en-ca

Aucun terme de recherche n'a été saisi.

Veuillez saisir un terme de recherche pour obtenir des résultats.

108 résultats trouvés...
Trier par Icône de la liste déroulante

L'héritage durable du bois

Il n'y a aucune raison pour qu'une structure en bois ne dure pas pratiquement éternellement - ou au moins des centaines d'années, bien plus longtemps que nous n'aurons besoin du bâtiment. Si l'on sait comment protéger le bois de la pourriture et du feu, on peut s'attendre à ce que les bâtiments en bois d'aujourd'hui durent aussi longtemps qu'on le souhaite.

Si le bois n'a pas la longévité historique de la pierre, il subsiste néanmoins de très anciens bâtiments en bois. En Europe, le bois a longtemps été un matériau de construction dominant, et ce dès le début de la civilisation. La plupart de ces bâtiments anciens ont disparu depuis longtemps, victimes du feu, de la dégradation ou de la déconstruction à d'autres fins. Dans les premiers temps de la construction en bois, les éléments structurels primaires étaient placés directement dans le sol, ce qui entraînait à terme leur pourrissement. Ce n'est qu'à partir des années 1100 que les bâtisseurs ont commencé à utiliser des semelles en pierre, de sorte que les exemples de bâtiments en bois qui subsistent ne datent généralement pas d'avant cette époque.

Les églises norvégiennes à douves sont peut-être les plus célèbres constructions anciennes européennes en bois encore visibles aujourd'hui. Des centaines d'entre elles ont été construites aux 12e et 13e siècles et 25 à 30 d'entre elles subsistent encore aujourd'hui. Leurs revêtements extérieurs ont généralement été remplacés, mais le bois de la structure est d'origine.

L'héritage durable du bois
L'église d'Urnes (vers 1150), dans le comté de Sogn og Fjordane, est la plus ancienne de Norvège. Source des photos

 

 

 

 

 

 

 

En Amérique du Nord, l'abondance du bois et les compétences des premiers colons en matière d'exploitation forestière ont conduit à une utilisation généralisée du bois, qui a toujours été et reste le principal matériau de construction des petits bâtiments. Les plus anciennes maisons en bois conservées aux États-Unis datent du début des années 1600. Près de 80 maisons datent de cette époque dans les États de la Nouvelle-Angleterre.

L'héritage durable du bois
La maison Fairbanks (vers 1636) à Dedham, Massachusetts, États-Unis, est la plus ancienne maison à ossature en bois conservée en Amérique du Nord. Elle a été construite pour Jonathan et Grace Fairebanke et a été occupée par eux et sept générations successives de la famille jusqu'au début du XXe siècle. La famille Fairbanks est toujours propriétaire de la propriété. La maison est ouverte en tant que musée. Source des photos.

 

 

 

 

 

 

 

De nombreux autres bâtiments en bois nord-américains datent du 18e siècle. Même dans le climat rigoureux de la Louisiane, où les conditions chaudes et humides constituent un défi pour la durabilité du bois, on peut encore trouver certains des établissements français d'origine datant de la première moitié des années 1700. Et bien sûr, il existe d'innombrables bâtiments en bois des années 1800 et du début des années 1900, dont la plupart sont probablement encore occupés.

L'héritage durable du bois
La plantation Parlange (vers 1750) dans la paroisse de Pointe Coupée, Louisiane, États-Unis, a été construite par le marquis Vincent de Ternant et reste la propriété de ses descendants, la famille Parlange. Cette grande maison de plantation a été construite en bousilliage (boue, mousse et poils de cerf) et en bois de cyprès sur un sous-sol surélevé en briques faites à la main. Source des photos.

 

 

 

 

 

 

 

Le Japon a une histoire bien connue en matière d'utilisation du bois et abrite la plus ancienne structure en bois conservée au monde, un temple bouddhiste situé près de l'ancienne capitale de Nara. Le temple Horyu-ji aurait été construit au début du huitième siècle (vers 711) et peut-être même avant, car l'un des poteaux de hinoki (cyprès japonais) semble avoir été abattu en l'an 594. La longévité de ce temple est en grande partie due à un entretien et à des réparations minutieux. Toute cette région du Japon compte de nombreux autres bâtiments anciens en bois encore debout.

 

L'héritage durable du bois
Le temple Horyu-ji à Nara

 

 

 

 

 

 

 

Pour les bâtiments modernes, nous n'avons normalement pas besoin d'une longévité aussi exceptionnelle. La durée de vie d'une maison nord-américaine typique ne dépasse pas 100 ans (la moyenne est inférieure), et nos bâtiments non résidentiels sont généralement démolis en 50 ans ou moins. Le bois est parfaitement adapté à ces attentes de longévité. Cliquez ici pour les données d'enquête montrant que les bâtiments en bois durent aussi longtemps, voire plus longtemps, que les bâtiments construits avec d'autres matériaux.

Référence :
Architecture en bois : Une histoire de la construction en bois et de ses techniques en Europe et en Amérique du Nord. Hans Jrgen Hansen, Ed., Faber et Faber, Londres, 1971.

Études de cas

1865 House, Vancouver BC

L'héritage durable du bois

 

 

 

 

Irving House est une grande résidence à ossature de bois d'un étage et demi plus un sous-sol, conçue dans le style néo-gothique, située sur son site d'origine à l'angle de l'avenue Royal et de la rue Merivale, dans le quartier Albert Crescent de New Westminster. Irving House est remarquable pour la mesure dans laquelle ses éléments extérieurs et intérieurs d'origine ont été conservés. Exploitée en tant que maison-musée historique, elle comprend également une collection de nombreux meubles originaux de la famille Irving.

Irving House
Localisation 302 Royal Avenue, New Westminster, B.C.
Achèvement de la construction 1865
Autres informations Propriétaire initial - Capitaine William et Elizabeth Jane Irving
Statut actuel Patrimoine de New Westminster
Méthode de construction Plate-forme-Cadre
Style Style néo-gothique
Encadrement Bois de Douglas de 2 pouces
Revêtement Bardage en bois de séquoia à larges lamelles et garnitures en bois
Comdition Aucun signe de dégradation sur les éléments de l'ossature.
Réparation majeure 1880

Avec l'aimable autorisation du New Westminster Museum and Archives, New Westminster, Colombie-Britannique

Autre lien : http://www.flickr.com/photos/bobkh/297751638/in/set-72157594340707368/

Maison 1912, Vancouver BC

L'héritage durable du bois

 

 

 

 

Cette maison classique du début du siècle était vouée à la démolition en 1990. Elle était déjà vidée de sa substance lorsqu'elle a été achetée par un nouveau propriétaire qui souhaitait la transformer en appartements. À la demande du nouveau propriétaire, le bâtiment a été inspecté par le Dr Paul Morris de Forintek en 1991 pour y déceler des signes de détérioration. Après 80 ans de service, il n'y avait aucun signe de détérioration sur les éléments de la charpente ni sur les cadres des fenêtres, dont la plupart étaient d'origine.

Maison de 1912
Localisation Vancouver
Date de construction 1912 (estimation)
Enregistrements originaux Service des eaux 1909
Dans le dossier de la ville 1915
Autres informations Propriétaire d'origine - Henry B. Ford
Statut actuel Inventaire des ressources patrimoniales de Vancouver
Méthode de construction Plate-forme-Cadre
Style Patrimoine, avec des toits à plusieurs pentes et de larges surplombs
Encadrement Bois brut vert de 2 pouces en sapin de Douglas
Revêtement Planches brutes de Douglas vert
Papier de construction Papier imprégné d'asphalte
Revêtement Bardeaux de cèdre rouge occidental
Bardage en cèdre rouge de l'Ouest
Toiture Bardeaux de cèdre rouge de l'Ouest (nouveaux en 1991)
Condition Aucun signe de dégradation sur les éléments de l'ossature.

Temple de Nara, Japon

Le temple bouddhiste Horyuji de Nara est probablement la plus ancienne structure en bois du monde. Nara est devenue la première capitale permanente du Japon en 710.

L'héritage durable du bois

 

 

 

 

 

Temple bouddhiste Horyuji à Nara
Localisation Nara, Japon
Date de construction 670 - 714 (estimation)
Enregistrements originaux Construit sur le site du temple original de 607
Autres informations Propriétaire initial - Prince Shotoku
Statut actuel Bâtiment du patrimoine culturel mondial
Méthode de construction Bois lourd
Style Bois de Douglas de 2 pouces
Encadrement Hinoki (durable - cyprès japonais)
Toiture Toit à plusieurs niveaux avec tuiles en terre cuite
Condition Aucun signe de dégradation sur les éléments de l'ossature.
Calendrier d'entretien Réparations importantes tous les 100 ans, reconstruction tous les 300 ans

Immeubles de moyenne hauteur

Au début des années 1900, les constructions en bois à ossature légère et en bois lourd, d'une hauteur pouvant atteindre dix étages, étaient monnaie courante dans les grandes villes du Canada. La longévité et l'attrait continu de ces types de bâtiments sont évidents dans le fait que beaucoup d'entre eux sont encore utilisés aujourd'hui. Au cours de la dernière décennie, on a assisté à un renouveau de l'utilisation du bois pour les bâtiments plus hauts au Canada, y compris les constructions en bois à ossature légère de taille moyenne, jusqu'à six étages de hauteur.

Les constructions en bois à ossature légère de moyenne hauteur ne se résument pas à une simple ossature de 2×4 et à des panneaux de revêtement en bois. Les progrès de la science du bois et de la technologie du bâtiment ont permis de mettre au point des produits et des systèmes de construction plus solides, plus sûrs et plus sophistiqués, qui élargissent les possibilités de la construction en bois et offrent davantage de choix aux constructeurs et aux concepteurs. Les constructions modernes en bois à ossature légère de moyenne hauteur intègrent des solutions sûres qui ont fait l'objet de recherches approfondies. La conception technique et la technologie qui ont été développées et mises sur le marché positionnent le Canada comme un leader dans l'industrie de la construction à ossature bois de moyenne hauteur.

En 2009, grâce à ses codes de construction provinciaux, la Colombie-Britannique est devenue la première province canadienne à autoriser la construction d'immeubles de moyenne hauteur en bois. Depuis cette modification du code du bâtiment de la Colombie-Britannique (BCBC), qui a fait passer de quatre à six étages la hauteur autorisée pour les immeubles résidentiels à ossature en bois, plus de 300 de ces structures ont été achevées ou sont en cours de réalisation en Colombie-Britannique. En 2013 et 2015, le Québec, l'Ontario et l'Alberta, respectivement, ont également décidé d'autoriser la construction de bâtiments à ossature en bois de hauteur moyenne jusqu'à six étages. Ces changements réglementaires indiquent que le marché a clairement confiance dans ce type de construction.

Des preuves scientifiques et des recherches indépendantes ont montré que les bâtiments à ossature bois de moyenne hauteur peuvent répondre aux exigences de performance en matière d'intégrité structurelle, de sécurité incendie et de sécurité des personnes. Ces preuves ont également contribué à l'ajout de nouvelles dispositions normatives pour la construction en bois, et ont ouvert la voie à de futurs changements qui incluront davantage d'utilisations autorisées et, à terme, de plus grandes hauteurs autorisées pour les bâtiments en bois. À la suite de ces recherches et de la mise en œuvre réussie de nombreux bâtiments résidentiels de moyenne hauteur à ossature en bois, principalement en Colombie-Britannique et en Ontario, la Commission canadienne des codes du bâtiment et de prévention des incendies (CCCBPI) a approuvé des modifications similaires aux codes modèles nationaux de construction. L'édition 2015 du Code national du bâtiment du Canada (CNB) autorise la construction de bâtiments résidentiels, commerciaux et de services personnels de six étages à l'aide de matériaux de construction combustibles traditionnels. Les modifications apportées au CNB tiennent compte des progrès réalisés dans le domaine des produits du bois et des systèmes de construction, ainsi que des systèmes de détection, d'extinction et de confinement des incendies.

En ce qui concerne les bâtiments de moyenne hauteur à ossature en bois, plusieurs changements apportés au CNB 2015 visent à réduire davantage les risques posés par les incendies :

  • l'utilisation accrue de gicleurs automatiques dans les zones dissimulées des bâtiments résidentiels ;
  • l'utilisation accrue d'extincteurs automatiques sur les balcons ;
  • l'augmentation de l'approvisionnement en eau pour la lutte contre les incendies ; et
  • 90 % de bardage extérieur incombustible ou à combustion limitée à tous les étages.

La plupart des immeubles de moyenne hauteur à ossature bois sont situés au cœur des petites municipalités et dans les banlieues proches des plus grandes, ce qui offre des avantages économiques et de durabilité. La construction d'immeubles de moyenne hauteur à ossature bois soutient les objectifs de nombreuses municipalités : densification, logements abordables pour répondre à la croissance de la population, durabilité de l'environnement bâti et résilience des communautés.

Nombre de ces bâtiments ont été construits en bois à ossature légère dès le départ, avec une structure à ossature bois de cinq ou six étages construite sur une dalle de béton au sol ou sur un garage de stationnement en sous-sol en béton ; d'autres ont été construits au-dessus d'un ou deux étages de locaux commerciaux incombustibles.

Les bâtiments en bois de moyenne hauteur sont intrinsèquement plus complexes et impliquent l'adaptation des détails structurels et architecturaux qui répondent aux critères de conception structurels, acoustiques, thermiques et de résistance au feu. Plusieurs aspects clés de la conception et de la construction deviennent plus critiques dans cette nouvelle génération de bâtiments en bois de moyenne hauteur :

  • un risque accru de retrait cumulatif et de mouvement différentiel entre les différents types de matériaux, en raison de l'augmentation de la hauteur des bâtiments ;
  • l'augmentation des charges permanentes, vivantes, éoliennes et sismiques qui sont la conséquence d'une plus grande hauteur des bâtiments ;
  • exigences relatives à la disposition des murs de cisaillement continus et empilés ;
  • l'augmentation du degré de résistance au feu des séparations coupe-feu, comme l'exigent les bâtiments de plus grande hauteur et de plus grande superficie ;
  • les indices de transmission du son, tels qu'ils sont exigés pour les bâtiments à usage d'habitation multifamiliale, ainsi que pour d'autres usages ;
  • le risque d'une exposition plus longue aux éléments pendant la construction ;
  • l'atténuation des risques liés aux incendies pendant la construction ; et
  • la modification de la séquence et de la coordination de la construction, résultant de l'utilisation de technologies et de processus de préfabrication.

Il existe de nombreuses approches et solutions alternatives à ces nouvelles considérations de conception et de construction associées aux systèmes de construction en bois de moyenne hauteur. Les publications de référence produites par le Conseil canadien du bois fournissent une discussion plus détaillée, des études de cas et des détails sur les techniques de conception et de construction des immeubles de moyenne hauteur.

 

Pour plus d'informations, consultez les ressources suivantes :

Guide des meilleures pratiques pour les immeubles de moyenne hauteur (Conseil canadien du bois)

Guide de référence 2015 : Construction en bois de moyenne hauteur dans le Code du bâtiment de l'Ontario (Conseil canadien du bois)

Mid-Rise 2.0 - Innovative Approaches to Mid-Rise Wood Frame Construction (Conseil canadien du bois)

Mid-Rise Construction in British Columbia (Conseil canadien du bois)

Code national du bâtiment du Canada

Manuel de conception du bois (Conseil canadien du bois)

CSA O86 Conception technique en bois

Le bois pour les constructions de moyenne hauteur (Bois ÇA MARCHE ! Atlantique)

Sécurité incendie et sûreté : Note technique sur la sécurité incendie sur les chantiers de construction en Colombie-Britannique et en Ontario (Conseil canadien du bois)

Ponts

Les ponts en bois sont depuis longtemps des éléments essentiels des réseaux routiers, ferroviaires et forestiers du Canada. Dépendant de la disponibilité des matériaux, de la technologie et de la main-d'œuvre, la conception et la construction des ponts en bois ont évolué de manière significative au cours des 200 dernières années dans toute l'Amérique du Nord. Les ponts en bois prennent de nombreuses formes et utilisent différents systèmes de support, notamment des ponts en rondins à portée simple, différents types de ponts à treillis, ainsi que des tabliers et des éléments de pont en matériaux composites ou stratifiés. Les ponts en bois restent un élément important de notre réseau de transport au Canada.

Les avantages de la construction de ponts en bois modernes sont les suivants :

  • un coût initial réduit, en particulier pour les régions éloignées ;
  • la rapidité de la construction, grâce à l'utilisation de la préfabrication ;
  • avantages en matière de durabilité ;
  • l'esthétique ;
  • des fondations plus légères ;
  • des charges sismiques plus faibles, associées à des connexions moins complexes avec les sous-structures ;
  • les structures temporaires et les grues de plus petite taille ; et
  • des coûts de transport moins élevés associés à des matériaux moins lourds.

Les différents types de matériaux utilisés pour la construction des ponts en bois sont les suivants : bois de sciage, rondins, bois lamellé-collé droit et courbe (lamellé-collé), bois de placage stratifié (LVL), bois à copeaux parallèles (PSL), bois lamellé-croisé (CLT), bois lamellé-cloué (NLT) et systèmes composites tels que les tabliers stratifiés sous contrainte, les tabliers stratifiés bois-béton et les polymères renforcés par des fibres.

Les deux principales essences de bois utilisées pour la construction de ponts en bois au Canada sont le sapin de Douglas et la combinaison d'essences épicéa-pin-sapin. D'autres espèces appartenant aux combinaisons d'espèces Hem-Fir et Northern sont également reconnues par la norme CSA O86, mais elles sont moins couramment utilisées dans la construction de ponts.

Toutes les fixations métalliques utilisées pour les ponts doivent être protégées contre la corrosion. La méthode la plus courante pour assurer cette protection est la galvanisation à chaud, un processus par lequel un métal sacrificiel est ajouté à l'extérieur de la fixation. Les différents types de fixations utilisés dans la construction de ponts en bois comprennent, entre autres, les boulons, les tire-fonds, les anneaux fendus, les plaques de cisaillement et les clous (pour les stratifiés de pont uniquement).

Tous les ponts routiers au Canada doivent être conçus pour répondre aux exigences des normes CSA S6 et CSA O86. La norme CSA S6 exige que les principaux éléments structurels de tout pont au Canada, quel que soit le type de construction, soient capables de résister à un minimum de 75 ans de charge pendant sa durée de vie.

Le style et la portée des ponts varient considérablement en fonction de l'application. Dans les endroits difficiles d'accès et les vallées profondes, les ponts à chevalets en bois étaient courants à la fin des années 19th siècle et au début des années 20th siècle. Historiquement, les ponts à chevalets dépendaient fortement de l'abondance des ressources en bois et, dans certains cas, étaient considérés comme temporaires. La construction initiale des chemins de fer transcontinentaux d'Amérique du Nord n'aurait pas été possible sans l'utilisation de bois pour construire les ponts et les chevalets.

De nombreux exemples de ponts en bois à treillis ont été construits depuis plus d'un siècle. Les ponts à poutres en treillis permettent des portées plus longues que les ponts à poutres simples et, historiquement, leurs portées étaient comprises entre 30 et 60 m (100 et 200 pieds). Les ponts conçus avec des fermes situées au-dessus du tablier offrent une excellente occasion de construire un toit au-dessus de la chaussée. L'installation d'un toit au-dessus de la chaussée est un excellent moyen d'évacuer l'eau de la structure principale du pont et de la protéger du soleil. La présence de ces toits est la principale raison pour laquelle ces ponts couverts centenaires sont encore en service aujourd'hui. Le fait qu'ils fassent toujours partie de notre paysage témoigne autant de leur robustesse que de leur attrait.

Bien que conçue à l'origine comme une mesure de réhabilitation des tabliers de ponts vieillissants, la technique de stratification sous contrainte a été étendue aux nouveaux ponts par l'application de contraintes au moment de la construction initiale. Les tabliers stratifiés sous contrainte offrent un meilleur comportement structurel, grâce à leur excellente résistance aux effets des charges répétées.

Les trois principales considérations liées à la durabilité des ponts en bois sont la protection par la conception, le traitement de préservation du bois et les éléments remplaçables. Un pont peut être conçu de manière à s'auto-protéger en détournant l'eau des éléments structurels. Le bois traité a la capacité de résister aux effets des produits chimiques de déglaçage et aux attaques des agents biotiques. Enfin, le pont doit être conçu de manière à ce que, à un moment donné, un seul élément puisse être remplacé relativement facilement, sans perturbation ni coût importants.

 

Pour plus d'informations, consultez les ressources suivantes :

  • Ponts routiers en bois (Conseil canadien du bois)
  • Guide de référence sur les ponts en bois de l'Ontario (Conseil canadien du bois)
  • CSA S6 Code canadien de conception des ponts routiers
  • CSA O86 Conception technique du bois

Codes modèles nationaux au Canada

Au nom de la Commission canadienne des codes du bâtiment et de prévention des incendies (CCCBPI), le Conseil national de recherches du Canada (CNRC), Codes Canada publie des codes modèles nationaux qui énoncent les exigences minimales relatives à leur portée et à leurs objectifs. Il s'agit notamment du Code national du bâtiment (CNB), du Code national de prévention des incendies (CNPI), du Code national de l'énergie pour les bâtiments (CNEB), du Code national de la plomberie (CNP) et d'autres documents. L'Association canadienne de normalisation (CSA) publie d'autres codes modèles qui traitent des systèmes électriques, du gaz et des ascenseurs.

Le CNB est le code de construction modèle au Canada. qui constitue la base de la plupart des conceptions de bâtiments du pays. Le CNB est un code de construction modèle très apprécié parce qu'il s'agit d'un processus consensuel de production d'un ensemble d'exigences modèles qui assurent la santé et la sécurité du public dans les bâtiments. Ses origines sont profondément ancrées dans l'histoire et la culture canadiennes et dans la nécessité de loger la population croissante du Canada de manière sûre et économique. Des événements historiques ont façonné bon nombre des exigences du CNB en matière de santé et de sécurité.

Les codes modèles tels que le CNB et le CNEB n'ont pas force de loi tant qu'ils n'ont pas été adoptés par une autorité gouvernementale compétente. Au Canada, cette responsabilité incombe aux provinces, aux territoires et, dans certains cas, aux municipalités. La plupart des régions choisissent d'adopter le CNB ou d'adapter leur propre version dérivée du CNB pour répondre à leurs besoins régionaux.

Les codes modèles du Canada sont élaborés par des experts, pour des experts, dans le cadre d'un processus collaboratif et consensuel qui inclut des contributions de tous les segments de la communauté de la construction. Les codes modèles canadiens s'appuient sur la meilleure expertise du Canada et du monde entier pour fournir des réglementations efficaces en matière de construction et de sécurité qui sont harmonisées dans l'ensemble du pays.

Les publications de Codes Canada sont élaborées par la Commission canadienne des codes du bâtiment et de prévention des incendies (CCCBPI). La CCCBPI supervise les travaux d'un certain nombre de comités techniques permanents. Représentant toutes les principales facettes de l'industrie de la construction, les membres de la Commission comprennent des responsables de la construction et de la lutte contre les incendies, des architectes, des ingénieurs, des entrepreneurs et des propriétaires de bâtiments, ainsi que des membres du public. Les représentants du Conseil canadien du bois sont membres de plusieurs comités permanents et groupes d'étude relevant de la CCCBPI et participent activement aux mises à jour et révisions techniques relatives aux aspects des codes modèles canadiens qui s'appliquent aux produits et systèmes de construction en bois.

Au cours d'un cycle quinquennal de révision du code, le public canadien a de nombreuses occasions de contribuer au processus. Au moins deux fois au cours du cycle quinquennal, les propositions de modification du code sont publiées et le public est invité à faire part de ses commentaires. Cette procédure est cruciale car elle permet à toutes les personnes concernées d'apporter leur contribution et d'élargir le champ d'expertise des comités. Des milliers de commentaires sont reçus et examinés par les comités au cours de chaque cycle. Une proposition de modification peut être approuvée telle quelle, modifiée et soumise à nouveau à l'examen du public à une date ultérieure, ou rejetée entièrement.

Traitabilité

Traitabilité des principaux résineux d'Amérique du Nord

Certains bois sont plus faciles à traiter que d'autres. La structure particulière des cellules d'un morceau de bois donné détermine la perméabilité du bois aux produits chimiques. Ce tableau décrit la perméabilité des bois tendres couramment utilisés en Amérique du Nord. Les indices de perméabilité sont les suivants :

1 - Perméable
2 - Modérément imperméable
3 - Imperméable
4 - Extrêmement imperméable

Arbre Perméabilité Perméabilité Prédominant dans l'arbre
  Aubier Bois de cœur  
Sapin de Douglas 2 4 Bois de cœur 
Pruche occidentale 2 3 Bois de cœur
Pruche orientale 2 4 Bois de cœur
Épicéa blanc 2 3-4 Bois de cœur
Épicéa d'Engelmann 2 3-4 Bois de cœur
Épicéa noir 2 4 Bois de cœur
Épicéa rouge 2 4 Bois de cœur
Épicéa de Sitka 2 3 Bois de cœur
Pin tordu 1 3-4 Bois de cœur
Pin gris 1 3 Bois de cœur
Pin rouge 1 3 Aubier
Pin du Sud 1 3 Aubier
Pin ponderosa 1 3 Aubier
Sapin Amabilis (sapin argenté du Pacifique) 2 2-3 Bois de cœur
Sapin des Alpes 2 3 Bois de cœur
Sapin baumier 2 4 Bois de cœur
Cèdre rouge occidental 2 3-4 Bois de cœur
Cèdre blanc de l'Est 2 3-4 Bois de cœur
Cyprès jaune 1 3 Bois de cœur
Ouest S-P-F 2 3-4 Bois de cœur
Est S-P-F 2 4 Bois de cœur
Hémérocalle 2 3 Bois de cœur
Mélèze occidental 2 4 Bois de cœur
Mélèze 2 4 Bois de cœur

Incision

Il est possible d'améliorer la pénétration du produit de conservation dans le bois imperméable en pratiquant de petites entailles dans le bois. Une série de petites fentes peu profondes sont pratiquées dans le bois à l'aide d'une machine à inciser. Il s'agit d'un moyen efficace d'augmenter la capacité de traitement des pièces de bois qui sont principalement constituées de bois de cœur. Les essences dont la perméabilité du bois de cœur est supérieure à 3 nécessitent une incision à haute densité (plus de 7 500 incisions par mètre carré). L'incision réduit la résistance du bois d'œuvre et cet effet doit être pris en compte dans les calculs d'ingénierie.

Séchage pour maximiser l'efficacité du traitement

À moins que l'acheteur puisse être assuré que le bois à traiter sera séché à l'air jusqu'à un taux d'humidité inférieur à 30%, il est fortement recommandé de spécifier le bois KD pour le traitement de préservation. Le problème du traitement du bois qui n'est pas séché au four est que les aspects pratiques de la production et de la livraison risquent d'entraîner une mauvaise qualité du produit. La durabilité du bois d'œuvre canadien traité repose sur l'existence d'une enveloppe de traitement de préservation qui empêche les champignons de pourriture du bois d'accéder à l'âme non traitée. Si l'enveloppe traitée ne parvient pas à empêcher la pénétration par les trous ou l'abrasion, ou si le champignon de pourriture du bois se trouve déjà dans l'âme non traitée, il peut en résulter une défaillance prématurée. Le traitement du bois vert comporte quatre grands écueils : aubier saturé, bois gelé, développement de chancres et infection avant traitement.

Aubier saturé

Pour que le produit de préservation pénètre dans les cellules du bois, celles-ci doivent être vides d'eau, c'est-à-dire que le taux d'humidité du bois doit être inférieur à 30%. Dans le bois vert, les cellules de l'aubier peuvent être trop pleines de sève pour accepter un produit de conservation. L'aubier est la partie la plus sensible à la pourriture et celle qui a le plus besoin de la pénétration du conservateur. Le séchage partiel à l'air ou au four jusqu'à un taux d'humidité compris entre 20 et 30% est idéal, mais il est rare que l'on dispose du temps ou des conditions nécessaires pour le faire. L'achat de matériel KD commercial (maximum 20%) est normalement la seule option pour s'assurer que l'aubier acceptera le traitement.

Bois congelé

La grande majorité de la production est traitée au cours de l'hiver afin de préparer la saison de construction extérieure du printemps et de l'été. À l'exception de la côte de la Colombie-Britannique, la plupart des régions du Canada auront à faire face à du bois gelé à cette époque. De nombreuses usines de traitement n'ont pas de séchoir, et les matériaux sont donc traités dans l'état où ils sont livrés à l'usine. Les agents de conservation ne pénètrent pas dans la glace tant qu'elle n'est pas complètement dégelée. Cela se produit généralement au contact de la solution de traitement. Le bois vert congelé contient beaucoup de glace et il n'y a pas assez de temps pour qu'elle dégèle au cours des cycles de traitement commerciaux habituels. L'humidité résiduelle (12 - 20%) du bois d'œuvre séché au four se trouve dans les parois cellulaires et n'empêche pas la pénétration du produit de préservation, même s'il est gelé.

Vérifier le développement

Les germes ne se développent que lorsque le taux d'humidité du bois descend en dessous d'environ 28%. Si le bois est traité à l'état vert et qu'il sèche ensuite, les fissures pénètrent dans la zone traitée et exposent le cœur non traité. Si le bois est séché au four jusqu'à ce qu'il atteigne le taux d'humidité en service, généralement autour de 16% en exposition extérieure, les fissures seront largement développées avant le traitement. Cela signifie que les fissures seront doublées d'une zone traitée et que l'enveloppe du traitement restera intacte.

Infection avant traitement

Un problème moins important que les trois précédents, mais tout de même préoccupant, est la possibilité de survie, au cours du processus de fabrication, de champignons de pourriture du bois qui ont pu s'infecter au cours des étapes de stockage des arbres, des grumes ou du bois d'œuvre. Dans le pire des cas, cela ne s'applique qu'à 10% ou moins de pièces. Néanmoins, nous avons vu des exemples où le traitement du bois vert sans application de chaleur (60°C ou plus) n'a pas réussi à tuer les champignons de pourriture du bois déjà présents dans le produit, ce qui a conduit à une défaillance prématurée en service. Ce phénomène peut se produire en l'espace de quatre ans seulement. Le traitement CCA est un processus froid, mais la plupart des programmes de séchage au four tuent tous les champignons de pourriture du bois.

Humidité et bois

La durabilité du bois est souvent fonction de l'eau, mais cela ne signifie pas que le bois ne peut jamais être mouillé. Bien au contraire, le bois et l'eau vivent généralement en bonne intelligence. Le bois est un hygroscopique Il s'agit d'un matériau qui absorbe et rejette naturellement de l'eau pour s'équilibrer avec son environnement. Le bois peut absorber en toute sécurité de grandes quantités d'eau avant d'atteindre des niveaux d'humidité propices à l'apparition de champignons de pourriture.

Teneur en humidité (MC) est une mesure de la quantité d'eau contenue dans un morceau de bois par rapport au bois lui-même. La MC est exprimée en pourcentage et se calcule en divisant le poids de l'eau dans le bois par le poids de ce bois s'il était séché au four. Par exemple, 200% MC signifie qu'un morceau de bois contient deux fois plus d'eau que de bois. Voici deux chiffres importants à retenir 19% et 28%. Nous avons tendance à dire qu'une pièce de bois est sèche si son taux d'humidité est inférieur ou égal à 19%. La saturation des fibres se situe en moyenne autour de 28%.

Saturation des fibres est un repère important à la fois pour le retrait et pour la pourriture. Les fibres du bois (les cellules qui s'étendent sur toute la longueur de l'arbre) ont la forme d'une paille effilée. Lorsque les fibres absorbent de l'eau, celle-ci est d'abord retenue dans les parois cellulaires elles-mêmes. Lorsque les parois cellulaires sont pleines, l'eau supplémentaire absorbée par le bois va alors remplir les cavités de ces cellules tubulaires. La saturation des fibres est le niveau d'humidité auquel les parois cellulaires retiennent le plus d'eau possible. L'eau contenue dans les parois cellulaires est appelée eau liéetandis que l'eau contenue dans les cavités cellulaires est appelée eau gratuite. Comme son nom l'indique, l'eau libre est relativement accessible, et une source d'eau accessible est une nécessité pour que les champignons de pourriture commencent à se développer. Par conséquent, la carie ne peut généralement commencer que si la teneur en humidité du bois est supérieure à la saturation des fibres. Le point de saturation des fibres est également la limite du retrait du bois. Le bois rétrécit ou gonfle lorsque sa teneur en eau varie, mais uniquement lorsque l'eau est absorbée ou libérée par les parois cellulaires. Toute modification de la teneur en eau dans la cavité cellulaire n'a aucun effet sur la dimension du bois. Par conséquent, le bois ne rétrécit et ne gonfle que lorsque son taux d'humidité passe en dessous du point de saturation des fibres.

Comme d'autres matériaux hygroscopiques, le bois placé dans un environnement où la température et l'humidité relative sont stables finira par atteindre un taux d'humidité qui ne produit aucune différence de pression de vapeur entre le bois et l'air ambiant. En d'autres termes, son taux d'humidité se stabilisera à un point appelé "point d'équilibre". la teneur en eau d'équilibre (EMC). Le bois utilisé en intérieur finira par se stabiliser à un taux d'humidité de 8-14% ; à l'extérieur, à 12-18%. L'hygroscopicité n'est pas nécessairement une mauvaise chose - elle permet au bois de fonctionner comme un régulateur d'humidité naturel dans nos maisons. Lorsque l'air intérieur est très sec, le bois libère de l'humidité. Lorsque l'air intérieur est trop humide, le bois absorbe l'humidité.

Le bois se rétracte ou se gonfle lorsqu'il perd ou gagne de l'humidité en dessous du point de saturation de ses fibres. Ce comportement naturel du bois est à l'origine de certains problèmes parfois rencontrés lorsque le bois sèche. Par exemple, des fissures spéciales appelées contrôles peut résulter de contraintes induites dans une pièce de bois en cours de séchage. En séchant, la pièce développe un gradient d'humidité à travers sa section (sèche à l'extérieur, humide à l'intérieur). L'enveloppe extérieure sèche veut se rétracter au fur et à mesure qu'elle sèche en dessous de la saturation des fibres, mais le cœur plus humide contraint l'enveloppe. Cela peut entraîner la formation de fissures à la surface. L'enveloppe est maintenant fixée dans ses dimensions, bien que le cœur continue de sécher et veuille à son tour se rétracter. Mais la coque fixe contraint le noyau et des fissures peuvent donc se former dans le noyau. Un autre problème lié au séchage est déformation. Un morceau de bois peut s'écarter de la forme prévue lorsqu'il sèche, car le bois se rétracte différemment selon les directions. Il se rétracte le plus dans la direction tangentielle aux cernes, environ deux fois moins dans la direction perpendiculaire aux cernes et presque pas du tout sur la longueur de l'arbre. L'endroit où une pièce a été coupée dans la grume est un facteur qui détermine la façon dont elle change de forme au fur et à mesure qu'elle se rétracte. L'un des avantages de l'utilisation debois sec est que la majeure partie du retrait a été réalisée avant l'achat. Le bois sec est un bois dont le taux d'humidité ne dépasse pas 19% ; le bois subit la majeure partie de son rétrécissement lorsqu'il passe de 28 à 19%. Le bois sec aura déjà montré ses défauts de séchage, le cas échéant. Il y aura également moins de surprises dans un bâtiment fini, car le produit restera plus ou moins à la dimension qu'il avait au moment de l'installation. Le bois sec est estampillé avec les lettres S-DRY (pour les surfaces sèches) ou KD (pour le séchage au four).

Une autre façon d'éviter le rétrécissement et le gauchissement est d'utiliser composite les produits du bois, également appelés conçu les produits en bois. Il s'agit de produits assemblés à partir de petites pièces de bois collées les unes aux autres, par exemple, contreplaqué, OSBLes produits composites ont une orientation mixte des grumes dans une même pièce, de sorte qu'une partie limite le mouvement d'une autre. Les produits composites présentent un mélange d'orientations de billes dans une seule pièce, de sorte qu'une partie contraint le mouvement d'une autre. Le contreplaqué, par exemple, présente cette forme d'auto-contrainte par bandes croisées. Dans d'autres produits, les mouvements sont limités à de très petites zones et tendent à s'estomper dans l'ensemble de la pièce, comme c'est le cas pour les montants assemblés par entures multiples.

Décroissance

Le bois est biodégradable - c'est une caractéristique que nous considérons normalement comme l'un des avantages du choix de matériaux naturels. Il existe des organismes capables de décomposer le bois en ses produits chimiques de base, de sorte que les troncs tombés dans la forêt peuvent contribuer à la croissance de la prochaine génération de vie. Ce processus, essentiel dans la forêt, doit être évité lorsque nous utilisons le bois dans les bâtiments.

Une variété de champignons, d'insectes et de foreurs marins ont la capacité de décomposer les polymères complexes qui constituent la structure du bois. Au Canada, les champignons constituent un problème plus grave que les insectes. Les champignons qui vivent dans le bois peuvent être classés en trois catégories : les moisissures, les taches, les pourritures molles et les basidiomycètes qui pourrissent le bois. Les moisissures et les taches peuvent décolorer le bois, mais elles n'endommagent pas la structure du bois de manière significative. Les champignons de pourriture molle et les basidiomycètes pourrissant le bois peuvent entraîner une perte de résistance du bois, les basidiomycètes étant responsables des problèmes de pourriture dans les bâtiments. En ce qui concerne les insectes, les fourmis charpentières ne causent des problèmes que dans le bois pourri, et l'activité importante des termites souterrains se limite à quelques régions du sud du Canada. En revanche, d'autres régions du monde sont confrontées à de graves problèmes de termites.

Une bûche en décomposition Le bois pourri est le résultat d'une série d'événements dont une séquence de colonisation fongique. Les spores de ces champignons sont omniprésentes dans l'air pendant une grande partie de l'année. Les champignons qui pourrissent le bois ont besoin de bois comme source de nourriture, d'une température stable, d'oxygène et d'eau. L'eau est normalement le seul de ces facteurs que nous pouvons facilement gérer. Cela peut être rendu plus difficile par certains champignons, qui peuvent transporter de l'eau dans du bois par ailleurs sec. Il peut également être difficile de contrôler l'humidité une fois que la décomposition a commencé, car les champignons produisent de l'eau dans le cadre du processus de décomposition.

La partie extérieure de cette grume est attaquée par un champignon de pourriture. Notez que les dégâts sont retenus à la limite entre le bois de cœur et l'aubier. Pour comprendre pourquoi, cliquez ici pour en savoir plus sur la durabilité naturelle.

 

Plus d'informations

Décroissance

Cliquez ici pour un article de 26 pages sur la biodétérioration, avec illustrations et bibliographie.

Pour obtenir des réponses aux questions les plus courantes sur la décroissance, consultez la page Page FAQ

Classement

Classement visuel du bois de construction

Au Canada, nous avons la chance d'avoir des forêts capables de produire du bois de dimension souhaitable pour les produits de bois de construction. Les principaux facteurs qui contribuent à la production de bois de charpente sont les suivants : un climat nordique favorable à la croissance des arbres, de nombreuses essences canadiennes contenant de petits nœuds, et de nombreuses essences de l'Ouest canadien atteignant une hauteur de 30 mètres ou plus, offrant de longues sections de bois sans nœuds et aux fibres droites. La majorité des produits de bois de charpente sont regroupés dans la combinaison d'essences épicéa-pin-sapin (S-P-F), qui présente les avantages suivants pour les applications structurelles :

  • grain droit
  • bonne maniabilité
  • poids léger
  • force modérée
  • petits nœuds
  • capacité à tenir des clous et des vis

Il existe plus d'une centaine d'espèces de résineux en Amérique du Nord. Pour simplifier l'approvisionnement et l'utilisation du bois de charpente résineux, les essences ayant des caractéristiques de résistance similaires et poussant généralement dans la même région sont combinées. Le fait de disposer d'un nombre réduit de combinaisons d'essences facilite la conception et la sélection d'une essence appropriée, ainsi que l'installation et l'inspection sur le chantier. En revanche, les produits du bois non structurels sont classés uniquement en fonction de leur qualité esthétique et sont généralement marqués et vendus sous une espèce individuelle (par exemple, le pin blanc de l'Est, le cèdre rouge de l'Ouest).

Le bois de dimension canadien est fabriqué conformément à la norme CSA O141. Bois de construction standard canadien et doivent être conformes aux exigences des règles de classement du bois d'œuvre au Canada et aux États-Unis. Chaque pièce de bois de construction est inspectée pour déterminer sa qualité et un cachet est apposé indiquant la qualité attribuée, le numéro d'identification de l'usine, un taux d'humidité vert (S-Grn) ou sec (S-Dry) au moment du revêtement, l'essence ou le groupe d'essences, l'autorité de classement ayant juridiction sur l'usine d'origine et la règle de classement utilisée, le cas échéant.

Classement

Le bois de construction est généralement estampillé sur une face à une distance d'environ 600 mm (2 pieds) d'une extrémité de la pièce, afin de garantir que l'estampille sera clairement visible pendant la construction. Les produits spéciaux, tels que les bois de menuiserie ou les bois de décoration, sont rarement marqués.

Pour garantir cette qualité uniforme du bois de construction, les scieries canadiennes sont tenues de faire classer chaque pièce de bois par des classificateurs agréés par un organisme de classement accrédité. Les agences de classement sont accréditées par la CLSAB.

NLGA Règles de classement standard pour le bois d'œuvre canadien fournir une liste des caractéristiques autorisées pour chaque qualité de bois d'œuvre. La qualité d'une pièce de bois de construction donnée est basée sur l'observation visuelle de certaines caractéristiques naturelles du bois. La plupart des bois d'œuvre résineux se voient attribuer une qualité d'aspect ou une qualité structurelle sur la base d'un examen visuel effectué par un classificateur de bois d'œuvre.

 

Le classeur de bois d'œuvre fait partie intégrante du processus de fabrication du bois d'œuvre. En utilisant les corrélations établies entre l'apparence et la résistance, les classeurs de bois d'œuvre sont formés pour attribuer une classe de résistance au bois de construction en fonction de la présence ou de l'absence de certaines caractéristiques naturelles. Parmi ces caractéristiques, on peut citer la présence de flaches (restes d'écorce sur le bord extérieur), la taille et l'emplacement des nœuds, l'inclinaison du fil par rapport à l'axe longitudinal et la taille des fentes, des fissures et des gerces. D'autres caractéristiques sont limitées par les règles de classement pour des raisons d'apparence uniquement. Il s'agit notamment des taches de sève et de cœur, du grain déchiré et des chutes de rabot.

Le tableau ci-dessous présente un échantillon de quelques-uns des critères utilisés pour évaluer les qualités du bois de dimension 2×4 classé dans les catégories "ossature légère structurelle" ou "solives et planches structurelles".

Classement
Caractéristique Sélectionner la structure N° 1 et N° 2 N° 3
Bord des nœuds à face large ¾" 1 ¼" 1 ¾"
Pente du grain 1 sur 12 1 sur 8 1 sur 4

Pour réduire au minimum les coûts de triage, les qualités peuvent être regroupées. Par exemple, il existe une différence d'aspect entre le bois de construction classé visuellement n° 1 et n° 2, mais pas de différence de résistance. Par conséquent, la marque de qualité "No.2 et mieux" est couramment utilisée lorsque l'aspect visuel du bois de construction de qualité No.1 n'est pas requis, par exemple dans la construction de solives, de chevrons ou de poutrelles. Les pièces de même qualité doivent être regroupées en paquets dont les propriétés techniques sont dictées par la qualité de résistance la plus faible du paquet.

Le bois de dimension est regroupé dans les quatre catégories suivantes : ossature légère, poutrelles et planches, ossature légère et colombages. Le tableau ci-dessous indique les qualités et les utilisations de ces catégories.

 

Catégorie de grade Taille Classement Mélange de qualité commune Utilisations principales
Structures légères 38 à 89 mm (2″ à 4″ nom.) d'épaisseur et de largeur Sélectionner la structure, No.1, No.2, No.3 N° 2 et mieux Utilisé pour les applications d'ingénierie telles que les fermes, les linteaux, les chevrons et les poutrelles dans les dimensions inférieures.
Solives et planches structurelles 38 à 89 mm (2″ à 4″ nom.) d'épaisseur et 114 mm (5″ nom.) ou plus de largeur Sélectionner la structure, No.1, No.2, No.3 N° 2 et mieux Utilisé pour les applications d'ingénierie telles que les fermes, les linteaux, les chevrons et les solives dans les dimensions supérieures à 114 mm (5″ nom.).
Encadrement léger 38 à 89 mm (2″ à 4″ nom.) d'épaisseur et de largeur Construction, Standard, Utilitaire Standard et meilleur (Std. & Btr.) Utilisé pour l'ossature générale lorsque des valeurs de résistance élevées ne sont pas requises, par exemple pour les plaques, les seuils et les blocages.
Crampons 38 à 89 mm (2″ à 4″ nom.) d'épaisseur et 38 à 140 mm (2″ à 6″ nom.) de largeur et 3 m (10′) ou moins de longueur. Goujon, Goujon économique Fabriqué principalement pour être utilisé dans les murs. La qualité Stud convient aux murs porteurs. La qualité économique convient aux applications temporaires.

Notes :

  • Les grades peuvent être regroupés individuellement ou être estampillés individuellement, mais ils doivent être regroupés avec les propriétés techniques dictées par le grade de résistance le plus faible du regroupement.
  • Le mélange de grade commun présenté est le mélange de résistance le plus économique pour la plupart des applications où l'apparence n'est pas un facteur et où une résistance moyenne est acceptable.
  • À l'exception de la qualité économique, toutes les qualités sont classées en fonction de la contrainte, ce qui signifie que des résistances spécifiées ont été attribuées et que des tableaux de portée ont été calculés. Les qualités économique et utilitaire conviennent aux constructions temporaires ou aux applications pour lesquelles la résistance et l'apparence ne sont pas importantes.
  • Les qualités Construction, Standard, Stud et No. 3 doivent être utilisées dans les conceptions composées d'au moins 3 éléments essentiellement parallèles (partage des charges) espacés de 610 mm (24″) au maximum.
  • Les propriétés de résistance et l'aspect sont meilleurs dans les qualités supérieures telles que Select Structural.
  • Les qualités économiques et utilitaires ne conviennent qu'aux constructions temporaires ou aux applications où la résistance et l'aspect ne sont pas importants.

Valeurs de calcul pour le bois de construction canadien classé visuellement au Canada

Les résistances et les modules d'élasticité spécifiés pour les bois de construction classés visuellement sont basés sur des bois classés conformément aux normes NLGA. Règles de classement standard pour le bois d'œuvre canadien. Toutes les qualités, à l'exception de la qualité économique, sont classées en fonction de la contrainte, c'est-à-dire que des résistances spécifiées au cinquième centile sont attribuées aux différentes propriétés techniques telles que la résistance à la traction parallèle au grain, la résistance à la compression perpendiculaire au grain, la résistance au cisaillement longitudinal, etc. Les résistances spécifiées au cinquième centile et les valeurs du module d'élasticité sont indiquées dans la norme CSA O86 Conception technique en bois standard.

Les valeurs de calcul sont destinées à être utilisées par des concepteurs qualifiés et peuvent être utilisées en conjonction avec les facteurs d'ajustement appropriés figurant dans la norme CSA O86. Des tableaux de calcul, des exemples et des informations générales sont disponibles dans le manuel de calcul du bois du CWC, qui comprend une copie de la norme CSA O86, ainsi que des informations générales supplémentaires dans les commentaires de la norme CSA O86.

Pour plus d'informations ou pour acheter des normes du Groupe CSA, veuillez consulter le site suivant http://shop.csa.ca/ ou appeler le 1-800-463-6727.

Valeurs de calcul pour le bois de construction canadien classé visuellement aux États-Unis.

Les valeurs de calcul pour le bois de dimension classé visuellement, fabriqué au Canada mais utilisé aux États-Unis, sont basées sur les méthodes d'essai normalisées de l'ASTM, conformément aux exigences de la norme américaine PS20-99 sur le bois d'œuvre résineux, et s'appliquent aux essences cultivées au Canada.

Pour plus d'informations sur les dispositions relatives à la conception du bois de construction canadien utilisé aux États-Unis, contactez le service d'assistance de l'American Wood Council (AWC) au 202-463-2766 ou envoyez un courrier électronique à l'adresse suivante info@awc.org

Connecteurs d'encadrement

Les connecteurs de charpente sont des produits brevetés et comprennent des types d'attaches tels que des ancres de charpente, des cornières de charpente, des suspensions de solives, de pannes et de poutres, des plaques de fermes, des capuchons de poteaux, des ancres de poteaux, des ancres de plaques d'appui, des bandes d'acier et des plaques d'acier clouées. Les connecteurs de charpente sont souvent utilisés pour différentes raisons, telles que leur capacité à fournir des connexions dans les fermes préfabriquées à ossature légère en bois, leur capacité à résister au soulèvement du vent et aux charges sismiques, leur capacité à réduire la profondeur totale d'un plancher ou d'un toit, ou leur capacité à résister à des charges plus élevées que les connexions clouées traditionnelles. La figure 5.6 ci-dessous présente des exemples de connecteurs de charpente courants.

Les connecteurs d'ossature sont en tôle et comportent des trous pré-perforés pour recevoir des clous. Les connecteurs d'ossature standard sont généralement fabriqués en tôle d'acier zinguée de calibre 20 ou 18. Les connecteurs d'ossature moyens et lourds peuvent être fabriqués à partir d'acier zingué plus lourd, généralement de calibre 12 et de calibre 7, respectivement. La capacité de transfert de charge des connecteurs de charpente est liée à l'épaisseur de la tôle ainsi qu'au nombre de clous utilisés pour fixer le connecteur de charpente à l'élément en bois.

Les connecteurs de charpente conviennent à la plupart des géométries de connexion qui utilisent du bois de charpente de 38 mm (2″ nom.) et plus d'épaisseur. Dans les constructions en bois à ossature légère, les connecteurs d'ossature sont couramment utilisés pour les connexions entre les solives et les chevrons, les chevrons et les plaques ou les faîtières, les pannes et les fermes, et les montants et les plaques d'appui. Certains types de connecteurs de charpente, fabriqués pour s'adapter à des éléments en bois plus grands et supporter des charges plus élevées, conviennent également aux constructions en bois massif et aux constructions à poteaux et poutres.

Les fabricants de connecteurs d'ossature spécifieront le type et le nombre de fixations, ainsi que les procédures d'installation requises pour atteindre la ou les résistances tabulées de l'assemblage. Le Centre canadien des matériaux de construction (CCMC) et l'Institut de recherche en construction (IRC) produisent des rapports d'évaluation qui documentent les valeurs de résistance des connecteurs d'ossature, dérivées des résultats des essais.

 

Figure 5.6 Connecteurs d'encadrement

Connecteurs d'encadrement

 

Pour plus d'informations, consultez les ressources suivantes :

Centre canadien des matériaux de construction, Conseil national de la recherche du Canada

Institut des plaques de poutrelles du Canada

CSA S347 Méthode d'essai pour l'évaluation des plaques de treillis utilisées dans les assemblages de bois de charpente

ASTM D1761 Méthodes d'essai normalisées pour les fixations mécaniques dans le bois

Association canadienne des fermes en bois

Ongles

Le clouage est le moyen le plus simple et le plus couramment utilisé pour fixer les éléments d'une construction à ossature en bois. Les clous ordinaires et les clous en spirale sont largement utilisés dans tous les types de construction en bois. Les performances historiques, ainsi que les résultats des recherches, ont montré que les clous constituent une connexion viable pour les structures en bois soumises à des charges légères à modérées. Ils sont particulièrement utiles dans les endroits où la redondance et les connexions ductiles sont nécessaires, comme dans le cas de charges sismiques.

Les applications structurelles typiques des assemblages cloués sont les suivantes :

  • Construction en bois
  • la construction à poteaux et à poutres
  • construction en bois lourd
  • murs de cisaillement et diaphragmes
  • goussets cloués pour la construction de fermes en bois
  • assemblages de panneaux de bois

Les clous et les pointes sont fabriqués dans de nombreuses longueurs, diamètres, styles, matériaux, finitions et revêtements, chacun étant conçu pour un objectif et une application spécifiques.

Au Canada, les clous sont spécifiés par le type et la longueur et sont toujours fabriqués selon les dimensions impériales. Les clous sont fabriqués dans des longueurs de 13 à 150 mm (1/2 à 6 pouces). Les pointes sont fabriquées dans des longueurs de 100 à 350 mm (4 à 14 pouces) et sont généralement plus trapues que les clous, c'est-à-dire que la section transversale d'une pointe est plus grande que celle d'un clou ordinaire de longueur équivalente. Les pointes sont généralement plus longues et plus épaisses que les clous et sont généralement utilisées pour fixer des pièces de bois lourdes.

Le diamètre des clous est spécifié par le numéro de calibre (British Imperial Standard). La jauge correspond au diamètre du fil utilisé dans la fabrication du clou. Les calibres varient en fonction du type et de la longueur du clou. Aux États-Unis, la longueur des clous est désignée par "penny", abrégé "d". Par exemple, un clou de vingt pennies (20d) a une longueur de quatre pouces.

Les clous les plus courants sont fabriqués en acier à faible ou moyen carbone ou en aluminium. Les aciers à teneur moyenne en carbone sont parfois durcis par traitement thermique et trempe pour augmenter leur résistance. Des clous en cuivre, laiton, bronze, acier inoxydable, monel et autres métaux spéciaux sont disponibles sur commande. Le tableau 1 ci-dessous donne des exemples d'applications courantes pour des clous fabriqués dans différents matériaux.

TABLEAU 1 : Applications des clous pour les matériaux alternatifs

Matériau Abréviation Application
Aluminium A Pour un meilleur aspect et une longue durée de vie : résistance accrue à la déformation et à la corrosion.
Acier - doux S Pour la construction générale.
Acier - Carbone moyen Sc Pour des conditions de conduite particulières : meilleure résistance aux chocs.
Acier inoxydable, cuivre et bronze au silicium E Pour une résistance supérieure à la corrosion : plus cher que la galvanisation à chaud.

Les clous en acier non revêtus utilisés dans des zones humides se corrodent, réagissent avec les matières extractibles du bois et tachent la surface du bois. En outre, les matières extractibles naturellement présentes dans les cèdres réagissent avec l'acier non protégé, le cuivre et les attaches bleuies ou électro-galvanisées. Dans de tels cas, il est préférable d'utiliser des clous fabriqués dans un matériau non corrosif, comme l'acier inoxydable, ou finis dans un matériau non corrosif, comme le zinc galvanisé à chaud. Le tableau 2 ci-dessous donne des exemples d'applications courantes pour d'autres finitions et revêtements de clous.

TABLEAU 2 : Applications de clous pour les finitions et revêtements alternatifs

Vernis à ongles Abréviation Application
Lumineux B Pour la construction générale, finition normale, non recommandée pour l'exposition aux intempéries.
Bleu Bl Pour une meilleure tenue dans le bois dur, une fine couche d'oxyde est obtenue par traitement thermique.
Traitement thermique Ht Pour une rigidité et une tenue accrues : finition oxyde noir.
Phoscoated Pt Pour une meilleure tenue ; ne résiste pas à la corrosion.
Electro-galvanisé Ge Pour une résistance limitée à la corrosion ; zingage fin ; surface lisse ; pour usage intérieur.
Galvanisé à chaud Ghd Pour une meilleure résistance à la corrosion ; revêtement de zinc épais ; surface rugueuse ; pour usage extérieur.

Les pistolets de clouage pneumatiques ou mécaniques sont largement répandus en Amérique du Nord en raison de la vitesse à laquelle les clous peuvent être enfoncés. Ils sont particulièrement rentables dans les applications répétitives telles que la construction de murs de cisaillement, où l'espacement des clous peut être considérablement réduit. Les clous des pistolets pneumatiques sont légèrement fixés les uns aux autres ou reliés par du plastique, ce qui permet de charger rapidement des agrafes à clous, comme on le fait pour les agrafes à papier. Les fixations pour ces outils sont disponibles dans de nombreuses tailles et types différents.

Les informations de conception fournies dans la norme CSA O86 ne s'appliquent qu'aux clous ronds communs en acier, aux pointes et aux clous en spirale communs, tels que définis dans la norme CSA B111. La norme ASTM F1667 est également largement acceptée et inclut des diamètres de clous qui ne sont pas inclus dans la norme CSA B111. D'autres types de clous non décrits dans la norme CSA B111 ou ASTM F1667 peuvent également être utilisés, à condition de disposer des données nécessaires.

Types d'ongles

Pour plus d'informations, consultez les ressources suivantes :

Association internationale des agrafes, clous et outils (ISANTA)

CSA O86 Conception technique en bois

CSA B111 Clous, pointes et agrafes en fil de fer

ASTM F1667 Spécification standard pour les fixations à enfoncer : Clous, pointes et agrafes

Menuiserie en bois

De nombreuses structures historiques en Amérique du Nord ont été construites à une époque où les fixations métalliques n'étaient pas facilement disponibles. Au lieu de cela, les éléments de bois étaient assemblés en façonnant les éléments de bois adjacents pour qu'ils s'emboîtent les uns dans les autres. La menuiserie est une technique traditionnelle de construction de poteaux et de poutres en bois utilisée pour assembler les éléments en bois sans utiliser d'attaches métalliques.

La menuiserie exige que les extrémités des pièces de bois soient sculptées de manière à ce qu'elles s'emboîtent les unes dans les autres comme des pièces de puzzle. Les variations et les configurations des assemblages bois-bois sont assez nombreuses et complexes. Parmi les assemblages bois-bois les plus courants, citons la mortaise et le tenon, la queue d'aronde, l'assemblage par ligature, l'assemblage en écharpe, l'assemblage à épaulement biseauté et l'assemblage à recouvrement. Il existe de nombreuses variantes et combinaisons de ces types d'assemblages et d'autres types d'assemblages. La figure 5.18 ci-dessous présente quelques exemples d'assemblages de bois.

Pour transférer les charges, la menuiserie en bois repose sur l'emboîtement des éléments de bois adjacents. Les assemblages sont retenus en insérant des chevilles en bois dans des trous percés à travers les éléments emboîtés. Un trou d'environ un pouce de diamètre est percé à travers le joint et une cheville en bois est enfoncée pour maintenir le joint.

Les fixations métalliques ne nécessitent qu'une élimination minimale des fibres de bois dans la zone des fixations et, par conséquent, la capacité du système est souvent déterminée par la taille modérée des éléments en bois à supporter les charges horizontales et verticales. La menuiserie en bois, au contraire, nécessite l'enlèvement d'un volume important de fibres de bois à l'endroit des joints. C'est pourquoi la capacité de la construction traditionnelle en bois est généralement régie par les connexions et non par la capacité des éléments eux-mêmes. Pour tenir compte de l'élimination des fibres de bois au niveau des assemblages, les dimensions des éléments des systèmes de construction en bois qui utilisent la menuiserie, tels que les poteaux et les poutres, sont souvent plus grandes que celles des systèmes de construction en bois qui utilisent des attaches métalliques.

Les normes de conception technique du bois au Canada ne fournissent pas d'informations spécifiques sur le transfert de charge pour la menuiserie en bois, en raison de leur sensibilité à la qualité de l'exécution et des matériaux. Par conséquent, la conception technique doit être prudente, ce qui se traduit souvent par des dimensions d'éléments plus importantes.

Les compétences et le temps nécessaires pour mesurer, ajuster, couper et faire des essais d'assemblage sont beaucoup plus importants pour la menuiserie que pour d'autres types de construction en bois. Ce n'est donc pas le moyen le plus économique d'assembler les éléments d'un bâtiment en bois. La menuiserie bois n'est pas utilisée lorsque l'économie est le critère de conception primordial. Elle est plutôt utilisée pour donner un aspect structurel unique qui met en valeur la beauté naturelle du bois sans distraction. La menuiserie en bois offre un aspect visuel unique qui témoigne d'un haut degré de savoir-faire artisanal.

 

Pour plus d'informations, consultez les ressources suivantes :

Guilde des charpentiers de bois

 

Menuiserie en bois

Panneau de lamelles orientées (OSB)

Le panneau de lamelles orientées (OSB) est un panneau de bois structurel polyvalent et largement utilisé. L'OSB utilise efficacement les ressources forestières en employant des essences moins précieuses et à croissance rapide. L'OSB est fabriqué à partir de peupliers et de trembles abondants et de faible diamètre, ce qui permet de produire un panneau structurel économique. Le processus de fabrication peut utiliser des arbres tordus, noueux et déformés qui n'auraient autrement aucune valeur commerciale, maximisant ainsi l'utilisation de la forêt.

L'OSB peut offrir des avantages en termes de performances structurelles, un élément important de l'enveloppe du bâtiment et des économies de coûts. L'OSB est un panneau à base de bois dimensionnellement stable qui résiste à la délamination et au gauchissement. L'OSB peut également résister à la déformation et à la distorsion de forme lorsqu'il est soumis à des charges éoliennes et sismiques. Les panneaux OSB sont légers et faciles à manipuler et à installer.

Les panneaux OSB sont principalement utilisés dans des conditions de service sèches comme revêtement de toit, de mur et de plancher, et servent d'éléments structurels clés pour résister aux charges latérales dans les diaphragmes et les murs de cisaillement. L'OSB est également utilisé comme matériau d'âme pour certains types de solives en I préfabriquées en bois et comme matériau de peau pour les panneaux isolants structurels. L'OSB peut également être utilisé pour le bardage, les soffites, les sous-couches de plancher et les sous-planchers. Certains produits OSB spécialisés sont fabriqués pour le bardage et le coffrage du béton, bien que l'OSB ne soit pas couramment traité à l'aide de produits de conservation. L'OSB comporte de nombreuses couches entrelacées qui confèrent au panneau de bonnes propriétés de fixation des clous et des vis. Les fixations peuvent être enfoncées jusqu'à 6 mm du bord du panneau sans risque de fissure ou de rupture.

L'OSB est un panneau structurel formé à partir de fines lamelles de tremble ou de peuplier, tranchées à partir de grumes ou de blocs de bois rond de petit diamètre, et collées ensemble avec un adhésif phénolique imperméable qui durcit sous l'effet de la chaleur et de la pression. Aux États-Unis, l'OSB est également fabriqué à partir de l'essence de pin jaune du sud. D'autres essences, telles que le bouleau, l'érable ou le sweetgum, peuvent également être utilisées en quantités limitées lors de la fabrication.

L'OSB est fabriqué avec les lamelles de la couche de surface alignées dans le sens du panneau long, tandis que les couches intérieures ont un alignement aléatoire ou croisé. Comme le contreplaqué, l'OSB est plus résistant dans l'axe long que dans l'axe étroit. Cette orientation aléatoire ou croisée des brins et des plaquettes permet d'obtenir un panneau structurel en bois d'ingénierie présentant des propriétés de rigidité et de résistance constantes, ainsi qu'une stabilité dimensionnelle. Il est également possible de produire des propriétés de résistance spécifiques à une direction en ajustant l'orientation des couches de brins ou de plaquettes. Les plaquettes ou les lamelles utilisées dans la fabrication de l'OSB mesurent généralement jusqu'à 150 mm de long dans le sens du fil, 25 mm de large et moins de 1 mm (1/32″) d'épaisseur.

Au Canada, les panneaux OSB sont fabriqués pour répondre aux exigences de la norme CSA O325. Cette norme définit les performances pour des utilisations finales spécifiques telles que le revêtement de plancher, de toit et de mur dans les constructions à ossature légère en bois. Les revêtements conformes à la norme CSA O325 sont mentionnés dans la partie 9 du Code national du bâtiment du Canada (CNB). De plus, les valeurs de calcul pour le revêtement de construction en OSB sont énumérées dans la norme CSA O86, ce qui permet la conception technique des revêtements de toit, de mur et de plancher à l'aide de panneaux OSB conformes à la norme CSA O325.

Les panneaux OSB sont fabriqués en dimensions impériales et métriques, et sont soit à bords carrés, soit à languettes et rainures sur les bords longs pour les panneaux de 15 mm (19/32 in) et plus d'épaisseur. Pour plus d'informations sur les dimensions disponibles des panneaux OSB, voir le document ci-dessous.

Pour plus d'informations sur l'OSB, veuillez consulter les ressources suivantes :

APA - The Engineered Wood Association (Association du bois d'ingénierie)

Code national du bâtiment du Canada

CSA O86 Conception technique en bois

CSA O325 Revêtement de construction

CSA O437 Normes sur l'OSB et le Waferboard

PFS TECO

Exemple de spécifications pour les panneaux à lamelles orientées (OSB)
Catégories de panneaux de lamelles orientées (OSB)
Fabrication de panneaux de lamelles orientées (OSB)
Contrôle de la qualité des panneaux à lamelles orientées (OSB)
Dimensions des panneaux de lamelles orientées (OSB)
Stockage et manutention des panneaux de lamelles orientées (OSB)

Le programme WoodWorks du Conseil canadien du bois accueille Rothoblaas Canada à titre de partenaire national
Le programme WoodWorks du Conseil canadien du bois accueille Nordic Structures à titre de partenaire national
Les projets lauréats des prix d’excellence en conception structurale et en construction en bois sont dévoilés
2025 Prix du bois pour la conception et la construction
Ressources canadiennes sur le bois et la foresterie
Stratégies innovantes pour les bâtiments de moyenne hauteur à ossature légère dans les régions hautement sismiques
Le programme WoodWorks du Conseil canadien du bois accueille BarrierTEK comme partenaire national
Atelier sur l’enseignement du bois et l’intégration professionnelle à Woodrise 2025
Le Bois – Conception & Construction, vol 24, numéro 98
Crédit photo : Andrew Latreille
Webinaire : Explorer la faisabilité du bois de masse soutenu par des points pour la construction de Tallwood
WoodWorks au salon The Buildings Show

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône d'expertise
Domaine d'expertise
Icône de la province
Province
Type de membre Icône
Partenaires nationaux de WoodWork
Icône de type de message
Type de poste
Icône Persona
Persona
Icône de langue
Langue
Tags Icône
Tags
Bois massif Icône Plus Environnement Icône Plus Sécurité Icône Plus Durabilité Icône Plus Systèmes de conception Icône Plus Budget Icône Plus Gestion de la construction Icône Plus Résistance au feu Icône Plus Bâtiments de grande taille Icône Plus Bâtiments courts Icône Plus
Icône de date
Date
Séparateur de ligne