Bois lamellé-croisé (CLT)

Le bois lamellé-croisé (CLT) est un produit d'ingénierie en bois breveté qui est préfabriqué à l'aide de plusieurs couches de bois d'œuvre séché au four, posées à plat et collées ensemble sur leurs faces larges. Les panneaux sont généralement constitués de trois, cinq, sept ou neuf couches alternées de bois de construction. L'alternance des directions des lamelles du CLT lui confère une grande stabilité dimensionnelle. Le CLT présente également un rapport résistance/poids élevé, ainsi que des avantages en termes de performances structurelles, thermiques, acoustiques et de résistance au feu. L'épaisseur des panneaux est généralement comprise entre 100 et 300 mm (4 à 12 pouces), mais il est possible de produire des panneaux d'une épaisseur allant jusqu'à 500 mm (20 pouces). Les dimensions des panneaux vont de 1,2 à 3 m de largeur et de 5 à 19,5 m de longueur. La taille maximale des panneaux est limitée par la taille de la presse du fabricant et par les réglementations en matière de transport. Les dispositions de conception du CLT au Canada s'appliquent aux panneaux de bois scié fabriqués conformément à la norme ANSI/APA PRG 320. En règle générale, toutes les lamelles dans une direction sont fabriquées avec la même qualité et la même essence de bois. Toutefois, les couches adjacentes peuvent avoir une épaisseur différente et être fabriquées dans d'autres qualités ou essences. La teneur en humidité des lamelles de bois d'œuvre au moment de la fabrication du CLT est comprise entre 9 et 15%. Il existe cinq catégories principales de contraintes pour le CLT : E1, E2, E3, V1 et V2. La classe de contrainte E1 est la plus facilement disponible. La désignation "E" indique que le bois est soumis à des contraintes mécaniques (MSR ou E) et la désignation "V" indique que le bois est classé visuellement. Les qualités de contrainte E1, E2 et E3 se composent de bois MSR dans toutes les couches longitudinales et de bois classé visuellement dans les couches transversales, tandis que les qualités de contrainte V1 et V2 se composent de bois classé visuellement dans les couches longitudinales et transversales. Les propriétés des qualités de contraintes du CLT sur mesure sont également publiées par les différents fabricants. Comme pour d'autres produits structuraux en bois, le CLT peut être évalué par le Centre canadien des matériaux de construction (CCMC) afin d'établir un rapport d'évaluation du produit. Contrairement aux classes de contraintes primaires et personnalisées du CLT qui sont associées à la capacité structurelle, les classes d'apparence se réfèrent à la finition de la surface des panneaux CLT. Toute classe de contrainte peut généralement être produite dans n'importe quelle finition de surface souhaitée par le concepteur. Il faut tenir compte des réductions de résistance et de rigidité dues au profilage des panneaux ou à d'autres finitions des faces ou des bords. L'annexe de la norme ANSI/APA PRG 320 donne des exemples de classifications de l'aspect du CLT. Les adhésifs structurels utilisés pour coller les laminés doivent être conformes aux normes CSA O112.10 et ASTM D7247 et sont également évalués en termes de résistance à la chaleur lors d'une exposition au feu. Les différentes classes d'adhésifs structuraux généralement utilisées sont les suivantes : Polymère isocyanate en émulsion (EPI) ; polyuréthane monocomposant (PUR) ; types phénoliques tels que le phénol-résorcinol-formaldéhyde (PRF). Étant donné que le traitement sous pression avec des produits de conservation à base d'eau peut avoir un effet négatif sur l'adhérence, il est interdit de traiter le CLT avec des produits de conservation à base d'eau après le collage. Pour le CLT traité avec des produits ignifuges ou d'autres produits chimiques susceptibles de réduire la résistance, la résistance et la rigidité doivent être basées sur des résultats d'essais documentés. Dans le cadre du processus de préfabrication, les panneaux CLT sont découpés sur mesure, y compris les ouvertures de portes et de fenêtres, à l'aide de défonceuses à commande numérique par ordinateur (CNC) ultramodernes, capables de réaliser des coupes complexes avec de faibles tolérances. Les éléments préfabriqués en CLT arrivent sur le chantier prêts à être installés immédiatement. Le CLT offre une grande souplesse de conception et un faible impact sur l'environnement pour les planchers, les toits et les murs des bâtiments innovants en bois de moyenne et grande hauteur. Pour de plus amples informations sur le CLT, veuillez consulter les ressources suivantes : Kalesnikoff Nordic Structures APA - The Engineered Wood Association Centre canadien des matériaux de construction (CCMC) Element5 ANSI/APA PRG 320 Standard for Performance-Rated Cross-Laminated Timber CSA O86 Engineering design in wood CSA O112.10 Evaluation of Adhesives for Structural Wood Products (Limited Moisture Exposure) ASTM D7247 Standard Test Method for Evaluating the Shear Strength of Adhesive Bonds in Laminated Wood Products at Elevated Temperatures
Glulam

Le bois lamellé-collé est un produit structurel en bois d'ingénierie constitué de plusieurs couches individuelles de bois de dimension qui sont collées ensemble dans des conditions contrôlées. Tous les bois lamellés-collés canadiens sont fabriqués à l'aide d'adhésifs imperméables pour l'assemblage des extrémités et pour le collage des faces, et conviennent donc aussi bien aux applications extérieures qu'intérieures. Le bois lamellé-collé possède une grande capacité structurelle et constitue également un matériau de construction architectural attrayant. Le bois lamellé-collé est couramment utilisé dans les structures à poteaux et à poutres, les structures en bois lourd et en bois de masse, ainsi que dans les ponts en bois. Le bois lamellé-collé est un produit structurel en bois d'ingénierie utilisé pour les chevêtres, les poutres, les poutrelles, les pannes, les colonnes et les fermes lourdes. Le bois lamellé-collé est également fabriqué sous forme d'éléments courbes, qui sont généralement soumis à des charges combinées de flexion et de compression. Il peut également être façonné pour créer des poutres coniques inclinées et une variété de configurations d'arcs et de fermes portantes. Le bois lamellé-collé est souvent utilisé lorsque les éléments structurels sont laissés apparents, ce qui constitue un élément architectural. Dimensions disponibles pour le bois lamellé-collé Des dimensions standard ont été mises au point pour le bois lamellé-collé canadien afin de permettre une utilisation optimale du bois d'œuvre, dont les dimensions sont multiples de celles du lamstock utilisé pour la fabrication du bois lamellé-collé. Adaptées à la plupart des applications, les dimensions standard permettent au concepteur de réaliser des économies et de bénéficier d'une livraison rapide. D'autres dimensions non standard peuvent être commandées spécialement, moyennant un coût supplémentaire en raison de l'éboutage supplémentaire nécessaire pour produire des dimensions non standard. Les largeurs et profondeurs standard du bois lamellé-collé sont indiquées dans le tableau 6.7 ci-dessous. La profondeur du bois lamellé-collé est fonction du nombre de lamelles multiplié par l'épaisseur de la lamelle. Par souci d'économie, des lamelles de 38 mm sont utilisées dans la mesure du possible, et des lamelles de 19 mm sont utilisées lorsque des degrés de courbure plus importants sont requis. Largeurs standard du bois lamellé-collé Les largeurs finies standard des éléments en bois lamellé-collé et les largeurs courantes des laminés à partir desquels ils sont fabriqués sont indiquées dans le tableau 4 ci-dessous. Pour les éléments d'une largeur inférieure à 275 mm (10-7/8″), une seule largeur est utilisée pour la dimension complète de la largeur. Toutefois, les éléments d'une largeur supérieure à 175 mm (6-7/8″) peuvent être constitués de deux planches posées côte à côte. Tous les éléments d'une largeur supérieure à 275 mm (10-7/8″) sont constitués de deux pièces de bois placées côte à côte, les joints de bordures étant décalés dans la profondeur de l'élément. Les éléments d'une largeur supérieure à 365 mm (14-1/4″) sont fabriqués par incréments de 50 mm (2″), mais sont plus chers que les largeurs standard. Les fabricants doivent être consultés pour obtenir des conseils. Largeur initiale du bois lamellé-collé Largeur finale du bois lamellé-collé mm. in. mm. in. 89 3-1/2 80 3 140 5-1/2 130 5 184 7-1/4 175 6-7/8 235 (ou 89 + 140) 9-1/4 (ou 3-1/2 + 5-1/2) 225 (ou 215) 8-7/8 (ou 8-1/2) 286 (ou 89 + 184) 11-1/4 (ou 3-1/2 + 7-1/4) 275 (ou 265) 10-7/8 (ou 10-1/4) 140 + 184 5-1/2 + 7-1/4 315 12-1/4 140 + 235 5-1/2 + 9-1/4 365 14-1/4 Remarques : Les éléments d'une largeur supérieure à 365 mm (14-1/4″) sont disponibles par incréments de 50 mm (2″) mais nécessitent une commande spéciale. Les éléments d'une largeur supérieure à 175 mm (6-7/8″) peuvent être constitués de deux panneaux posés côte à côte avec des joints logitudinaux décalés dans les lamelles adjacentes. Profondeurs standard du bois lamellé-collé Les profondeurs standard des éléments en bois lamellé-collé vont de 114 mm (4-1/2″) à 2128 mm (7′) ou plus, par incréments de 38 mm (1-1/2″) et 19 mm (3/4″). Un élément fabriqué à partir de lamelles de 38 mm (1-1/2″) coûte nettement moins cher qu'un élément équivalent fabriqué à partir de lamelles de l9 mm (3/4″). Cependant, les laminés de 19 mm (3/4″) permettent une plus grande courbure que les laminés de 38 mm (1-1/2″). Largeur mm in. Profondeur mm po 80 3 114 à 570 4-1/2 à 22-1/2 130 5 152 à 950 6 à 37-1/2 175 6-7/8 190 à 1254 7-1/2 à 49-1/2 215 8-1/2 266 à 1596 10-1/2 à 62-3/4 265 10-1/4 342 à 1976 13-1/2 à 77-3/4 315 12-1/4 380 à 2128 15 à 83-3/4 365 14-1/4 380 à 2128 15 à 83-3/4 Note : 1. Les profondeurs intermédiaires sont des multiples de l'épaisseur de la stratification, qui est de 38 mm (1-1/2″ nom.), sauf pour certains éléments courbes qui nécessitent des stratifications de 19 mm (3/4″ nom.). Les laminés peuvent être assemblés en bout pour obtenir des longueurs allant jusqu'à 40 m (130′), mais la limite pratique peut dépendre des restrictions de transport. Par conséquent, les restrictions de transport pour une région donnée doivent être déterminées avant de spécifier la longueur, la largeur ou la hauteur d'expédition. Classes d'aspect du bois lamellé-collé Lors de la spécification des produits canadiens en bois lamellé-collé, il est nécessaire d'indiquer à la fois la classe de contrainte et la classe d'aspect requises. L'aspect du bois lamellé-collé est déterminé par le degré de finition effectué après le laminage et non par l'aspect des pièces individuelles de laminage. Le bois lamellé-collé est disponible dans les qualités d'aspect suivantes : Industriel Commercial Qualité La qualité de l'aspect définit l'importance des travaux de réparation et de finition effectués sur les surfaces exposées après le laminage (tableau 6.8) et n'a pas d'incidence sur la résistance. La qualité offre le plus haut degré de finition et est destinée aux applications où l'aspect est important. La qualité industrielle est celle qui présente le moins de finition. Grade Description Grade industriel Destiné à être utilisé lorsque l'aspect n'est pas une préoccupation majeure, par exemple dans les bâtiments industriels ; le bois stratifié peut contenir des caractéristiques naturelles autorisées pour le grade de contrainte spécifié ; les faces sont rabotées aux dimensions spécifiées, mais des manques et des aspérités occasionnels sont autorisés ; la surface peut présenter des nœuds cassés, des trous de nœuds, un grain déchiré, des carreaux, des flaches et d'autres irrégularités. Qualité commerciale Destinée aux surfaces peintes ou vernies à brillant plat ; le bois stratifié peut contenir des caractéristiques naturelles autorisées pour la qualité de contrainte spécifiée ; les faces sont rabotées aux dimensions spécifiées et toute la colle expulsée est enlevée de la surface ; les trous de nœuds, les nœuds détachés, les vides, les flaches ou les poches de poix ne sont pas remplacés par des inserts de bois ou du mastic sur la surface exposée. Qualité Destinée aux surfaces transparentes ou polies très brillantes, elle met en valeur la beauté naturelle du bois pour un meilleur attrait esthétique ; le bois stratifié peut présenter les caractéristiques naturelles autorisées pour la catégorie de contrainte spécifiée ; les côtés sont rabotés aux dimensions spécifiées et toute la colle éliminée de la surface ; il peut y avoir des nœuds serrés, une tache de cœur ferme et une tache de sève moyenne sur les côtés ; les nœuds légèrement cassés ou fendus, les éclats, les veines déchirées ou les carreaux sur la surface sont remplis ; les nœuds lâches, les trous de nœuds, les vides et les poches d'inclinaison sont éliminés et remplacés par des inserts en bois non rétrécissants.
Produits en panneaux

En utilisant du bois rond qui n'est souvent pas adapté à la production de bois d'œuvre, les panneaux à base de bois permettent d'utiliser efficacement les ressources forestières en fournissant des produits en bois d'ingénierie avec des propriétés de résistance et de rigidité définies. Les panneaux structuraux à base de bois, tels que le contreplaqué et les panneaux à copeaux orientés (OSB), sont largement utilisés dans la construction résidentielle et commerciale. Les panneaux à base de bois sont souvent superposés sur des solives ou des fermes légères et utilisés comme revêtement structurel pour les planchers, les toits et les murs. Ces produits assurent la rigidité des principaux éléments structurels qui les soutiennent, en plus de leur fonction d'élément de l'enveloppe du bâtiment. En outre, ils font souvent partie intégrante du système de résistance aux forces latérales d'un bâtiment en bois. Afin de pouvoir être utilisés pour un usage final particulier, tel que le revêtement structurel, le plancher ou le bardage extérieur, les panneaux à base de bois doivent répondre à des critères de performance portant sur trois aspects : la performance structurelle, les propriétés physiques et la performance d'adhérence. Pour plus d'informations sur le classement des performances et les utilisations finales potentielles des panneaux à base de bois, consultez le site de l'APA - The Engineered Wood Association.
Bois de sciage orienté

Bois de sciage orienté (OSL) Le bois de sciage orienté (OSL) présente des caractéristiques telles qu'une grande résistance, une grande rigidité et une grande stabilité dimensionnelle. Le processus de fabrication de l'OSL permet de produire de grandes pièces à partir d'arbres relativement petits, ce qui permet une utilisation efficace des ressources forestières. L'OSL est principalement utilisé comme ossature structurelle dans la construction résidentielle, commerciale et industrielle. Les applications courantes de l'OSL dans la construction comprennent les chevêtres et les poutres, les montants des murs hauts, les planches de rive, les plaques d'appui, la menuiserie et l'encadrement des fenêtres. L'OSL offre également une bonne résistance aux fixations. Comme le bois lamellé-collé, l'OSL est fabriqué à partir de lamelles de bois dont le rapport longueur/épaisseur est d'environ 75. Les brins de bois utilisés dans l'OSL sont plus courts que ceux du LSL. Combinés à un adhésif, les brins sont orientés et formés en un grand mat ou billette, puis pressés. L'OSL ressemble au panneau à lamelles orientées (OSB), car ils sont tous deux fabriqués à partir d'essences de bois similaires et contiennent des lamelles de bois, mais, contrairement à l'OSB, les lamelles de l'OSL sont disposées parallèlement à l'axe longitudinal de l'élément. L'OSL est un produit d'ingénierie en bois solide, hautement prévisible et uniforme, car les défauts naturels tels que les nœuds, l'inclinaison du grain et les fentes ont été dispersés dans tout le matériau ou ont été complètement éliminés au cours du processus de fabrication. Comme d'autres produits SCL tels que le LVL et le PSL, l'OSL offre des propriétés de résistance et de rigidité prévisibles et une stabilité dimensionnelle qui minimise la torsion et le retrait. Toutes les coupes, entailles ou perçages spéciaux doivent être effectués conformément aux recommandations du fabricant. Les catalogues et les rapports d'évaluation des fabricants sont les principales sources d'information pour la conception, les détails d'installation typiques et les caractéristiques de performance. Comme tout autre produit en bois, l'OSL doit être protégé des intempéries pendant l'entreposage sur le chantier et après l'installation. L'emballage du produit avant son expédition sur le chantier est important pour assurer la protection contre l'humidité. Le scellement des extrémités et des bords du produit renforcera sa résistance à la pénétration de l'humidité. OSL est un produit breveté et, par conséquent, les propriétés techniques et les dimensions spécifiques sont propres à chaque fabricant. Il n'existe donc pas de normes de production ni de valeurs de conception communes pour l'OSL. Les valeurs de conception sont dérivées des résultats d'essais analysés conformément à la norme CSA O86 et à la norme ASTM D5456 et les valeurs de conception sont examinées et approuvées par le Centre canadien des matériaux de construction (CCMC). Les produits conformes aux directives du CCMC reçoivent un numéro d'évaluation et un rapport d'évaluation comprenant les résistances nominales spécifiées, qui sont ensuite répertoriées dans le registre des évaluations de produits du CCMC. Le nom du fabricant ou l'identification du produit et la classe de contrainte sont marqués sur le matériau à différents intervalles, mais en raison de la coupe en bout, ils peuvent ne pas être présents sur chaque pièce. Pour de plus amples informations, veuillez consulter les ressources suivantes : APA - The Engineered Wood Association Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction CSA O86 Engineering design in wood ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products
Bois de sciage à fils parallèles

Parallel Strand Lumber (PSL) Le Parallel Strand Lumber (PSL) offre des caractéristiques telles qu'une grande résistance, une grande rigidité et une grande stabilité dimensionnelle. Le processus de fabrication du PSL permet de fabriquer de grandes pièces à partir d'arbres relativement petits, ce qui permet une utilisation efficace des ressources forestières. Au Canada, le PSL est fabriqué à partir de Douglas taxifolié. Le PSL est principalement utilisé comme ossature structurelle dans la construction résidentielle, commerciale et industrielle. Les applications courantes du PSL dans la construction comprennent les chevêtres, les poutres et les linteaux dans les constructions à ossature légère, ainsi que les poutres et les colonnes dans les constructions à poteaux et à poutres. Le PSL est un matériau structurel attrayant qui convient aux applications où l'aspect fini est important. Comme le bois lamellé-collé (LSL) et le bois orienté (OSL), le PSL est fabriqué à partir de lamelles de bois disposées parallèlement à l'axe longitudinal de la pièce et dont le rapport longueur/épaisseur est d'environ 300. Les brins de bois utilisés dans le PSL sont plus longs que ceux utilisés pour fabriquer le LSL et l'OSL. Combinées à un adhésif phénol-formaldéhyde imperméable à l'extérieur, les lamelles sont orientées et formées en une grande billette, puis pressées ensemble et durcies à l'aide d'un rayonnement micro-ondes. Les poutres PSL sont disponibles en épaisseurs de 68 mm (2-11/16 in), 89 mm (3-1/2 in), 133 mm (5-1/4 in), et 178 mm (7 in) et une profondeur maximale de 457 mm (18 in). Les colonnes PSL sont disponibles en dimensions carrées ou rectangulaires de 89 mm (3-1/2 po), 133 mm (5-1/4 po) et 178 mm (7 po). Les épaisseurs les plus faibles peuvent être utilisées individuellement en tant que couches simples ou être combinées pour des applications multicouches. Le PSL peut être fabriqué en grandes longueurs, mais il est généralement limité à 20 m par les contraintes de transport. Le PSL est un produit en bois massif, hautement prévisible et uniforme, car les défauts naturels tels que les nœuds, l'inclinaison des fibres et les fentes ont été dispersés dans l'ensemble du matériau ou ont été entièrement éliminés au cours du processus de fabrication. Comme les autres produits SCL (LVL, LSL et OSL), le PSL offre des propriétés de résistance et de rigidité prévisibles ainsi qu'une stabilité dimensionnelle. Fabriqué à un taux d'humidité de 11 %, le PSL est moins sujet au rétrécissement, au gauchissement, à la déformation, à la courbure et au fendillement. Toutes les coupes, entailles ou perçages spéciaux doivent être effectués conformément aux recommandations du fabricant. Les catalogues et les rapports d'évaluation des fabricants sont les principales sources d'information pour la conception, les détails d'installation typiques et les caractéristiques de performance. Le PSL présente une texture riche et conserve de nombreuses lignes de colle foncées. Le PSL peut être usiné, teinté et fini en utilisant les techniques applicables au bois de sciage. Les éléments en PSL acceptent facilement la teinture pour rehausser la chaleur et la texture du bois. Tous les panneaux PSL sont poncés à la fin du processus de production afin de garantir des dimensions précises et d'obtenir une surface de haute qualité pour l'apparence. Comme tout autre produit en bois, le PSL doit être protégé des intempéries pendant l'entreposage sur le chantier et après l'installation. L'emballage du produit avant son expédition sur le chantier est important pour assurer la protection contre l'humidité. Le scellement des extrémités et des bords du produit renforce sa résistance à la pénétration de l'humidité. Le PSL accepte facilement un traitement de préservation et il est possible d'obtenir un degré élevé de pénétration du produit. Le PSL traité peut être spécifié pour les expositions à une humidité élevée. Le PSL est un produit breveté et, par conséquent, les propriétés techniques et les dimensions spécifiques sont propres à chaque fabricant. Il n'existe donc pas de normes de production ni de valeurs de conception communes pour le PSL. Les valeurs de conception sont dérivées des résultats d'essais analysés conformément à la norme CSA O86 et à la norme ASTM D5456 et les valeurs de conception sont examinées et approuvées par le Centre canadien des matériaux de construction (CCMC). Les produits conformes aux directives du CCMC reçoivent un numéro d'évaluation et un rapport d'évaluation comprenant les résistances nominales spécifiées, qui sont ensuite répertoriées dans le registre des évaluations de produits du CCMC. Le nom du fabricant ou l'identification du produit et la classe de résistance sont marqués sur le matériau à différents intervalles, mais en raison de la coupe en bout, ils peuvent ne pas être présents sur chaque pièce. Le Centre canadien des matériaux de construction (CCMC) a accepté que le PSL soit utilisé pour la construction de bois lourds, conformément aux dispositions de la partie 3 du Code national du bâtiment du Canada. Pour de plus amples informations, veuillez consulter les ressources suivantes : APA - The Engineered Wood Association Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction CSA O86 Engineering design in wood ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products
Bois lourd à sciage massif

Les éléments en bois massif sont principalement utilisés comme éléments structurels principaux dans les constructions à poteaux et à poutres. Le terme "bois lourd" est utilisé pour décrire le bois massif scié dont la plus petite dimension transversale est égale ou supérieure à 140 mm (5-1/2 in). Les bois de grande dimension offrent une meilleure résistance au feu que les bois de construction et peuvent être utilisés pour répondre aux exigences de construction en bois lourd énoncées dans la partie 3 du Code national du bâtiment du Canada. Les bois sciés sont produits conformément à la norme CSA O141 Canadian Standard Lumber et classés conformément aux NLGA Standard Grading Rules for Canadian Lumber. Il existe deux catégories de bois : les "poutres et longerons" rectangulaires et les "poteaux et poutres" carrés. Les poutres et les longerons, dont la plus grande dimension dépasse la plus petite de plus de 51 mm, sont généralement utilisés comme éléments de flexion, tandis que les poteaux et les poutres, dont la plus grande dimension dépasse la plus petite de 51 mm ou moins, sont généralement utilisés comme colonnes. Les dimensions des bois sciés varient de 140 à 394 mm (5-1/2 à 15-1/2 in). Les dimensions les plus courantes vont de 140 x 140 mm (5-1/2 x 5-1/2 in) à 292 x 495 mm (11-1/2 x 19-1/2 in) en longueurs de 5 à 9 m (16 à 30 ft). Des dimensions allant jusqu'à 394 x 394 mm (15-1/2 x 15-1/2 in) sont généralement disponibles dans l'ouest du Canada dans les combinaisons d'essences Douglas Fir-Larch et Hem-Fir. Les bois des combinaisons épicéa-pin-sapin (S-P-F) et des essences nordiques ne sont disponibles qu'en petites dimensions. Les bois peuvent être obtenus dans des longueurs allant jusqu'à 9,1 m (30 ft), mais la disponibilité des bois de grande taille et de grande longueur doit toujours être confirmée auprès des fournisseurs avant la spécification. Un tableau des dimensions de bois disponibles est présenté ci-dessous. Les deux catégories de bois, poutres et limons, et poteaux et poutres, comportent trois degrés de contrainte : Select Structural, No.1, et No.2, et deux qualités sans contrainte (Standard et Utility). Les catégories de contraintes sont assorties de valeurs de calcul pour l'utilisation en tant qu'éléments de structure. Aucune valeur de calcul n'a été attribuée aux qualités non soumises à des contraintes. Les qualités No.1 et No.2 sont les plus couramment spécifiées à des fins structurelles. La qualité No.1 peut contenir des quantités variables de Select Structural, selon le fabricant. Contrairement au bois de construction canadien, il existe une différence entre les valeurs de calcul pour les qualités No.1 et No.2 du bois d'œuvre. Select Structural est spécifié lorsque l'aspect et la résistance de la plus haute qualité sont souhaités. Aucune valeur de calcul n'a été attribuée aux qualités Standard et Utility. Les bois de ces qualités peuvent être utilisés dans des applications spécifiques des codes de construction où une résistance élevée n'est pas importante, comme le blocage ou le contreventement court. Les coupes transversales peuvent affecter la qualité du bois dans la catégorie des poutres et des longerons parce que la taille autorisée du nœud varie sur la longueur de la pièce (un nœud plus grand est autorisé près des extrémités qu'au milieu). Les bois doivent être reclassés s'ils sont recoupés. Les bois ne sont généralement pas marqués (estampillés) et un certificat de l'usine peut être obtenu pour certifier la qualité. La grande taille des grumes rend le séchage au four peu pratique en raison des contraintes de séchage qui résulteraient des différences d'humidité entre l'intérieur et l'extérieur du bois. C'est la raison pour laquelle les bois sont généralement traités verts (taux d'humidité supérieur à 19 %), et le taux d'humidité du bois à la livraison dépend de l'importance du séchage à l'air qui a eu lieu. Comme le bois de construction, le bois d'œuvre commence à rétrécir lorsque son taux d'humidité tombe en dessous de 28 %. Les bois exposés à l'extérieur subissent généralement un retrait de 1,8 à 2,6 % en largeur et en épaisseur, en fonction de l'essence. Les bois utilisés à l'intérieur, où l'air est souvent plus sec, subissent un retrait plus important, de l'ordre de 2,4 à 3,0 % en largeur et en épaisseur. Dans les deux cas, la variation de longueur est négligeable. La conception et la construction doivent tenir compte du retrait anticipé. Le retrait doit également être pris en compte lors de la conception des connexions. Les petits défauts à la surface d'un bois sont fréquents dans les conditions de service humides et sèches. Ces défauts de surface ont été pris en compte dans l'établissement des résistances nominales spécifiées. Les fissures dans les colonnes n'ont pas d'importance structurelle à moins que la fissure ne se transforme en une fente traversante qui divisera la colonne. Pour de plus amples informations, veuillez consulter les ressources suivantes : Timber Framers Guild International Log Builders' Association BC Log & Timber Building Industry Association
Construction combustible

La sécurité incendie dans un bâtiment est une question complexe, bien plus complexe que la combustibilité relative des principaux matériaux structurels utilisés dans un bâtiment. Pour élaborer des dispositions de code sûres, la prévention, l'extinction, le déplacement des occupants, la mobilité des occupants, l'utilisation du bâtiment et le contrôle des combustibles ne sont que quelques-uns des facteurs qui doivent être pris en compte en plus de la combustibilité des éléments structurels. L'expérience des pertes dues aux incendies montre que le contenu des bâtiments joue un rôle important en termes de charge de combustible et de potentiel de génération de fumée dans un incendie. La protection passive contre l'incendie assurée par les degrés de résistance au feu des planchers et des murs d'un bâtiment garantit la stabilité de la structure en cas d'incendie. Cependant, le degré de résistance au feu des structures ne contrôle pas nécessairement le mouvement des fumées et de la chaleur, qui peut avoir un impact important sur le niveau de sécurité et les dommages matériels résultant d'un incendie. Le Code national du bâtiment du Canada (CNB) classe les bâtiments en bois dans la catégorie des "constructions combustibles". Bien qu'elles soient qualifiées de combustibles, les techniques de construction courantes peuvent conférer aux constructions à ossature en bois des degrés de résistance au feu allant jusqu'à deux heures. Lorsqu'ils sont conçus et construits conformément aux exigences du code, les bâtiments en bois offrent le même niveau de sécurité des personnes et de protection des biens que les bâtiments de taille comparable définis par le CNB comme des "constructions non combustibles". Le bois a été utilisé pour pratiquement tous les types de bâtiments, y compris les écoles, les entrepôts, les casernes de pompiers, les immeubles d'habitation et les installations de recherche. Le CNB définit des lignes directrices pour l'utilisation du bois dans des applications qui vont bien au-delà du secteur résidentiel traditionnel et des petits bâtiments. Le CNB autorise les constructions en bois d'une hauteur maximale de six étages, ainsi que les bardages en bois pour les bâtiments désignés comme étant de construction incombustible. Lorsqu'elle respecte les limites de surface et de hauteur pour les différentes catégories de bâtiments du CNB, la construction à ossature bois peut répondre aux exigences de sécurité des personnes en utilisant des assemblages à ossature bois (généralement protégés par des plaques de plâtre) dont le degré de résistance au feu a été testé. Les restrictions de hauteur et de surface autorisées peuvent être étendues en utilisant des murs coupe-feu pour diviser une grande surface de bâtiment en plus petites surfaces distinctes. La contribution positive reconnue à la fois à la sécurité des personnes et à la protection des biens qui découle de l'utilisation de systèmes d'extinction automatique peut également être utilisée pour augmenter la surface autorisée des bâtiments en bois. Les sprinkleurs interviennent généralement très tôt dans un incendie, ce qui permet d'en contrôler rapidement les effets dommageables. C'est pourquoi l'installation d'un système d'extinction automatique dans un bâtiment améliore considérablement la sécurité des personnes et la protection des biens dans tous les bâtiments, y compris ceux construits en matériaux incombustibles. Le CNB autorise l'utilisation d'une "construction en bois massif" dans les bâtiments où la construction combustible doit avoir un degré de résistance au feu de 45 minutes. Cette forme de construction en bois massif est également autorisée dans les grands bâtiments incombustibles de certains usages. Pour être acceptés, les éléments doivent répondre à des exigences minimales en matière de dimensions et d'installation. La construction en bois massif bénéficie de cette reconnaissance en raison de ses performances en cas d'exposition réelle au feu et de son acceptation en tant que méthode de construction sûre en cas d'incendie. Dans les bâtiments protégés par sprinklers dont la construction est autorisée à être combustible, aucun degré de résistance au feu n'est requis pour la toiture ou ses supports lorsqu'ils sont construits en bois massif. Dans ce cas, la toiture en bois massif et ses supports n'ont pas à respecter les dimensions minimales des éléments stipulées dans le CNB. Les éléments en bois massif peuvent également être utilisés chaque fois qu'une construction combustible est autorisée. Dans ce cas, cependant, ces éléments en bois massif doivent être spécifiquement conçus pour satisfaire aux degrés de résistance au feu requis. Définitions du CNB : Combustible signifie qu'un matériau ne répond pas aux critères d'acceptation de la norme CAN/ULC-S114, "Essai de détermination de l'incombustibilité des matériaux de construction". On entend par construction combustible le type de construction qui ne répond pas aux exigences de la construction incombustible. Construction en bois lourd : ce type de construction combustible dans laquelle un certain degré de sécurité incendie est atteint en limitant les dimensions des éléments structurels en bois ainsi que l'épaisseur et la composition des planchers et des toits en bois, et en évitant les espaces cachés sous les planchers et les toits. Construction incombustible : type de construction dans lequel un degré de sécurité incendie est atteint par l'utilisation de matériaux incombustibles pour les éléments de structure et autres assemblages de bâtiments. Incombustible signifie qu'un matériau répond aux critères d'acceptation de la norme CAN/ULC-S114, "Essai de détermination de l'incombustibilité des matériaux de construction". Pour de plus amples informations, veuillez consulter les ressources suivantes : Code national du bâtiment du Canada CAN/ULC-S114 Essai de détermination de l'incombustibilité des matériaux de construction Manuel de conception en bois 2017
Construction en bois massif encapsulé

In addition to combustible, heavy timber and noncombustible construction, a new construction type is presently being considered for inclusion into the National Building Code of Canada (NBC). Encapsulated mass timber construction (EMTC) is proposed to be defined as the “type of construction in which a degree of fire safety is attained by the use of encapsulated mass timber elements with an encapsulation rating and minimum dimensions for the structural timber members and other building assemblies.” EMTC is neither ‘combustible construction’ nor ‘heavy timber construction’ nor ‘noncombustible construction’, as defined within the NBC. EMTC is required to have an encapsulation rating. The encapsulation rating is the time, in minutes, that a material or assembly of materials will delay the ignition and combustion of encapsulated mass timber elements when it is exposed to fire under specified conditions of test and performance criteria, or as otherwise prescribed by the NBC. The encapsulation rating for EMTC is determined through the ULC S146 test method. In order for structural wood elements to be considered ‘mass timber’, they must meet minimum size requirements, which are different for horizontal (walls, floors, roofs, beams) and vertical (columns, arches) load-bearing elements and dependent on the number of sides that the element is exposed to fire. EMTC construction in Canada is expected to be limited to a height of twelve-storeys, that is, the uppermost floor level may be a maximum of 42 m (137 ft) above the first floor. An EMTC building must be sprinklered throughout according to NFPA 13 and it is likely that some mass timber will also be able to be exposed in the suites. All EMTC elements are expected to have a minimum two-hour fire resistance rating and the building floor area to be limited to 6,000 m2 for Group C occupancy and 7,200 m2 for Group D occupancy. There are restrictions on the use of exterior cladding elements in EMTC, as well as other restrictions on the use of; combustible roofing materials, combustible window sashes and frames, combustible components in exterior walls, nailing elements, combustible flooring elements, combustible stairs, combustible interior finishes, combustible elements in partitions, and concealed spaces. If any encapsulation material is damaged or removed, it will be required to be repaired or replaced so that the encapsulation rating of the materials is maintained. Additionally, requirements related to construction site fire safety are to be applied to construction access, standpipe installation and protective encapsulation. EMTC and its related provisions are anticipated to be included in the NBC 2020. NBC definitions: Combustible means that a material fails to meet the acceptance criteria of CAN/ULC-S114, “Test for Determination of Non-Combustibility in Building Materials.” Combustible construction means that type of construction that does not meet the requirements for noncombustible construction. Heavy timber construction means that type of combustible construction in which a degree of fire safety is attained by placing limitations on the sizes of wood structural members and on thickness and composition of wood floors and roofs and by the avoidance of concealed spaces under floors and roofs. Noncombustible construction means that type of construction in which a degree of fire safety is attained by the use of noncombustible materials for structural members and other building assemblies. Noncombustible means that a material meets the acceptance criteria of CAN/ULC-S114, “Test for Determination of Non-Combustibility in Building Materials.” For further information, refer to the following resources: Guide to Encapsulated Mass Timber Construction in the Ontario Building Code ULC S146 Standard Method of Test for the Evaluation of Encapsulation Materials and Assemblies of Materials for the Protection of Mass Timber Structural Members and Assemblies Fire performance of mass-timber encapsulation methods and the effect of encapsulation on char rate of cross-laminated timber (Hasburgh et al., 2016) CAN/ULC-S114 Test for Determination of Non-Combustibility in Building Materials NFPA 13 Standard for the Installation of Sprinkler Systems
Acoustique

Le bois est composé de nombreux petits tubes cellulaires principalement remplis d'air. La composition naturelle du matériau permet au bois d'agir comme un isolant acoustique efficace et lui confère la capacité d'amortir les vibrations. Ces caractéristiques d'amortissement du son permettent de spécifier des éléments de construction en bois là où l'isolation ou l'amplification du son est nécessaire, comme dans les bibliothèques et les auditoriums. Une autre propriété acoustique importante du bois est sa capacité à limiter la transmission des bruits d'impact, un problème généralement associé aux matériaux et systèmes de construction plus durs et plus denses. L'utilisation d'une chape ou d'un système de plancher flottant superposé à une ossature en bois léger ou à des éléments structurels en bois massif est une approche courante pour assurer la séparation acoustique entre les étages d'un bâtiment. Selon le type de matériaux utilisés dans le système de plancher construit, la chape peut être appliquée directement sur les éléments structurels en bois ou sur une barrière contre l'humidité ou une couche résiliente. L'utilisation de plaques de plâtre, d'isolants absorbants (en matelas ou en vrac) et de profilés souples sont également des éléments essentiels d'un mur ou d'un plancher à ossature bois, qui contribuent également aux performances acoustiques de l'ensemble. La conception acoustique tient compte d'un certain nombre de facteurs, notamment l'emplacement et l'orientation du bâtiment, ainsi que l'isolation ou la séparation des fonctions génératrices de bruit et des éléments du bâtiment. Les indices de transmission du son (STC), de transmission du son apparent (ASTC) et d'isolation contre les chocs (IIC) sont utilisés pour déterminer le niveau de performance acoustique des produits et systèmes de construction. Les différents indices peuvent être déterminés sur la base d'essais normalisés en laboratoire ou, dans le cas des indices ASTC, calculés à l'aide de méthodes décrites dans le CNB. Actuellement, le Code national du bâtiment du Canada (CNB) ne réglemente que la conception acoustique des murs intérieurs et des planchers qui séparent les unités d'habitation (p. ex. appartements, maisons, chambres d'hôtel) d'autres unités ou d'autres espaces dans un bâtiment. Les exigences relatives à l'indice STC pour les murs intérieurs et les planchers visent à limiter la transmission des bruits aériens entre les espaces. Le CNB n'impose aucune exigence en matière de contrôle de la transmission des bruits d'impact par les planchers. Les bruits de pas et autres impacts peuvent être très gênants dans les résidences multifamiliales. Les constructeurs soucieux de la qualité et de la réduction des plaintes des occupants veilleront à ce que les planchers soient conçus de manière à minimiser la transmission des bruits d'impact. En plus de se conformer aux exigences minimales du CNB dans les habitations, les concepteurs peuvent également établir des indices acoustiques pour la conception de projets non résidentiels et spécifier des matériaux et des systèmes pour s'assurer que le bâtiment fonctionne à ce niveau. Outre la limitation de la transmission des bruits aériens par les murs structurels internes et les planchers, la transmission latérale du son par les joints périmétriques et la transmission du son par les cloisons de séparation non structurelles doivent également être prises en compte lors de la conception acoustique. L'annexe A du CNB, aux sections A-9.10.3.1. et A-9.11., contient de plus amples informations et exigences relatives aux indices STC, ASTC et IIC. Cela comprend, entre autres, les tableaux 9.10.3.1-A et 9.10.3.1.-B qui fournissent des données génériques sur les indices STC de différents types de murs à ossature de bois et les indices STC et IIC de différents types d'assemblages de planchers en bois, respectivement. Les tableaux A-9.11.1.4.-A à A-9.11.1.4.-D présentent des options génériques pour la conception et la construction des jonctions entre les assemblages de séparation et les assemblages latéraux. La construction selon ces options est susceptible d'atteindre ou de dépasser la cote ASTC de 47 exigée par le CNB. Tableau A - Le tableau 9.11.1.4. présente des données sur les traitements de plancher génériques qui peuvent être utilisés pour améliorer les performances d'isolation acoustique des planchers à ossature légère, c'est-à-dire des couches supplémentaires de matériau sur le sous-plancher (p. ex. chape de béton, panneaux OSB ou contreplaqué) et le plancher ou les revêtements finis (p. ex. moquette, bois d'ingénierie).
Code du feu

Code national de prévention des incendies du Canada Le Code national du bâtiment du Canada (CNB) et le Code national de prévention des incendies du Canada (CNPI), tous deux publiés par le Conseil national de recherches du Canada (CNRC) et élaborés par la Commission canadienne des codes du bâtiment et de prévention des incendies (CCCBPI), sont des documents complémentaires. Le CNB établit des normes minimales pour la santé et la sécurité des occupants des bâtiments neufs. Il s'applique également à la modification des bâtiments existants, y compris les changements d'occupation. Le CNB n'est pas rétroactif. En d'autres termes, un bâtiment construit conformément à une édition particulière du CNB, en vigueur au moment de sa construction, n'est pas automatiquement tenu de se conformer à l'édition suivante du CNB. Ce bâtiment ne serait tenu de se conformer à une version actualisée du CNB que s'il faisait l'objet d'un changement d'occupation ou de modifications entraînant l'application du nouveau CNB en vigueur au moment du changement d'occupation ou de la modification majeure. Le CNPI traite de la sécurité incendie pendant l'exploitation des installations et des bâtiments. Les exigences du CNPI, quant à elles, visent à garantir le maintien du niveau de sécurité initialement prévu par le CNB. Dans ce but, le CNPI réglemente : la conduite d'activités entraînant des risques d'incendie l'entretien des équipements de sécurité incendie et des moyens d'évacuation les limitations concernant le contenu des bâtiments, y compris le stockage et la manipulation de produits dangereux l'établissement de plans de sécurité incendie Le CNPI est censé être rétroactif en ce qui concerne les systèmes d'alarme incendie, les colonnes montantes et les systèmes d'extinction automatique. En 1990, le CNPI a été révisé pour préciser que de tels systèmes "doivent être installés dans tous les bâtiments lorsque cela est exigé par le Code national du bâtiment du Canada et conformément à ses exigences". Cette disposition garantit que les bâtiments sont correctement protégés contre le risque inhérent au même niveau que celui exigé par le CNB pour un nouveau bâtiment. Il ne concerne pas les autres dispositifs de protection contre l'incendie tels que les mesures de contrôle des fumées ou les ascenseurs pour pompiers. Le CNPI garantit également que les changements d'utilisation des bâtiments n'augmentent pas le risque au-delà des limites des systèmes de protection incendie d'origine. Le CNB et le CNPI sont rédigés de manière à minimiser les risques de conflit entre leurs contenus respectifs. Ils doivent tous deux être pris en compte lors de la construction, de la rénovation ou de l'entretien des bâtiments. Ils sont complémentaires, en ce sens que le CNPI prend le relais du CNB une fois que le bâtiment est en service. En outre, les structures plus anciennes qui ne sont pas conformes au niveau de sécurité incendie le plus récent peuvent être rendues plus sûres grâce aux exigences du CNPI. Les dernières modifications importantes du CNPI concernent la construction de bâtiments de six étages utilisant des matériaux combustibles. En conséquence, huit mesures de protection supplémentaires relatives aux bâtiments combustibles de moyenne hauteur ont été ajoutées pour faire face aux risques d'incendie pendant la construction lorsque les dispositifs de protection contre l'incendie ne sont pas encore en place.
Code de l'énergie

Le Code national de l'énergie pour les bâtiments (CNÉB) vise à aider à économiser sur les factures d'énergie, à réduire la demande d'énergie de pointe et à améliorer la qualité et le confort de l'environnement intérieur des bâtiments. À travers chaque cycle d'élaboration du code, le CNÉB entend mettre en œuvre une approche progressive pour atteindre l'objectif du Canada pour les nouveaux bâtiments, tel que présenté dans le "Cadre pancanadien sur la croissance propre et le changement climatique", qui consiste à réaliser des bâtiments "prêts pour une consommation énergétique nette zéro" d'ici 2030. Le CNÉB est disponible gratuitement en ligne ; il est publié par le Conseil national de recherches du Canada (CNRC) et élaboré par la Commission canadienne des codes du bâtiment et de prévention des incendies en collaboration avec Ressources naturelles Canada (RNCan). La CCB participe en permanence à l'élaboration et à la mise à jour du CNÉB. Le CNÉB définit les exigences techniques en matière de conception et de construction efficaces sur le plan énergétique, ainsi que les niveaux minimaux d'efficacité énergétique pour la conformité au code de tous les nouveaux bâtiments. Le CNEB s'applique à tous les types de bâtiments, à l'exception des logements et des petits bâtiments, qui sont régis par l'article 9.36 du Code national du bâtiment du Canada. Le CNEB offre trois voies de conformité : normative, de compromis et de performance. Le moment le plus rentable pour intégrer des mesures d'efficacité énergétique dans un bâtiment est la phase initiale de conception et de construction. Il est beaucoup plus coûteux d'effectuer des travaux de rénovation plus tard. Cela est particulièrement vrai pour l'enveloppe du bâtiment, qui comprend les murs extérieurs, les fenêtres, les portes et la toiture. Le CMNÉB aborde des considérations telles que les taux d'infiltration d'air (fuites d'air) et la transmission de la chaleur à travers l'enveloppe du bâtiment. Compte tenu des différentes zones climatiques du Canada, le CMNÉB fournit également des exigences relatives à la transmission thermique globale (effective) maximale pour les parois opaques au-dessus du sol et à la résistance thermique effective des assemblages en contact avec le sol, par exemple les fondations permanentes en bois. En outre, le CMNÉB spécifie la fenestration maximale et le rapport porte/mur en fonction de la zone climatique dans laquelle le bâtiment est situé. Les exigences en matière d'efficacité énergétique des bâtiments étant de plus en plus strictes, le bois est une solution naturelle à associer à d'autres matériaux d'isolation et de protection contre les intempéries pour créer des bâtiments ayant une performance énergétique opérationnelle élevée et offrant un confort intérieur constant aux occupants. Pour plus d'informations sur le CNÉB, visitez le site Codes Canada du Conseil national de recherches du Canada.
L’édition 2024 du programme de bourses commémoratives Catherine Lalonde récompense des étudiantes qui stimulent l’innovation dans l’industrie du bois

Ottawa, ON, 12 décembre 2024 - Le Conseil canadien du bois (CCB) a annoncé les récipiendaires des bourses d'études commémoratives Catherine Lalonde 2024 : Laura Walters (Université McMaster) et Jiawen Shen (Université de la Colombie-Britannique). Les deux étudiantes ont été reconnues pour leur excellence académique et leurs projets de recherche impactants dans l'industrie des produits structuraux du bois. Créées il y a dix-neuf ans, les bourses commémoratives sont attribuées chaque année à des étudiants diplômés dont les travaux de recherche sur le bois témoignent de la même passion pour le bois et l'industrie des produits du bois que celle dont Catherine Lalonde a fait preuve sans relâche en tant qu'ingénieure professionnelle et présidente du CWC. Laura Walters Laura est une étudiante diplômée de troisième année qui poursuit une maîtrise en sciences appliquées en génie civil dans le cadre d'une collaboration entre l'Université McMaster et l'Université du Nord de la Colombie-Britannique (UNBC). Son projet de recherche porte sur l'utilisation de suspensions de poutres préfabriquées dans les systèmes de poteaux et de poutres en bois massif, en mettant l'accent sur les implications des hypothèses de conception et de modélisation sur l'évaluation des chemins de charge structuraux. Son travail fournit des indications précieuses sur les considérations et les hypothèses de conception requises pour une conception plus précise et plus fiable des colonnes en bois massif lorsque des suspensions de poutres préfabriquées sont utilisées. Jiawen Shen Jiawen est étudiante en première année de master en sciences du bois à l'université de Colombie-Britannique. Son projet de recherche porte sur le développement de panneaux de revêtement et d'isolation en écorce composite sans liant qui sont durables, résistants à l'inflammation, neutres en carbone et fabriqués à partir d'un sous-produit sous-utilisé qui, autrement, serait brûlé, mis en décharge ou utilisé à des fins de faible valeur. En collaborant avec un cabinet d'architectes de Vancouver sur ce projet, son travail est essentiel pour faire progresser l'application commerciale de ces produits de revêtement innovants. "Cette année marque une étape historique pour le programme de bourses commémoratives Catherine Lalonde, puisque, pour la première fois, il est décerné à deux femmes exceptionnelles ", a déclaré Martin Richard, vice-président du développement des marchés et des communications à la CCB. "Leurs réalisations mettent en évidence le talent exceptionnel qui stimule l'innovation dans le domaine de la recherche et de la construction en bois. Nous sommes inspirés par leurs contributions et par la diversité croissante qui façonne l'avenir des solutions à base de bois."