en-ca

Planches de terrasse

Planches de terrasse

Les lames de terrasse peuvent être utilisées pour porter plus loin et supporter des charges plus importantes que les panneaux tels que le contreplaqué et les panneaux à copeaux orientés (OSB). Le platelage en planches est souvent utilisé lorsque l'apparence du platelage est souhaitée en tant qu'élément architectural ou lorsque la performance au feu doit répondre aux exigences de construction en bois lourd décrites dans la partie 3 du Code national du bâtiment du Canada. Le platelage est généralement utilisé dans les structures en bois massif ou en poteaux et poutres et est posé avec la face plate ou large sur les supports afin de fournir un platelage structurel pour les planchers et les toits. Les lames de terrasse peuvent être utilisées dans des conditions humides ou sèches et peuvent être traitées avec des produits de préservation, en fonction de l'essence de bois. Les clous et les pointes de terrasse sont utilisés pour fixer les pièces adjacentes de lames de terrasse les unes aux autres et pour fixer la terrasse à ses supports. Les lames de terrasse sont généralement disponibles dans les essences suivantes : sapin de Douglas (combinaison d'essences D.Fir-L) pruche de la côte pacifique (combinaison d'essences Hem-Fir) diverses essences d'épicéa, de pin et de sapin (combinaison d'essences S-P-F) cèdre rouge de l'Ouest (combinaison d'essences Northern) Pour produire des lames de terrasse, le bois scié est fraisé dans un profil à rainure et languette avec un usinage de surface spécial, tel qu'un joint en V. Les lames de terrasse sont généralement produites dans des matériaux de qualité supérieure, comme le bois d'œuvre. Les lames de terrasse sont normalement produites en trois épaisseurs : 38 mm, 64 mm et 89 mm. Les planches de 38 mm ont une languette et une rainure simples, tandis que les planches plus épaisses ont une double languette et une rainure. Les épaisseurs supérieures à 38 mm comportent également des trous de 6 mm de diamètre, espacés de 760 mm, afin que chaque pièce puisse être clouée à la pièce adjacente à l'aide de pointes de terrasse. Les dimensions et profils standard sont indiqués ci-dessous. Les lames de terrasse sont le plus souvent disponibles en longueurs aléatoires de 1,8 à 6,1 m (6 à 20 ft). Il est possible de commander des planches dans des longueurs spécifiques, mais il faut s'attendre à une disponibilité limitée et à des coûts supplémentaires. Une spécification typique pour les longueurs aléatoires pourrait exiger qu'au moins 90 % des planches soient de 3,0 m (10 pieds) et plus, et qu'au moins 40 % soient de 4,9 m (16 pieds) et plus. Le platelage en planches est disponible en deux qualités : La qualité Select (Sel) La qualité Commercial (Com) La qualité Select a un aspect plus qualitatif et est également plus solide et plus rigide que la qualité Commercial. Les planches de terrasse doivent être fabriquées conformément à la norme CSA O141 et classées selon les règles de classement standard de la NLGA pour le bois d'œuvre canadien. Étant donné que les planches de terrasse ne sont pas estampillées comme le bois de construction, il convient d'obtenir une vérification écrite de la part du fournisseur ou de faire appel à une agence de classement qualifiée pour vérifier le matériau fourni. Pour minimiser le retrait et le gauchissement, les lames de terrasse sont constituées d'éléments de bois sciés qui sont séchés à un taux d'humidité de 19 % ou moins au moment du surfaçage (S-Dry). L'utilisation d'un platelage vert peut entraîner le relâchement du joint à rainure et languette au fil du temps et une réduction de la performance structurelle et de la facilité d'utilisation. Les planches individuelles peuvent s'étendre simplement entre les supports, mais elles sont généralement de longueur aléatoire s'étendant sur plusieurs supports par souci d'économie et pour tirer parti d'une rigidité accrue. Il existe trois méthodes d'installation des terrasses en planches : aléatoire contrôlée, à travée simple et à deux travées continues. Une règle générale de conception pour le platelage aléatoire contrôlé est que les travées ne doivent pas dépasser de plus de 600 mm (2 pieds) la longueur que 40 % de l'expédition du platelage dépasse. Ces deux dernières méthodes d'installation nécessitent des planches de longueur prédéterminée, ce qui peut entraîner un surcoût. Profils et dimensions des lames de terrasse

Bois dans les bâtiments incombustibles

Bois dans les bâtiments incombustibles

Le Code national du bâtiment du Canada (CNB) exige que certains bâtiments soient de "construction incombustible" en vertu de ses exigences normatives. Le terme "construction incombustible" est toutefois mal choisi, car il n'exclut pas l'utilisation de matériaux "combustibles", mais en limite plutôt l'usage. Certains matériaux combustibles peuvent être utilisés car il n'est ni économique ni pratique de construire un bâtiment entièrement en matériaux "incombustibles". Le bois est probablement le matériau combustible le plus utilisé dans les bâtiments incombustibles et a de nombreuses applications dans les bâtiments classés comme constructions incombustibles par le CNB. En effet, les réglementations en matière de construction ne reposent pas uniquement sur l'utilisation de matériaux incombustibles pour atteindre un niveau acceptable de sécurité incendie. De nombreux matériaux combustibles sont autorisés dans les espaces cachés et dans les zones où, en cas d'incendie, ils ne risquent pas d'affecter sérieusement les autres caractéristiques de sécurité incendie du bâtiment. Par exemple, il existe des autorisations pour l'utilisation de constructions en bois lourd pour les toits et les supports structurels des toits. Il peut également être utilisé pour les cloisons et les finitions murales, ainsi que pour les bandes de fourrure, les bordures de toit et les auvents, les bandes de cantonnement, les bordures de toit, les pare-feu, les revêtements de toit, les menuiseries, les armoires, les comptoirs, les châssis de fenêtre, les portes et les planchers. Son utilisation dans certains types de bâtiments tels que les bâtiments de grande hauteur est légèrement plus limitée dans des zones telles que les sorties, les couloirs et les halls d'entrée, mais même là, des traitements ignifuges peuvent être utilisés pour répondre aux exigences du CNB. Le CNB autorise également l'utilisation de bardages en bois pour les bâtiments désignés comme étant de construction incombustible. Dans les bâtiments incombustibles protégés par gicleurs d'une hauteur maximale de deux étages, les toits entiers et les supports de toit peuvent être construits en bois massif. Pour être acceptables, les éléments en bois lourd doivent respecter des exigences minimales en matière de dimensions et d'installation. La construction en bois massif bénéficie de cette reconnaissance en raison de ses performances en cas d'exposition réelle au feu et de son acceptation en tant que méthode de construction sûre en cas d'incendie. L'expérience des pertes dues aux incendies a montré, même dans les bâtiments non protégés par des gicleurs, que la construction en bois massif est supérieure aux toitures incombustibles n'ayant pas de degré de résistance au feu. Dans d'autres bâtiments incombustibles, la construction en bois massif, y compris les planchers, est autorisée sans que le bâtiment soit protégé par gicleurs. Dans les bâtiments protégés par sprinklers dont la construction combustible est autorisée, aucun degré de résistance au feu n'est requis pour la toiture ou ses supports lorsqu'ils sont construits en bois massif. Dans ces cas, une toiture en bois lourd et ses supports n'ont pas à se conformer aux dimensions minimales des éléments stipulées dans le CNB. Définitions du CNB : Combustible signifie qu'un matériau ne satisfait pas aux critères d'acceptation de la norme CAN/ULC-S114, " Essai de détermination de l'incombustibilité des matériaux de construction ". On entend par construction combustible le type de construction qui ne répond pas aux exigences de la construction incombustible. Construction en bois lourd : ce type de construction combustible dans laquelle un certain degré de sécurité incendie est atteint en limitant les dimensions des éléments structurels en bois ainsi que l'épaisseur et la composition des planchers et des toits en bois, et en évitant les espaces cachés sous les planchers et les toits. Construction incombustible : type de construction dans lequel un degré de sécurité incendie est atteint par l'utilisation de matériaux incombustibles pour les éléments de structure et autres assemblages de bâtiments. Incombustible signifie qu'un matériau répond aux critères d'acceptation de la norme CAN/ULC-S114, "Essai de détermination de l'incombustibilité des matériaux de construction". Pour de plus amples informations, veuillez consulter les ressources suivantes : Manuel de conception du bois, Conseil canadien du bois Code national du bâtiment du Canada CAN/ULC-S114 Essai de détermination de l'incombustibilité des matériaux de construction Escaliers et casiers de rangement dans les bâtiments incombustibles Les escaliers à l'intérieur d'un logement peuvent être en bois, de même que les casiers de rangement dans les bâtiments résidentiels. Ils sont autorisés, car leur utilisation ne devrait pas présenter un risque d'incendie important. Matériaux de couverture en bois dans les bâtiments incombustibles Lors de l'installation de la couverture, il est possible d'utiliser des bandes de cantonnement en bois, des bordures de toit, des bandes de clouage et d'autres éléments similaires. Les toits en bois définis comme "construction en bois lourde" dans le CNB sont autorisés dans tout bâtiment incombustible d'une hauteur de deux étages ou moins lorsque le bâtiment est protégé par un système d'extincteurs automatiques. Le revêtement de toit et les supports de revêtement en bois sont autorisés dans les bâtiments incombustibles à condition que les parapets incombustibles soient en bois : Les parapets et les fûts incombustibles doivent empêcher les matériaux de toiture de s'enflammer à partir de flammes dépassant des ouvertures de la façade du bâtiment ou de la terrasse du toit. La plupart des couvertures de toit, même aujourd'hui, sont combustibles en raison de la nature même des matériaux utilisés pour les rendre imperméables. L'objectif du CNB est d'exiger que les risques associés à une couverture de toit soient minimisés pour le type de bâtiment, son emplacement et son utilisation. Le CNB permet d'utiliser des couvertures de toit qui satisfont à la classe C pour tout bâtiment régi par la partie 3, y compris tout bâtiment incombustible, quelle que soit sa hauteur ou sa superficie. Cet indice C peut être facilement atteint en utilisant des bardeaux de bois traités avec un fire-retardateur (FRTW), des bardeaux d'asphalte ou des rouleaux de toiture. Dans les bâtiments dont la construction doit être incombustible, les couvertures de toit doivent être classées dans la catégorie A, B ou C. Dans ce cas, l'utilisation de bardeaux en bois traité contre le feu sur les toits en pente est autorisée. Les petits bâtiments à usage collectif dont la hauteur ne dépasse pas deux étages et dont la surface de construction est inférieure à 1 000 m2 (10 000 pi2) n'ont pas besoin d'une classification pour la couverture du toit. Dans ces cas traditionnels, les bardeaux de bois non traités sont acceptables s'ils sont recouverts d'un matériau incombustible afin de réduire le risque de brûlure. Cloisons en bois dans les bâtiments incombustibles L'ossature en bois a de nombreuses applications dans les cloisons des bâtiments de faible et de grande hauteur qui doivent être de construction incombustible. L'ossature peut être placée dans la plupart des types de cloisons, avec ou sans indice de résistance au feu. L'ossature et le revêtement en bois sont autorisés dans les cloisons, ou bien des cloisons en bois massif d'au moins 38 mm (2 po nominal) d'épaisseur sont autorisées, à condition qu'il y ait un indice de résistance fire : L'ossature en bois est autorisée dans les cloisons dans toutes les zones de plancher et peut être utilisée dans la plupart des séparations de fire sans limite de taille de compartiment ni nécessité d'une protection par gicleurs : De même, en tant qu'élément final

Bois d’échantillon

Bois d’échantillon

Le bois de construction est un bois massif scié dont l'épaisseur est inférieure à 89 mm (3,5 pouces). Le bois de construction peut être désigné par sa dimension nominale en pouces, c'est-à-dire la dimension réelle arrondie au pouce supérieur, ou par sa dimension réelle en millimètres. Par exemple, un matériau de 38 × 89 mm (1-1/2 × 3-1/2 in) est désigné nominalement comme du bois d'œuvre 2 × 4. Le bois d'œuvre séché à l'air ou au four (S-Dry), dont le taux d'humidité est inférieur ou égal à 19 %, est facilement disponible dans une épaisseur de 38 mm (1,5 po). Les épaisseurs de 64 et 89 mm (2-1/2 et 3-1/2 in) sont généralement disponibles en vert surfacé (S-Grn) uniquement, c'est-à-dire que le taux d'humidité est supérieur à 19 %. La longueur maximale du bois d'œuvre que l'on peut obtenir est d'environ 7 m (23 ft), mais elle varie d'un bout à l'autre du Canada. Le bois d'œuvre est principalement utilisé dans la construction de bâtiments pour l'ossature des toits, des planchers, des murs de cisaillement, des diaphragmes et des murs porteurs. Le bois d'œuvre peut être utilisé directement comme matériau d'ossature ou peut servir à fabriquer des produits structuraux techniques, tels que des fermes à ossature légère ou des solives en I préfabriquées en bois. Le bois de dimension de qualité spéciale, appelé lamstock (stock de stratification), est fabriqué exclusivement pour le bois lamellé-collé. L'assurance qualité du bois canadien est assurée par un système complexe de normes de produits, de normes de conception technique et de codes de construction, impliquant une surveillance du classement, un soutien technique et un cadre réglementaire. Vérification et fendillement Vérification et fendillement La vérification se produit lorsque le bois est séché rapidement. La surface sèche rapidement, tandis que le cœur du bois reste à un taux d'humidité plus élevé pendant un certain temps. Par conséquent, la surface tente de se rétracter, mais elle est retenue par le cœur du bois. Cette contrainte provoque des tensions à la surface qui, si elles sont suffisamment importantes, peuvent séparer les fibres, créant ainsi une fente. Les fissures sont des fentes de passage qui se produisent généralement à l'extrémité des éléments en bois. Lorsqu'un élément en bois sèche, l'humidité est perdue très rapidement à l'extrémité de l'élément. À mi-longueur, cependant, le bois a encore un taux d'humidité plus élevé. Cette différence de teneur en eau crée des contraintes de traction à l'extrémité de la pièce. Lorsque les contraintes dépassent la résistance du bois, une fente se forme. Les sciages massifs de grande dimension sont susceptibles de se fendre et de se fissurer car ils sont toujours apprêtés en vert (S-Grn). En outre, en raison de leur grande taille, l'âme sèche lentement et les contraintes de traction à la surface et aux extrémités peuvent être importantes. Les petits défauts limités à la surface d'un élément en bois ont très rarement un effet sur la résistance de l'élément. Les fissures profondes peuvent être importantes si elles se produisent à un endroit où les contraintes de cisaillement sont élevées. Les fissures dans les colonnes n'ont pas d'importance structurelle, sauf si elles se transforment en fissures traversantes qui augmentent le coefficient d'élancement de la colonne. Les résistances au cisaillement spécifiées pour les bois de construction et les bois d'œuvre ont été élaborées en tenant compte de la quantité maximale de fissures ou de fentes autorisée par la règle de classement applicable. Il est possible de réduire la possibilité et la gravité des fentes et des gerces en contrôlant la vitesse de séchage. Pour ce faire, le bois doit être maintenu à l'abri de la lumière directe du soleil et à l'écart de toute source de chaleur artificielle. En outre, les extrémités peuvent être enduites d'un produit d'étanchéité pour retarder la perte d'humidité. D'autres mesures permettent de minimiser les changements de dimensions et le risque de fendillement : spécifier des produits du bois dont la teneur en humidité est aussi proche que possible de la teneur en humidité d'équilibre prévue pour l'utilisation finale ; veiller à ce que les produits du bois secs soient protégés par un stockage et une manipulation appropriés. Bois abouté Les produits aboutés sont fabriqués en prenant des pièces plus courtes de bois séché au four, en usinant un profil en forme de "doigt" à chaque extrémité des pièces courtes, en ajoutant un adhésif structurel approprié et en collant les pièces ensemble pour obtenir une pièce de bois plus longue. La longueur d'un bois abouté n'est pas limitée par la longueur de la grume. En fait, le processus de fabrication peut aboutir à la production de solives et de chevrons d'une longueur de 12 m (40 pieds) ou plus. Le procédé d'aboutage est également utilisé dans le processus de fabrication de plusieurs autres produits en bois d'ingénierie, notamment le bois lamellé-collé et les poutrelles en I en bois. Le terme spécifique de "bois abouté" s'applique au bois de construction qui contient des joints à entures multiples. L'aboutage permet de tirer une plus grande valeur de la ressource forestière en utilisant de courtes pièces de bois de qualité inférieure comme intrants pour la fabrication d'un produit en bois d'ingénierie à valeur ajoutée. Le processus d'aboutage utilise de courtes pièces de bois coupées et permet une utilisation plus efficace des fibres de bois récoltées. Le bois abouté peut être fabriqué à partir de n'importe quelle essence ou groupe d'essences commerciales. Le groupe d'essences le plus couramment utilisé pour la production de bois abouté est l'épicéa, le pin et le sapin (S-P-F). Avantages de la conception du bois abouté Le bois abouté est un produit d'ingénierie en bois souhaitable pour plusieurs raisons : rectitude stabilité dimensionnelle interchangeabilité avec le bois non abouté utilisation très efficace des fibres de bois Les avantages de la conception et de la performance de ce produit d'ingénierie en bois sont sa rectitude et sa stabilité dimensionnelle. La rectitude et la stabilité dimensionnelle du bois abouté résultent du fait que des pièces de bois de faible longueur, au fil relativement droit et présentant moins de défauts naturels, sont assemblées pour former une pièce de bois de plus grande longueur. Le grain du bois abouté devient non uniforme et aléatoire lorsque de nombreuses pièces courtes sont assemblées. Le bois abouté est donc moins susceptible de se déformer que le bois de sciage massif. Le processus d'aboutage permet également de réduire ou d'éliminer les défauts qui réduisent la résistance, ce qui donne un produit structurel en bois dont les propriétés techniques sont moins variables que celles du bois de construction massif. L'utilisation la plus courante du bois abouté est celle des montants dans les murs de cisaillement et les murs porteurs verticaux. Le facteur le plus important pour les montants est la rectitude. Les montants assemblés par entures multiples restent plus droits que les montants en bois de construction massif lorsqu'ils sont soumis à des changements de température et d'humidité. Cette caractéristique présente des avantages considérables pour le constructeur et le propriétaire, notamment une construction de qualité supérieure, l'élimination des sauts de clous dans les cloisons sèches et d'autres problèmes liés aux variations dimensionnelles.

Bois massif

Bois massif

Les progrès de la technologie et des systèmes de produits du bois sont à l'origine de la dynamique des bâtiments innovants au Canada. Des produits tels que le bois lamellé-croisé (CLT), le bois lamellé-cloué (NLT), le bois lamellé-collé (GLT), le bois lamellé-collé (LSL), le bois de placage stratifié (LVL) et d'autres produits composites structurels de grande dimension (SCL) font partie d'une classification plus large connue sous le nom de "bois de masse". Bien que le bois de masse soit un terme émergent, la construction traditionnelle à poteaux et à poutres (charpente en bois) existe depuis des siècles. Aujourd'hui, les produits de bois de masse peuvent être constitués en fixant mécaniquement et/ou en collant des éléments de bois plus petits tels que du bois de construction ou des placages, des brins ou des fibres de bois pour former de grands éléments de bois préfabriqués utilisés comme poutres, colonnes, arcs, murs, planchers et toits. Les produits en bois de masse ont un volume et des dimensions transversales suffisants pour offrir des avantages significatifs en termes de résistance au feu, d'acoustique et de performance structurelle, en plus de l'efficacité de la construction.

Poutrelles à ossature légère

Poutrelles à ossature légère

Une ferme est une structure qui repose sur une disposition triangulaire des âmes et des membrures pour transférer les charges aux points de réaction. Cette disposition géométrique des éléments confère aux fermes un rapport résistance/poids élevé, ce qui permet des portées plus longues que les charpentes conventionnelles. Les fermes à ossature légère peuvent généralement atteindre une portée de 20 m (60 pieds), bien que des portées plus longues soient également possibles. Les premières fermes à ossature légère ont été construites sur place à l'aide de goussets en contreplaqué cloués. Ces fermes offraient des portées acceptables mais nécessitaient un temps de construction considérable. Développée à l'origine aux États-Unis dans les années 1950, la plaque de connexion métallique a transformé l'industrie des fermes en permettant une préfabrication efficace des fermes de courte et de longue portée. Les plaques d'assemblage en métal léger permettent de transférer la charge entre les éléments adjacents grâce à des dents en acier poinçonnées qui sont encastrées dans les éléments en bois. Aujourd'hui, les fermes en bois à ossature légère sont largement utilisées dans les constructions résidentielles unifamiliales et multifamiliales, institutionnelles, agricoles, commerciales et industrielles. La forme et la taille des fermes à ossature légère ne sont limitées que par les capacités de fabrication, les contraintes d'expédition et les considérations de manutention. Les fermes peuvent être conçues comme simples ou à plusieurs travées, avec ou sans porte-à-faux. L'économie, la facilité de fabrication, la livraison rapide et les procédures de montage simplifiées rendent les fermes en bois à ossature légère compétitives dans de nombreuses applications de toiture et de plancher. Leur grande portée élimine souvent le besoin de murs porteurs intérieurs, ce qui offre au concepteur une grande souplesse dans l'agencement des planchers. Les fermes de toit offrent des configurations en pente, inclinées ou plates, tout en laissant un espace libre entre les membrures pour l'isolation, la ventilation, l'électricité, la plomberie, le chauffage et l'air conditionné. Les fermes en bois à ossature légère sont préfabriquées en pressant les dents saillantes de la plaque d'acier de la ferme dans des éléments de bois de 38 mm (2 po), qui sont prédécoupés et assemblés dans un gabarit. La plupart des fermes sont fabriquées avec du bois de 38 x 64 mm (2 x 3 pouces) à 38 x 184 mm (2 x 8 pouces) classé visuellement et soumis à des contraintes mécaniques (MSR). Pour obtenir différentes valeurs d'adhérence, les plaques d'assemblage des fermes sont estampées à partir de tôles d'acier galvanisé de calibre léger de différentes qualités et épaisseurs. De nombreuses dimensions de plaques sont fabriquées pour s'adapter à toutes les formes et dimensions de fermes ou de charges à supporter. Les fermes à ossature légère sont fabriquées conformément aux normes établies par le Truss Plate Institute of Canada. Les capacités des plaques varient d'un fabricant à l'autre et sont établies par des essais. Les plaques de fermes doivent être conformes aux exigences de la norme CSA O86 et doivent être approuvées par le Centre canadien des matériaux de construction (CCMC). Pour obtenir cette approbation, les plaques de fermes sont testées conformément à la norme CSA S347. Lors de la conception, les fermes à ossature légère sont généralement conçues par le fabricant de plaques de fermes pour le compte du fabricant de fermes. Lorsque les fermes à ossature légère arrivent sur le chantier, il convient de vérifier qu'elles ne présentent pas de dommages permanents tels que des ruptures transversales dans le bois, des plaques de connexion métalliques manquantes ou endommagées, des fissures excessives dans le bois ou tout autre dommage susceptible de nuire à l'intégrité structurelle de la ferme. Dans la mesure du possible, les fermes doivent être déchargées en paquets sur un sol sec et relativement lisse. Elles ne doivent pas être déchargées sur un terrain accidenté ou sur des espaces irréguliers qui pourraient entraîner des tensions latérales excessives susceptibles de déformer les plaques d'assemblage métalliques ou d'endommager des parties des fermes. Les fermes à ossature légère peuvent être stockées horizontalement ou verticalement. Si elles sont stockées en position horizontale, les fermes doivent être soutenues par des cales espacées de 2,4 à 3 m (8 à 10 ft) afin d'éviter les flexions latérales et de réduire l'absorption d'humidité par le sol. Lorsqu'elles sont stockées en position verticale, les fermes doivent être placées sur une surface horizontale stable et contreventées pour éviter qu'elles ne basculent ou ne se renversent. Si les fermes doivent être stockées pendant une période prolongée, des mesures doivent être prises pour les protéger des intempéries, en les gardant sèches et bien ventilées. Les fermes à ossature légère nécessitent un contreventement temporaire pendant le montage, avant l'installation d'un contreventement permanent. Les plaques de fermes ne doivent pas être utilisées avec du bois incisé. Contacter le fabricant de fermes pour obtenir des conseils supplémentaires sur l'utilisation des fermes à ossature légère dans des environnements corrosifs, des conditions de service humides ou lorsqu'elles sont traitées avec un produit ignifuge. Pour plus d'informations, consulter les ressources suivantes : Canadian Wood Truss Association Truss Plate Institute of Canada CSA O86 Engineering design in wood CSA S347 Method of test for evaluation of truss plates used in lumber joints Canadian Construction Materials Centre

i -Joïstes

i -Joïstes

Les solives en I préfabriquées en bois sont des éléments structuraux en bois exclusifs qui consistent en des brides de bois de sciage massif ou de bois de placage stratifié (LVL) assemblées par entures multiples et fixées à une âme de contreplaqué ou de panneau à copeaux orientés (OSB) à l'aide d'un adhésif. Les joints de panneaux en bande sont collés et assemblés selon plusieurs méthodes, telles que l'aboutage des extrémités carrées des panneaux, l'écharpe des extrémités des panneaux, ou la formation d'un joint de type dentelé ou à rainure et languette. Les adhésifs imperméables à l'extérieur, tels que le phénol-formaldéhyde et le phénol-résorcinol, sont principalement utilisés pour les joints de l'âme à l'âme et de l'âme à l'aile. Plusieurs fabricants proposent différentes combinaisons de matériaux pour les ailes et les âmes, ainsi que d'autres types de connexions entre les âmes et les ailes (voir la figure 3.20 ci-dessous). Les solives en I en bois sont disponibles dans une variété de profondeurs standard et dans des longueurs allant jusqu'à 20 m (66 ft). Chaque fabricant produit des solives en I dont les caractéristiques de résistance et de rigidité sont uniques. Pour s'assurer que leurs produits exclusifs ont été fabriqués dans le cadre d'un programme d'assurance qualité supervisé par un organisme de certification tiers indépendant, les fabricants font généralement évaluer et enregistrer leurs produits conformément aux exigences et aux directives du Centre canadien des matériaux de construction (CCMC). La section transversale en forme de "I" de ces produits structuraux en bois offre un rapport résistance/poids plus élevé que le bois de sciage massif traditionnel. La rigidité uniforme, la résistance et la légèreté de ces éléments préfabriqués permettent d'utiliser des solives et des chevrons de plus grande portée dans la construction résidentielle et commerciale. Les solives en I en bois sont généralement fabriquées à partir d'une semelle et d'une âme non traitées et ne sont donc généralement pas utilisées pour les applications extérieures. Les solives en I en bois sont également stables sur le plan dimensionnel car elles sont fabriquées avec un taux d'humidité compris entre 6 et 12 %. Pour l'installation des services mécaniques et électriques, de nombreux fabricants fournissent des exigences et des conseils concernant la forme, la taille et l'emplacement des ouvertures, des encoches, des trous et des coupes. La plupart des fournisseurs de solives en bois en I stockent également des suspensions de solives standard et d'autres éléments de connexion préfabriqués spécialement conçus pour être utilisés avec les solives en bois en I. Pour de plus amples informations sur les solives en I en bois, veuillez consulter les ressources suivantes : APA - The Engineered Wood Association Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction (CNRC) Wood I-Joist Manufacturers Association (WIJMA) CSA O86 Engineering design in wood ASTM D5055 Standard Specification for Establishing and Monitoring Structural Capacities of Prefabricated Wood I-Joists

Code du feu

Code du feu

Code national de prévention des incendies du Canada Le Code national du bâtiment du Canada (CNB) et le Code national de prévention des incendies du Canada (CNPI), tous deux publiés par le Conseil national de recherches du Canada (CNRC) et élaborés par la Commission canadienne des codes du bâtiment et de prévention des incendies (CCCBPI), sont des documents complémentaires. Le CNB établit des normes minimales pour la santé et la sécurité des occupants des bâtiments neufs. Il s'applique également à la modification des bâtiments existants, y compris les changements d'occupation. Le CNB n'est pas rétroactif. En d'autres termes, un bâtiment construit conformément à une édition particulière du CNB, en vigueur au moment de sa construction, n'est pas automatiquement tenu de se conformer à l'édition suivante du CNB. Ce bâtiment ne serait tenu de se conformer à une version actualisée du CNB que s'il faisait l'objet d'un changement d'occupation ou de modifications entraînant l'application du nouveau CNB en vigueur au moment du changement d'occupation ou de la modification majeure. Le CNPI traite de la sécurité incendie pendant l'exploitation des installations et des bâtiments. Les exigences du CNPI, quant à elles, visent à garantir le maintien du niveau de sécurité initialement prévu par le CNB. Dans ce but, le CNPI réglemente : la conduite d'activités entraînant des risques d'incendie l'entretien des équipements de sécurité incendie et des moyens d'évacuation les limitations concernant le contenu des bâtiments, y compris le stockage et la manipulation de produits dangereux l'établissement de plans de sécurité incendie Le CNPI est censé être rétroactif en ce qui concerne les systèmes d'alarme incendie, les colonnes montantes et les systèmes d'extinction automatique. En 1990, le CNPI a été révisé pour préciser que de tels systèmes "doivent être installés dans tous les bâtiments lorsque cela est exigé par le Code national du bâtiment du Canada et conformément à ses exigences". Cette disposition garantit que les bâtiments sont correctement protégés contre le risque inhérent au même niveau que celui exigé par le CNB pour un nouveau bâtiment. Il ne concerne pas les autres dispositifs de protection contre l'incendie tels que les mesures de contrôle des fumées ou les ascenseurs pour pompiers. Le CNPI garantit également que les changements d'utilisation des bâtiments n'augmentent pas le risque au-delà des limites des systèmes de protection incendie d'origine. Le CNB et le CNPI sont rédigés de manière à minimiser les risques de conflit entre leurs contenus respectifs. Ils doivent tous deux être pris en compte lors de la construction, de la rénovation ou de l'entretien des bâtiments. Ils sont complémentaires, en ce sens que le CNPI prend le relais du CNB une fois que le bâtiment est en service. En outre, les structures plus anciennes qui ne sont pas conformes au niveau de sécurité incendie le plus récent peuvent être rendues plus sûres grâce aux exigences du CNPI. Les dernières modifications importantes du CNPI concernent la construction de bâtiments de six étages utilisant des matériaux combustibles. En conséquence, huit mesures de protection supplémentaires relatives aux bâtiments combustibles de moyenne hauteur ont été ajoutées pour faire face aux risques d'incendie pendant la construction lorsque les dispositifs de protection contre l'incendie ne sont pas encore en place.

Code de l'énergie

Code de l'énergie

Le Code national de l'énergie pour les bâtiments (CNÉB) vise à aider à économiser sur les factures d'énergie, à réduire la demande d'énergie de pointe et à améliorer la qualité et le confort de l'environnement intérieur des bâtiments. À travers chaque cycle d'élaboration du code, le CNÉB entend mettre en œuvre une approche progressive pour atteindre l'objectif du Canada pour les nouveaux bâtiments, tel que présenté dans le "Cadre pancanadien sur la croissance propre et le changement climatique", qui consiste à réaliser des bâtiments "prêts pour une consommation énergétique nette zéro" d'ici 2030. Le CNÉB est disponible gratuitement en ligne ; il est publié par le Conseil national de recherches du Canada (CNRC) et élaboré par la Commission canadienne des codes du bâtiment et de prévention des incendies en collaboration avec Ressources naturelles Canada (RNCan). La CCB participe en permanence à l'élaboration et à la mise à jour du CNÉB. Le CNÉB définit les exigences techniques en matière de conception et de construction efficaces sur le plan énergétique, ainsi que les niveaux minimaux d'efficacité énergétique pour la conformité au code de tous les nouveaux bâtiments. Le CNEB s'applique à tous les types de bâtiments, à l'exception des logements et des petits bâtiments, qui sont régis par l'article 9.36 du Code national du bâtiment du Canada. Le CNEB offre trois voies de conformité : normative, de compromis et de performance. Le moment le plus rentable pour intégrer des mesures d'efficacité énergétique dans un bâtiment est la phase initiale de conception et de construction. Il est beaucoup plus coûteux d'effectuer des travaux de rénovation plus tard. Cela est particulièrement vrai pour l'enveloppe du bâtiment, qui comprend les murs extérieurs, les fenêtres, les portes et la toiture. Le CMNÉB aborde des considérations telles que les taux d'infiltration d'air (fuites d'air) et la transmission de la chaleur à travers l'enveloppe du bâtiment. Compte tenu des différentes zones climatiques du Canada, le CMNÉB fournit également des exigences relatives à la transmission thermique globale (effective) maximale pour les parois opaques au-dessus du sol et à la résistance thermique effective des assemblages en contact avec le sol, par exemple les fondations permanentes en bois. En outre, le CMNÉB spécifie la fenestration maximale et le rapport porte/mur en fonction de la zone climatique dans laquelle le bâtiment est situé. Les exigences en matière d'efficacité énergétique des bâtiments étant de plus en plus strictes, le bois est une solution naturelle à associer à d'autres matériaux d'isolation et de protection contre les intempéries pour créer des bâtiments ayant une performance énergétique opérationnelle élevée et offrant un confort intérieur constant aux occupants. Pour plus d'informations sur le CNÉB, visitez le site Codes Canada du Conseil national de recherches du Canada.

Construction combustible

Construction combustible

La sécurité incendie dans un bâtiment est une question complexe, bien plus complexe que la combustibilité relative des principaux matériaux structurels utilisés dans un bâtiment. Pour élaborer des dispositions de code sûres, la prévention, l'extinction, le déplacement des occupants, la mobilité des occupants, l'utilisation du bâtiment et le contrôle des combustibles ne sont que quelques-uns des facteurs qui doivent être pris en compte en plus de la combustibilité des éléments structurels. L'expérience des pertes dues aux incendies montre que le contenu des bâtiments joue un rôle important en termes de charge de combustible et de potentiel de génération de fumée dans un incendie. La protection passive contre l'incendie assurée par les degrés de résistance au feu des planchers et des murs d'un bâtiment garantit la stabilité de la structure en cas d'incendie. Cependant, le degré de résistance au feu des structures ne contrôle pas nécessairement le mouvement des fumées et de la chaleur, qui peut avoir un impact important sur le niveau de sécurité et les dommages matériels résultant d'un incendie. Le Code national du bâtiment du Canada (CNB) classe les bâtiments en bois dans la catégorie des "constructions combustibles". Bien qu'elles soient qualifiées de combustibles, les techniques de construction courantes peuvent conférer aux constructions à ossature en bois des degrés de résistance au feu allant jusqu'à deux heures. Lorsqu'ils sont conçus et construits conformément aux exigences du code, les bâtiments en bois offrent le même niveau de sécurité des personnes et de protection des biens que les bâtiments de taille comparable définis par le CNB comme des "constructions non combustibles". Le bois a été utilisé pour pratiquement tous les types de bâtiments, y compris les écoles, les entrepôts, les casernes de pompiers, les immeubles d'habitation et les installations de recherche. Le CNB définit des lignes directrices pour l'utilisation du bois dans des applications qui vont bien au-delà du secteur résidentiel traditionnel et des petits bâtiments. Le CNB autorise les constructions en bois d'une hauteur maximale de six étages, ainsi que les bardages en bois pour les bâtiments désignés comme étant de construction incombustible. Lorsqu'elle respecte les limites de surface et de hauteur pour les différentes catégories de bâtiments du CNB, la construction à ossature bois peut répondre aux exigences de sécurité des personnes en utilisant des assemblages à ossature bois (généralement protégés par des plaques de plâtre) dont le degré de résistance au feu a été testé. Les restrictions de hauteur et de surface autorisées peuvent être étendues en utilisant des murs coupe-feu pour diviser une grande surface de bâtiment en plus petites surfaces distinctes. La contribution positive reconnue à la fois à la sécurité des personnes et à la protection des biens qui découle de l'utilisation de systèmes d'extinction automatique peut également être utilisée pour augmenter la surface autorisée des bâtiments en bois. Les sprinkleurs interviennent généralement très tôt dans un incendie, ce qui permet d'en contrôler rapidement les effets dommageables. C'est pourquoi l'installation d'un système d'extinction automatique dans un bâtiment améliore considérablement la sécurité des personnes et la protection des biens dans tous les bâtiments, y compris ceux construits en matériaux incombustibles. Le CNB autorise l'utilisation d'une "construction en bois massif" dans les bâtiments où la construction combustible doit avoir un degré de résistance au feu de 45 minutes. Cette forme de construction en bois massif est également autorisée dans les grands bâtiments incombustibles de certains usages. Pour être acceptés, les éléments doivent répondre à des exigences minimales en matière de dimensions et d'installation. La construction en bois massif bénéficie de cette reconnaissance en raison de ses performances en cas d'exposition réelle au feu et de son acceptation en tant que méthode de construction sûre en cas d'incendie. Dans les bâtiments protégés par sprinklers dont la construction est autorisée à être combustible, aucun degré de résistance au feu n'est requis pour la toiture ou ses supports lorsqu'ils sont construits en bois massif. Dans ce cas, la toiture en bois massif et ses supports n'ont pas à respecter les dimensions minimales des éléments stipulées dans le CNB. Les éléments en bois massif peuvent également être utilisés chaque fois qu'une construction combustible est autorisée. Dans ce cas, cependant, ces éléments en bois massif doivent être spécifiquement conçus pour satisfaire aux degrés de résistance au feu requis. Définitions du CNB : Combustible signifie qu'un matériau ne répond pas aux critères d'acceptation de la norme CAN/ULC-S114, "Essai de détermination de l'incombustibilité des matériaux de construction". On entend par construction combustible le type de construction qui ne répond pas aux exigences de la construction incombustible. Construction en bois lourd : ce type de construction combustible dans laquelle un certain degré de sécurité incendie est atteint en limitant les dimensions des éléments structurels en bois ainsi que l'épaisseur et la composition des planchers et des toits en bois, et en évitant les espaces cachés sous les planchers et les toits. Construction incombustible : type de construction dans lequel un degré de sécurité incendie est atteint par l'utilisation de matériaux incombustibles pour les éléments de structure et autres assemblages de bâtiments. Incombustible signifie qu'un matériau répond aux critères d'acceptation de la norme CAN/ULC-S114, "Essai de détermination de l'incombustibilité des matériaux de construction". Pour de plus amples informations, veuillez consulter les ressources suivantes : Code national du bâtiment du Canada CAN/ULC-S114 Essai de détermination de l'incombustibilité des matériaux de construction Manuel de conception en bois 2017

Construction en bois massif encapsulé

Construction en bois massif encapsulé

In addition to combustible, heavy timber and noncombustible construction, a new construction type is presently being considered for inclusion into the National Building Code of Canada (NBC). Encapsulated mass timber construction (EMTC) is proposed to be defined as the “type of construction in which a degree of fire safety is attained by the use of encapsulated mass timber elements with an encapsulation rating and minimum dimensions for the structural timber members and other building assemblies.” EMTC is neither ‘combustible construction’ nor ‘heavy timber construction’ nor ‘noncombustible construction’, as defined within the NBC. EMTC is required to have an encapsulation rating. The encapsulation rating is the time, in minutes, that a material or assembly of materials will delay the ignition and combustion of encapsulated mass timber elements when it is exposed to fire under specified conditions of test and performance criteria, or as otherwise prescribed by the NBC. The encapsulation rating for EMTC is determined through the ULC S146 test method. In order for structural wood elements to be considered ‘mass timber’, they must meet minimum size requirements, which are different for horizontal (walls, floors, roofs, beams) and vertical (columns, arches) load-bearing elements and dependent on the number of sides that the element is exposed to fire. EMTC construction in Canada is expected to be limited to a height of twelve-storeys, that is, the uppermost floor level may be a maximum of 42 m (137 ft) above the first floor. An EMTC building must be sprinklered throughout according to NFPA 13 and it is likely that some mass timber will also be able to be exposed in the suites. All EMTC elements are expected to have a minimum two-hour fire resistance rating and the building floor area to be limited to 6,000 m2 for Group C occupancy and 7,200 m2 for Group D occupancy. There are restrictions on the use of exterior cladding elements in EMTC, as well as other restrictions on the use of; combustible roofing materials, combustible window sashes and frames, combustible components in exterior walls, nailing elements, combustible flooring elements, combustible stairs, combustible interior finishes, combustible elements in partitions, and concealed spaces. If any encapsulation material is damaged or removed, it will be required to be repaired or replaced so that the encapsulation rating of the materials is maintained. Additionally, requirements related to construction site fire safety are to be applied to construction access, standpipe installation and protective encapsulation. EMTC and its related provisions are anticipated to be included in the NBC 2020. NBC definitions: Combustible means that a material fails to meet the acceptance criteria of CAN/ULC-S114, “Test for Determination of Non-Combustibility in Building Materials.” Combustible construction means that type of construction that does not meet the requirements for noncombustible construction. Heavy timber construction means that type of combustible construction in which a degree of fire safety is attained by placing limitations on the sizes of wood structural members and on thickness and composition of wood floors and roofs and by the avoidance of concealed spaces under floors and roofs. Noncombustible construction means that type of construction in which a degree of fire safety is attained by the use of noncombustible materials for structural members and other building assemblies. Noncombustible means that a material meets the acceptance criteria of CAN/ULC-S114, “Test for Determination of Non-Combustibility in Building Materials.” For further information, refer to the following resources: Guide to Encapsulated Mass Timber Construction in the Ontario Building Code ULC S146 Standard Method of Test for the Evaluation of Encapsulation Materials and Assemblies of Materials for the Protection of Mass Timber Structural Members and Assemblies Fire performance of mass-timber encapsulation methods and the effect of encapsulation on char rate of cross-laminated timber (Hasburgh et al., 2016) CAN/ULC-S114 Test for Determination of Non-Combustibility in Building Materials NFPA 13 Standard for the Installation of Sprinkler Systems

Acoustique

Acoustique

Le bois est composé de nombreux petits tubes cellulaires principalement remplis d'air. La composition naturelle du matériau permet au bois d'agir comme un isolant acoustique efficace et lui confère la capacité d'amortir les vibrations. Ces caractéristiques d'amortissement du son permettent de spécifier des éléments de construction en bois là où l'isolation ou l'amplification du son est nécessaire, comme dans les bibliothèques et les auditoriums. Une autre propriété acoustique importante du bois est sa capacité à limiter la transmission des bruits d'impact, un problème généralement associé aux matériaux et systèmes de construction plus durs et plus denses. L'utilisation d'une chape ou d'un système de plancher flottant superposé à une ossature en bois léger ou à des éléments structurels en bois massif est une approche courante pour assurer la séparation acoustique entre les étages d'un bâtiment. Selon le type de matériaux utilisés dans le système de plancher construit, la chape peut être appliquée directement sur les éléments structurels en bois ou sur une barrière contre l'humidité ou une couche résiliente. L'utilisation de plaques de plâtre, d'isolants absorbants (en matelas ou en vrac) et de profilés souples sont également des éléments essentiels d'un mur ou d'un plancher à ossature bois, qui contribuent également aux performances acoustiques de l'ensemble. La conception acoustique tient compte d'un certain nombre de facteurs, notamment l'emplacement et l'orientation du bâtiment, ainsi que l'isolation ou la séparation des fonctions génératrices de bruit et des éléments du bâtiment. Les indices de transmission du son (STC), de transmission du son apparent (ASTC) et d'isolation contre les chocs (IIC) sont utilisés pour déterminer le niveau de performance acoustique des produits et systèmes de construction. Les différents indices peuvent être déterminés sur la base d'essais normalisés en laboratoire ou, dans le cas des indices ASTC, calculés à l'aide de méthodes décrites dans le CNB. Actuellement, le Code national du bâtiment du Canada (CNB) ne réglemente que la conception acoustique des murs intérieurs et des planchers qui séparent les unités d'habitation (p. ex. appartements, maisons, chambres d'hôtel) d'autres unités ou d'autres espaces dans un bâtiment. Les exigences relatives à l'indice STC pour les murs intérieurs et les planchers visent à limiter la transmission des bruits aériens entre les espaces. Le CNB n'impose aucune exigence en matière de contrôle de la transmission des bruits d'impact par les planchers. Les bruits de pas et autres impacts peuvent être très gênants dans les résidences multifamiliales. Les constructeurs soucieux de la qualité et de la réduction des plaintes des occupants veilleront à ce que les planchers soient conçus de manière à minimiser la transmission des bruits d'impact. En plus de se conformer aux exigences minimales du CNB dans les habitations, les concepteurs peuvent également établir des indices acoustiques pour la conception de projets non résidentiels et spécifier des matériaux et des systèmes pour s'assurer que le bâtiment fonctionne à ce niveau. Outre la limitation de la transmission des bruits aériens par les murs structurels internes et les planchers, la transmission latérale du son par les joints périmétriques et la transmission du son par les cloisons de séparation non structurelles doivent également être prises en compte lors de la conception acoustique. L'annexe A du CNB, aux sections A-9.10.3.1. et A-9.11., contient de plus amples informations et exigences relatives aux indices STC, ASTC et IIC. Cela comprend, entre autres, les tableaux 9.10.3.1-A et 9.10.3.1.-B qui fournissent des données génériques sur les indices STC de différents types de murs à ossature de bois et les indices STC et IIC de différents types d'assemblages de planchers en bois, respectivement. Les tableaux A-9.11.1.4.-A à A-9.11.1.4.-D présentent des options génériques pour la conception et la construction des jonctions entre les assemblages de séparation et les assemblages latéraux. La construction selon ces options est susceptible d'atteindre ou de dépasser la cote ASTC de 47 exigée par le CNB. Tableau A - Le tableau 9.11.1.4. présente des données sur les traitements de plancher génériques qui peuvent être utilisés pour améliorer les performances d'isolation acoustique des planchers à ossature légère, c'est-à-dire des couches supplémentaires de matériau sur le sous-plancher (p. ex. chape de béton, panneaux OSB ou contreplaqué) et le plancher ou les revêtements finis (p. ex. moquette, bois d'ingénierie).

L’édition 2024 du programme de bourses commémoratives Catherine Lalonde récompense des étudiantes qui stimulent l’innovation dans l’industrie du bois

Trois femmes portant des gilets de sécurité et des casques de protection sur un chantier de construction, symbolisant la collaboration et l'innovation dans l'industrie du bois.

Ottawa, ON, 12 décembre 2024 - Le Conseil canadien du bois (CCB) a annoncé les récipiendaires des bourses d'études commémoratives Catherine Lalonde 2024 : Laura Walters (Université McMaster) et Jiawen Shen (Université de la Colombie-Britannique). Les deux étudiantes ont été reconnues pour leur excellence académique et leurs projets de recherche impactants dans l'industrie des produits structuraux du bois. Créées il y a dix-neuf ans, les bourses commémoratives sont attribuées chaque année à des étudiants diplômés dont les travaux de recherche sur le bois témoignent de la même passion pour le bois et l'industrie des produits du bois que celle dont Catherine Lalonde a fait preuve sans relâche en tant qu'ingénieure professionnelle et présidente du CWC. Laura Walters Laura est une étudiante diplômée de troisième année qui poursuit une maîtrise en sciences appliquées en génie civil dans le cadre d'une collaboration entre l'Université McMaster et l'Université du Nord de la Colombie-Britannique (UNBC). Son projet de recherche porte sur l'utilisation de suspensions de poutres préfabriquées dans les systèmes de poteaux et de poutres en bois massif, en mettant l'accent sur les implications des hypothèses de conception et de modélisation sur l'évaluation des chemins de charge structuraux. Son travail fournit des indications précieuses sur les considérations et les hypothèses de conception requises pour une conception plus précise et plus fiable des colonnes en bois massif lorsque des suspensions de poutres préfabriquées sont utilisées. Jiawen Shen Jiawen est étudiante en première année de master en sciences du bois à l'université de Colombie-Britannique. Son projet de recherche porte sur le développement de panneaux de revêtement et d'isolation en écorce composite sans liant qui sont durables, résistants à l'inflammation, neutres en carbone et fabriqués à partir d'un sous-produit sous-utilisé qui, autrement, serait brûlé, mis en décharge ou utilisé à des fins de faible valeur. En collaborant avec un cabinet d'architectes de Vancouver sur ce projet, son travail est essentiel pour faire progresser l'application commerciale de ces produits de revêtement innovants. "Cette année marque une étape historique pour le programme de bourses commémoratives Catherine Lalonde, puisque, pour la première fois, il est décerné à deux femmes exceptionnelles ", a déclaré Martin Richard, vice-président du développement des marchés et des communications à la CCB. "Leurs réalisations mettent en évidence le talent exceptionnel qui stimule l'innovation dans le domaine de la recherche et de la construction en bois. Nous sommes inspirés par leurs contributions et par la diversité croissante qui façonne l'avenir des solutions à base de bois."

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône d'expertise
Domaine d'expertise
Icône de la province
Province
Type de membre Icône
Partenaires nationaux de WoodWork
Icône Persona
Persona
Tags Icône
Tags
Rapports annuels Icône Plus
Livre des prix Icône Plus
Études de cas Icône Plus
Publications gratuites Icône Plus
Revue Icône Plus
Systèmes de construction Icône Plus
Codes et normes Icône Plus
Nouvelles de l'industrie Icône Plus
Pourquoi le bois (FAQ) Icône Plus
Produits du bois Icône Plus
Acoustique Icône Plus
Exemples de conception Icône Plus
Ingénierie Icône Plus
Résistance au feu Icône Plus
Assurance Icône Plus
Bois massif Icône Plus
Icône de date
Date
Séparateur de ligne