de préservation.

Le bois traité avec un agent de conservation peut être utilisé pour les structures extérieures qui nécessitent une résistance à la pourriture fongique et aux termites, telles que les ponts, les poteaux électriques, les traverses de chemin de fer, les quais, les marinas, les clôtures, les gazebos, les pergolas, les équipements de terrain de jeu et les aménagements paysagers.

Quatre facteurs sont nécessaires au maintien de la vie des champignons destructeurs du bois : une source de nourriture appropriée (fibre de bois), un taux d'humidité minimum d'environ 20 % (commun pour les conditions d'utilisation à l'extérieur), une exposition à l'air et une température favorable à la croissance (les températures froides inhibent, mais n'éliminent pas, la croissance des champignons). Le traitement de préservation est efficace parce qu'il supprime la source de nourriture en la rendant toxique pour les champignons et les insectes destructeurs du bois tels que les termites.

Un produit de protection du bois efficace doit avoir la capacité de pénétrer dans le bois, de neutraliser la nourriture des champignons et des insectes et d'être présent en quantités suffisantes sous une forme non lixiviable. Les produits de protection efficaces tuent également les champignons et les insectes déjà présents dans le bois.

Il existe deux méthodes de base pour traiter le bois : avec et sans pression. Les méthodes sans pression comprennent l'application du produit de préservation par brossage, pulvérisation ou trempage de la pièce de bois. Ces traitements superficiels n'entraînent pas une pénétration profonde ou une absorption importante du produit de préservation et sont généralement limités aux traitements sur le terrain pendant la construction. Une pénétration plus profonde et plus complète est obtenue en faisant pénétrer le produit de préservation dans les cellules du bois sous l'effet de la pression. Diverses combinaisons de pression et de vide sont utilisées pour faire pénétrer des niveaux adéquats de produit chimique dans le bois.

Pour qu'un produit de protection du bois soit efficace, il doit être appliqué dans des conditions contrôlées, selon des spécifications connues pour garantir que le bois traité avec un produit de protection se comportera dans des conditions d'utilisation spécifiques. La fabrication et l'application des produits de préservation du bois sont régies par la série de normes CSA O80. La norme CSA O80 fournit des informations sur les essences de bois qui peuvent être traitées, les types de produits de préservation et les niveaux de rétention et de pénétration du produit de préservation dans le bois qui doivent être atteints pour la catégorie d'utilisation ou l'application. Pour garantir que le degré de protection spécifié sera atteint, un produit en bois traité avec un produit de préservation peut porter une estampille indiquant qu'il convient à une catégorie d'utilisation spécifique.

Au Canada, les produits de préservation du bois sont régis par la Loi sur les produits antiparasitaires et doivent être enregistrés auprès de l'Agence de réglementation de la lutte antiparasitaire (ARLA) de Santé Canada. Les types courants de produits de préservation du bois utilisés au Canada comprennent l'arséniate de cuivre chromaté (ACC), le cuivre alcalin quaternaire (ACQ), l'azole de cuivre (CA), l'azole de cuivre micronisé (MCA), les borates, la créosote, le pentachlorophénol, le naphténate de cuivre et le naphténate de zinc.

 

Les sels acides peuvent diminuer la résistance du bois s'ils sont présents en grandes concentrations. Les concentrations utilisées dans le bois traité sont suffisamment faibles pour ne pas affecter les propriétés de résistance dans des conditions d'utilisation normales. Dans certains cas, la résistance et la rigidité spécifiées du bois sont réduites en raison de l'incision du bois pendant le processus d'imprégnation sous pression (voir la norme CSA O86 pour plus d'informations sur les facteurs de réduction de la conception structurelle).

Les fixations et le matériel d'assemblage en acier galvanisé à chaud ou en acier inoxydable doivent généralement être utilisés avec du bois traité avec un agent de conservation. Il peut exister d'autres matériaux, tels que des revêtements en polymère ou en céramique, ou des solins en vinyle ou en plastique, qui conviennent aux produits en bois traité avec un agent de conservation. Il convient de consulter le fabricant avant de spécifier les fixations et le matériel de raccordement.

 

Pour plus d'informations, consultez les ressources suivantes :

www.durable-wood.com

Préservation du bois Canada

Association canadienne pour la préservation du bois

Série CSA O80 Préservation du bois

CSA O86 Conception technique en bois

Agence de réglementation de la lutte antiparasitaire de Santé Canada

Association américaine pour la protection du bois

Le bois traité avec des produits de conservation est généralement traité sous pression, c'est-à-dire que les produits chimiques sont introduits sur une courte distance dans le bois à l'aide d'un récipient spécial qui combine la pression et le vide. Bien qu'une pénétration en profondeur soit hautement souhaitable, la nature imperméable des cellules de bois mort rend extrêmement difficile l'obtention de quelque chose de plus qu'une mince couche de bois traité. Les principaux résultats du processus de traitement sous pression sont la quantité de produit de conservation imprégnée dans le bois (appelée rétention) et la profondeur de pénétration. Ces caractéristiques du traitement sont spécifiées dans des normes axées sur les résultats. Une plus grande pénétration du produit de conservation peut être obtenue par incision - un procédé qui consiste à percer de petites fentes dans le bois. Ce procédé est souvent nécessaire pour les matériaux de grande taille ou difficiles à traiter afin de respecter les normes de pénétration basées sur les résultats.

Les procédés de traitement sous pression varient en fonction du type de bois traité et du produit de préservation utilisé. En général, le bois est d'abord conditionné pour éliminer l'excès d'eau qu'il contient. Il est ensuite placé dans un récipient sous pression et un vide est fait pour éliminer l'air des cellules du bois. Ensuite, le conservateur est ajouté et une pression est appliquée pour faire pénétrer le conservateur dans le bois. Enfin, la pression est relâchée et un dernier vide est appliqué pour éliminer et réutiliser l'excès de conservateur. Après le traitement, certains systèmes de conservation, tels que le CCA, nécessitent une étape de fixation supplémentaire pour s'assurer que le conservateur a complètement réagi avec le bois.

Des informations sur les différents types de conservateurs utilisés sont disponibles dans les rubriques suivantes Durabilité par traitement

Étant donné que le traitement correctif est destiné à résoudre un problème connu d'insectes ou de pourriture, la première chose à faire est d'étudier l'étendue du problème et, si nécessaire, de fournir un soutien structurel temporaire. La phase d'investigation doit également permettre d'identifier les facteurs de causalité afin de les éliminer, dans la mesure du possible. Au cours de l'enquête, les parties du bois qui ont perdu de leur résistance peuvent également être enlevées. Il faut savoir qu'un champignon de pourriture du bois peut avoir pénétré bien au-delà des limites du bois visiblement pourri. Étant donné que la détérioration est en cours, une réponse rapide est normalement requise. Cela signifie que lorsque le bois détérioré et infecté ne peut pas être enlevé et remplacé par du bois sain, le traitement correctif doit être capable de pénétrer rapidement dans le bois et de tuer les champignons ou les insectes.

Solides

Comme les solides mettent du temps à se dissoudre et à se déplacer, ils sont généralement complétés par des traitements liquides pour une éradication plus rapide du champignon ou de l'insecte responsable de la carie. Les tiges de borate et de cuivre/borate sont la seule méthode de traitement solide à la disposition du propriétaire.

Liquides, pâtes et gels

Les liquides, les pâtes et les gels agissent rapidement car ils n'ont pas besoin de se réhydrater ou de se dissoudre pour commencer à agir. Étant donné que tout le bois visiblement pourri doit être éliminé dans la mesure du possible, ces traitements sont souvent utilisés en premier lieu pour tuer et contenir toute infection résiduelle laissée par inadvertance. Les applications au pinceau ou par pulvérisation sont tout à fait appropriées à cet usage. Les gels sont couramment appliqués sur les fissures de peinture dans les joints de fenêtres et sur le bas des cadres de portes, des endroits où l'humidité peut pénétrer dans le bois. Lorsque du bois pourri est présent à l'intérieur des poteaux et des poutres et ne peut être enlevé, les liquides, les pâtes ou les gels doivent être insérés profondément dans le bois pour une action rapide.

Fumigants

Les gaz se déplacent le plus rapidement et ont donc une action éradiquante plus rapide.

Les professionnels de la conception et de la construction choisissent de plus en plus des matériaux, des techniques de conception et des procédures de construction qui améliorent la capacité d'une structure à résister et à se remettre d'événements extrêmes tels que des pluies, des neiges et des vents intenses, des ouragans, des tremblements de terre et des incendies de forêt. Par conséquent, la spécification de matériaux et de détails de conception robustes, et la construction de bâtiments flexibles et facilement réparables deviennent des critères de conception importants.

La résilience est la capacité de se préparer et de planifier, d'absorber, de récupérer et de s'adapter avec plus de succès à des événements défavorables. Pour un bâtiment, cela signifie qu'il doit être conçu pour résister à des situations défavorables telles que les inondations et les vents violents et s'en remettre rapidement, avec un niveau de fonctionnalité acceptable. Une structure construite pour résister à de telles catastrophes naturelles avec un minimum de dégâts est plus facile à réparer et peut contribuer au développement durable. Concevoir pour la résilience peut contribuer à minimiser les risques humains, à réduire les déchets de matériaux et à diminuer les coûts de restauration.

En raison de l'évolution des conditions météorologiques due au changement climatique, l'adaptation et la conception de la résilience suscitent un intérêt croissant. L'augmentation des températures peut accroître les risques d'événements météorologiques extrêmes, notamment de graves vagues de chaleur et des changements régionaux en matière d'inondations, de sécheresses et de risques d'incendies de forêt plus importants. Les ouragans sont plus intenses et plus fréquents, et les précipitations se présentent souvent sous la forme d'événements intenses d'une seule journée. Les températures hivernales plus chaudes provoquent l'évaporation de l'eau dans l'air et, si la température est encore inférieure au point de congélation, cela peut entraîner des chutes de neige, de grésil ou de pluie verglaçante d'une intensité inhabituelle, même les années où les chutes de neige sont inférieures à la moyenne.

Un bâtiment résilient est capable de faire face à des changements tels qu'une charge de neige plus importante, des fluctuations de température plus importantes, des vents et des pluies plus extrêmes. Les bâtiments en bois existants peuvent être facilement adaptés ou modernisés s'il est nécessaire d'augmenter la charge de vent ou de neige. Les bâtiments en bois correctement conçus et construits fonctionnent bien dans tous les types de climats, même les plus humides. Le bois tolère une humidité élevée et peut absorber ou libérer de la vapeur d'eau sans compromettre l'intégrité de la structure.

Dans certaines régions, le changement climatique est considéré comme contribuant à des saisons de feux de forêt de plus en plus complexes, ce qui se traduit par un risque accru de feux de forêt extrêmes. Certaines réglementations relatives aux incendies de forêt ciblent des caractéristiques de construction spécifiques dans les zones d'interface entre la forêt et la ville, telles que les terrasses extérieures, les couvertures de toit et les bardages. Un certain nombre de produits du bois répondent à ces réglementations pour diverses applications, notamment les éléments en bois lourd, le bois traité ignifuge et certaines essences de bois qui présentent un faible indice de propagation de la flamme (inférieur à 75).

 

Pour plus d'informations, consultez les ressources suivantes :

Conception résiliente et adaptative à l'aide du bois (Conseil canadien du bois)

Conseil américain du bois

Institut américain des architectes

Vis

Les vis à bois sont fabriquées dans de nombreuses longueurs, diamètres et styles différents. Les vis à bois sont utilisées dans les applications de charpente telles que la fixation des revêtements de sol aux solives des planchers ou la fixation des plaques de plâtre aux éléments de charpente des murs. Le coût des vis à bois est souvent plus élevé que celui des clous en raison de l'usinage nécessaire à la fabrication du filetage et de la tête.

Les vis sont généralement spécifiées par le numéro de calibre, la longueur, le style de tête, le matériau et la finition. Les vis d'une longueur comprise entre 1 et 2 ¾ de pouce sont fabriquées par intervalles de ¼ de pouce, tandis que les vis de 3 pouces et plus sont fabriquées par intervalles de ½ pouce. Les concepteurs doivent vérifier la disponibilité des vis auprès des fournisseurs.

Les dispositions de conception au Canada sont limitées aux vis de calibre 6, 8, 10 et 12 et ne s'appliquent qu'aux vis à bois qui répondent aux exigences de la norme ASME B18.6.1. Pour les vis à bois d'un diamètre supérieur à 12, la conception doit être conforme aux exigences de la norme CSA O86 sur les tire-fonds.

Les vis sont conçues pour résister beaucoup mieux à l'arrachement que les clous. La longueur de la partie filetée de la vis représente environ les deux tiers de la longueur de la vis. Lorsque la densité relative du bois est égale ou supérieure à 0,5, il est nécessaire d'avoir des trous de guidage d'une longueur au moins égale à la partie filetée de la tige. Afin de réduire le risque de fendillement, il est recommandé d'utiliser des trous pré-percés pour tous les assemblages vissés.

Les types de vis à bois couramment utilisés sont présentés dans la figure 5.4 ci-dessous.

Articles

Pour plus d'informations sur les vis à bois, consultez les ressources suivantes :

ASME B18.6.1 Bois Vis

CSA O86 Conception technique en bois

Les éléments en bois massif sont principalement utilisés comme éléments structurels principaux dans les constructions à poteaux et à poutres. Le terme "bois lourd" est utilisé pour décrire le bois massif scié dont la plus petite dimension transversale est égale ou supérieure à 140 mm (5-1/2 in). Les bois de grande dimension offrent une meilleure résistance au feu que les bois de construction et peuvent être utilisés pour répondre aux exigences de construction en bois lourd énoncées dans la partie 3 du Code national du bâtiment du Canada.

Les bois sciés sont produits conformément à la norme CSA O141. Bois de construction standard canadien et classé conformément aux règles de classement standard de la NLGA pour le bois d'œuvre canadien.

Il existe deux catégories de bois : les "poutres et longerons" rectangulaires et les "poteaux et poutres" carrés. Les poutres et les longerons, dont la plus grande dimension dépasse la plus petite de plus de 51 mm, sont généralement utilisés comme éléments de flexion, tandis que les poteaux et les poutres, dont la plus grande dimension dépasse la plus petite de 51 mm ou moins, sont généralement utilisés comme colonnes.

Les dimensions des bois sciés vont de 140 à 394 mm (5-1/2 à 15-1/2 in). Les dimensions les plus courantes vont de 140 x 140 mm (5-1/2 x 5-1/2 in) à 292 x 495 mm (11-1/2 x 19-1/2 in) en longueurs de 5 à 9 m (16 à 30 ft). Des dimensions allant jusqu'à 394 x 394 mm (15-1/2 x 15-1/2 in) sont généralement disponibles dans l'ouest du Canada dans les combinaisons d'essences Douglas Fir-Larch et Hem-Fir. Les bois des combinaisons épicéa-pin-sapin (S-P-F) et des essences nordiques ne sont disponibles qu'en petites dimensions. Les bois peuvent être obtenus dans des longueurs allant jusqu'à 9,1 m (30 ft), mais la disponibilité des bois de grande taille et de grande longueur doit toujours être confirmée auprès des fournisseurs avant de spécifier le cahier des charges. Un tableau des dimensions de bois disponibles est présenté ci-dessous.

Les deux catégories de bois, poutres et longerons, et poteaux et poutres, contiennent trois qualités de contrainte : Select Structural, No.1, et No.2, et deux qualités non sollicitées (Standard et Utility). Les catégories de contraintes sont assorties de valeurs de calcul pour l'utilisation en tant qu'éléments de structure. Aucune valeur de calcul n'a été attribuée aux qualités non soumises à des contraintes.

No.1 ou No.2 sont les qualités les plus couramment spécifiées à des fins structurelles. La qualité No.1 peut contenir des quantités variables de Select Structural, selon le fabricant. Contrairement au bois de construction canadien, il existe une différence entre les valeurs de calcul des qualités No.1 et No.2 pour les bois d'œuvre. Select Structural est spécifié lorsque l'aspect et la résistance de la plus haute qualité sont souhaités.

Aucune valeur de calcul n'a été attribuée aux qualités Standard et Utility. Les bois de ces qualités peuvent être utilisés dans des applications spécifiques des codes de construction où une résistance élevée n'est pas importante, comme le blocage ou le contreventement court.

Les coupes transversales peuvent affecter le classement du bois dans la catégorie des poutres et des longerons parce que la taille autorisée du nœud varie sur la longueur de la pièce (un nœud plus grand est autorisé près des extrémités qu'au milieu). Les bois doivent être reclassés en cas de coupe transversale.

Les bois ne sont généralement pas marqués d'un grade (grade stamped) et un certificat de l'usine peut être obtenu pour certifier le grade.

La grande taille des bois rend le séchage au four peu pratique en raison des contraintes de séchage qui résulteraient des différences d'humidité entre l'intérieur et l'extérieur du bois. C'est pourquoi les bois sont généralement traités verts (teneur en humidité supérieure à 19 %), et la teneur en humidité du bois à la livraison dépend de l'importance du séchage à l'air qui a eu lieu.

Comme le bois de construction, le bois d'œuvre commence à se rétracter lorsque son taux d'humidité tombe en dessous de 28 %. Les bois exposés à l'extérieur subissent généralement un retrait de 1,8 à 2,6 % en largeur et en épaisseur, selon l'essence. Les bois utilisés à l'intérieur, où l'air est souvent plus sec, subissent un retrait plus important, de l'ordre de 2,4 à 3,0 % en largeur et en épaisseur. Dans les deux cas, la variation de longueur est négligeable. La conception et la construction doivent tenir compte du retrait anticipé. Le retrait doit également être pris en compte lors de la conception des connexions.

Les petits défauts à la surface d'un bois sont fréquents dans les conditions de service humides et sèches. Ces défauts de surface ont été pris en compte dans l'établissement des résistances nominales spécifiées. Les fissures dans les colonnes n'ont pas d'importance structurelle à moins que la fissure ne se transforme en une fente traversante qui divise la colonne.

 

Pour plus d'informations, consultez les ressources suivantes :

Guilde des charpentiers de bois

Association internationale des constructeurs de bois

BC Log & Timber Building Industry Association (Association de l'industrie de la construction en bois et en rondins de bois de la Colombie-Britannique)

 

Tableau des dimensions du bois massif scié

1 2 3 4 5 6 7 8 9

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône Persona
Persona
Tags Icône
Tags
Rapports annuels Icône Plus
Livre des prix Icône Plus
Études de cas Icône Plus
Publications gratuites Icône Plus
Revue Icône Plus
Systèmes de construction Icône Plus
Codes et normes Icône Plus
Nouvelles de l'industrie Icône Plus
Pourquoi le bois (FAQ) Icône Plus
Produits du bois Icône Plus
Acoustique Icône Plus
Exemples de conception Icône Plus
Ingénierie Icône Plus
Résistance au feu Icône Plus
Assurance Icône Plus
Bois massif Icône Plus
Icône de date
Date
Séparateur de ligne