en-ca

Aucun terme de recherche n'a été saisi.

Veuillez saisir un terme de recherche pour obtenir des résultats.

141 results found...
Trier par Icône de la liste déroulante

Contreplaqué

Le contreplaqué est un panneau à base de bois d'ingénierie largement reconnu et utilisé dans les projets de construction canadiens depuis des décennies. Les panneaux de contreplaqué fabriqués pour des applications structurelles sont constitués de plusieurs couches ou plis de placage de bois résineux qui sont collés ensemble de manière à ce que le sens du grain de chaque couche de placage soit perpendiculaire à celui des couches adjacentes. Ces feuilles de placage croisées sont collées à l'aide d'un adhésif imperméable à base de résine phénol-formaldéhyde et durcies sous l'effet de la chaleur et de la pression.

Les panneaux de contreplaqué présentent une stabilité dimensionnelle supérieure, des propriétés de résistance et de rigidité dans les deux sens et un excellent rapport résistance/poids. Ils sont également très résistants aux chocs, aux produits chimiques et aux variations de température et d'humidité relative. Le contreplaqué reste plat pour donner une surface lisse et uniforme qui ne se fissure pas, ne se tasse pas et ne se tord pas. Le contreplaqué peut être peint, teinté ou commandé avec des teintures ou des finitions appliquées en usine. Le contreplaqué est disponible avec des bords équarris ou avec des rainures et languettes, ces dernières permettant de réduire les coûts de main-d'œuvre et de matériaux en éliminant la nécessité de bloquer les bords des panneaux dans certains scénarios de conception.

Le contreplaqué convient à une variété d'utilisations finales dans des conditions de service humides et sèches, notamment : sous-plancher, plancher à couche unique, revêtement de mur, de toit et de plancher, panneaux isolés structurels, applications marines, âmes de poutrelles en I en bois, coffrage en béton, palettes, conteneurs industriels et meubles.

Les panneaux de contreplaqué utilisés comme revêtement extérieur des murs et des toits remplissent de multiples fonctions : ils peuvent offrir une résistance aux forces latérales telles que les charges dues au vent et aux tremblements de terre et font également partie intégrante de l'enveloppe du bâtiment. Le contreplaqué peut être utilisé à la fois comme revêtement structurel et comme revêtement de finition. Pour les applications de revêtement extérieur, les contreplaqués spécialisés sont disponibles dans une large gamme de motifs et de textures, combinant les caractéristiques naturelles du bois avec des propriétés de résistance et de rigidité supérieures. Lorsqu'il est traité avec des produits de préservation du bois, le contreplaqué convient également à une utilisation dans des conditions d'exposition extrême et prolongée à l'humidité, comme les fondations permanentes en bois.

Le contreplaqué est disponible dans une grande variété de qualités d'aspect, allant de surfaces lisses et naturelles adaptées aux travaux de finition à des qualités non poncées plus économiques utilisées pour les revêtements. Le contreplaqué est disponible dans plus d'une douzaine d'essences courantes. épaisseurs et plus de vingt grades.

Le contreplaqué de sapin de Douglas non poncé, conforme à la norme CSA O121, et le contreplaqué de résineux canadien, conforme à la norme CSA O151, sont les deux types de contreplaqués de résineux les plus couramment produits au Canada. Tous les contreplaqués structuraux sont marqués d'une estampille lisible et durable indiquant : la conformité aux normes CSA O121, CSA O151 ou CSA O153, le fabricant, le type de liant (EXTERIOR), l'essence (DFP) ou (CSP), et la qualité.

Le contreplaqué peut être traité chimiquement pour améliorer sa résistance à la pourriture ou au feu. Le traitement de préservation doit être effectué par un procédé sous pression, conformément à la norme CSA O80. Les fabricants de contreplaqué doivent effectuer des tests conformément aux normes ASTM D5516 et ASTM D6305 pour déterminer les effets des produits ignifuges ou de tout autre produit chimique susceptible de réduire la résistance.

 

Pour plus d'informations, consultez les ressources suivantes :

APA - The Engineered Wood Association (Association du bois d'ingénierie)

CSA O121 Douglas contreplaqué de sapin,

CSA O151 Contreplaqué de résineux canadien

CSA O153 Contreplaqué de peuplier

CSA O86 Conception technique en bois

CSA O80 Préservation du bois

ASTM D5516 Méthode d'essai normalisée pour l'évaluation des propriétés de flexion du contreplaqué de résineux traité ignifuge exposé à des températures élevées

ASTM D6305 Méthode normalisée de calcul des facteurs d'ajustement de la résistance à la flexion pour les revêtements de toiture en contreplaqué ignifugé

Code national du bâtiment du Canada

coin d'une feuille de contreplaqué montrant l'épaisseur

Exemple de spécifications pour le contreplaqué
Grades de contreplaqué
Manutention et stockage du contreplaqué
Fabrication de contreplaqué
Dimensions du contreplaqué
Contrôle de la qualité du contreplaqué

CSA S-6 Code canadien de conception des ponts routiers

Comme l'indique la philosophie de conception de la norme CSA S-6, la sécurité est la principale préoccupation dans la conception des ponts routiers au Canada. Pour les produits en bois, la norme CSA S-6 traite des critères de conception associés aux états limites ultimes et aux états limites d'aptitude au service (principalement la déflexion, la fissuration et les vibrations). Les états limites de fatigue doivent également être pris en compte pour les éléments de connexion en acier des ponts en bois. La durée de vie de la structure dans la norme CSA S-6 a été fixée à 75 ans pour tous les types de ponts, y compris les ponts en bois.

La norme CSA S-6 s'applique aux types de structures et de composants en bois susceptibles d'être requis pour les autoroutes, y compris le bois lamellé-collé, le bois de sciage, le bois de charpente composite (SCL), les tabliers en bois lamellé-collé, les tabliers en bois lamellé-béton, les tabliers en bois lamellé précontraint, les fermes, les pieux en bois, les caissons en bois et les tréteaux en bois. La norme ne s'applique pas aux faux-planchers ni aux coffrages.

La norme CSA S-6 porte sur la conception des éléments en bois soumis à la flexion, au cisaillement, à la compression et aux appuis. En outre, la norme fournit des conseils et des exigences concernant la cambrure et la courbure des éléments en bois. D'autres informations sur la durabilité, le drainage et le traitement de préservation du bois dans les ponts sont également abordées.

Bois de construction composite

Bois de construction composite (SCL)

Le bois composite structurel (SCL) est un terme utilisé pour englober la famille de produits en bois d'ingénierie qui comprend le bois de placage stratifié (LVL), le bois à copeaux parallèles (PSL), le bois à copeaux stratifiés (LSL) et le bois à copeaux orientés (OSL).

Grâce à leur capacité à être fabriqués à partir d'arbres de petite taille, à croissance rapide et sous-utilisés, les produits SCL représentent une utilisation efficace des ressources forestières et contribuent à répondre à la demande croissante de produits de bois de charpente présentant des propriétés de résistance et de rigidité très fiables.

Le SCL se compose de placages, de brins ou de flocons de bois séchés et calibrés qui sont superposés et collés à l'aide d'un adhésif résistant à l'humidité pour former de grands blocs appelés billettes. Le grain de chaque couche de placage ou de flocons est principalement orienté dans la même direction. Ces billettes SCL sont ensuite sciées à nouveau dans les dimensions et longueurs spécifiées.

Le SCL a été utilisé avec succès dans une variété d'applications, telles que les chevrons, les chevêtres, les poutres, les solives, les membrures de fermes, les brides de poutrelles en I, les colonnes et les montants de mur.

Le SCL est produit dans un certain nombre de dimensions standard. Certains produits SCL sont disponibles dans un certain nombre d'épaisseurs, tandis que d'autres ne sont disponibles que dans l'épaisseur de 45 mm (1-3/4 in). Les profondeurs typiques des éléments SCL vont de 241 à 606 mm (9-1/2 à 24 in). Les éléments SCL individuels peuvent être cloués ou boulonnés ensemble pour former des poutres construites. En général, le SCL est disponible en longueurs allant jusqu'à 20 m (65 ft).

Le SCL est produit à un faible taux d'humidité, de sorte qu'il y a très peu de retrait après l'installation. Cette faible teneur en humidité permet également au SCL d'être pratiquement exempt de fissures, de fentes ou de gauchissements pendant son utilisation.

Les produits SCL sont des produits propriétaires et, par conséquent, les propriétés techniques et les dimensions spécifiques sont propres à chaque fabricant. Par conséquent, les produits SCL n'ont pas de norme de production commune ni de valeurs de conception communes. Les valeurs de conception sont dérivées des résultats d'essais analysés conformément à la norme CSA O86 et à la norme ASTM D5456 et les valeurs de conception sont examinées et approuvées par le Centre canadien des matériaux de construction (CCMC). Les produits conformes aux directives du CCMC reçoivent un numéro d'évaluation et un rapport d'évaluation comprenant les résistances nominales spécifiées pour le produit SCL, qui sont ensuite répertoriées dans le registre des évaluations de produits du CCMC. Le nom du fabricant ou l'identification du produit et la classe de résistance sont marqués sur le matériau à différents intervalles, mais en raison de la coupe en bout, ils peuvent ne pas être présents sur chaque pièce.

Pour plus d'informations, consultez les ressources suivantes :

APA - The Engineered Wood Association (Association du bois d'ingénierie)

Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction

CSA O86 Conception technique en bois

ASTM D5456 Spécification standard pour l'évaluation des produits de bois de charpente composite

Poutrelles à ossature légère

Une ferme est une structure qui repose sur une disposition triangulaire des âmes et des membrures pour transférer les charges aux points de réaction. Cette disposition géométrique des éléments confère aux fermes un rapport résistance/poids élevé, ce qui permet des portées plus longues que les charpentes conventionnelles. Les fermes à ossature légère peuvent couramment atteindre une portée de 20 m (60 pieds), bien que des portées plus longues soient également possibles.

Les premières fermes à ossature légère étaient construites sur place à l'aide de goussets en contreplaqué cloués. Ces fermes offraient des portées acceptables mais nécessitaient un temps de construction considérable. Développée à l'origine aux États-Unis dans les années 1950, la plaque de connexion métallique a transformé l'industrie des fermes en permettant une préfabrication efficace des fermes de courte et de longue portée. Les plaques d'assemblage en métal léger permettent de transférer la charge entre les éléments adjacents grâce à des dents en acier poinçonnées qui sont encastrées dans les éléments en bois. Aujourd'hui, les fermes en bois à ossature légère sont largement utilisées dans les constructions résidentielles unifamiliales et multifamiliales, institutionnelles, agricoles, commerciales et industrielles.

La forme et la taille des fermes à ossature légère ne sont limitées que par les capacités de fabrication, les contraintes d'expédition et les considérations de manutention. Les fermes peuvent être conçues comme simples ou à plusieurs travées, avec ou sans porte-à-faux. L'économie, la facilité de fabrication, la livraison rapide et les procédures de montage simplifiées rendent les fermes en bois à ossature légère compétitives dans de nombreuses applications de toiture et de plancher. Leur grande portée élimine souvent le besoin de murs porteurs intérieurs, ce qui offre au concepteur une grande souplesse dans l'agencement des planchers. Les fermes de toit offrent des configurations de toit en pente, incliné ou plat, tout en laissant un espace libre entre les membrures pour l'isolation, la ventilation, l'électricité, la plomberie, le chauffage et l'air conditionné.

Les fermes en bois à ossature légère sont préfabriquées en pressant les dents saillantes de la plaque de la ferme en acier dans des éléments en bois de 38 mm, qui sont prédécoupés et assemblés dans un gabarit. La plupart des fermes sont fabriquées avec du bois de 38 x 64 mm (2 x 3 pouces) à 38 x 184 mm (2 x 8 pouces) classé visuellement et soumis à des contraintes mécaniques (MSR). Pour obtenir différentes valeurs d'adhérence, les plaques d'assemblage des fermes sont estampées à partir de tôles d'acier galvanisé de calibre léger de différentes qualités et épaisseurs. De nombreuses dimensions de plaques sont fabriquées pour s'adapter à toutes les formes et dimensions de fermes ou de charges à supporter.

Les fermes à ossature légère sont fabriquées conformément aux normes établies par le Truss Plate Institute of Canada. Les capacités des plaques varient d'un fabricant à l'autre et sont établies par des essais. Les plaques de fermes doivent être conformes aux exigences de la norme CSA O86 et doivent être approuvées par le Centre canadien de matériaux de construction (CCMC). Pour obtenir cette approbation, les plaques de fermes sont testées conformément à la norme CSA S347. Lors de la conception, les fermes à ossature légère sont généralement étudiées par le fabricant de plaques de fermes pour le compte du fabricant de fermes.

Lorsque les fermes à ossature légère arrivent sur le chantier, il convient de vérifier qu'elles ne présentent pas de dommages permanents, tels que des cassures transversales dans le bois, des plaques de connexion métalliques manquantes ou endommagées, des fissures excessives dans le bois, ou tout autre dommage susceptible de nuire à l'intégrité structurelle de la ferme. Dans la mesure du possible, les fermes doivent être déchargées en paquets sur un sol sec et relativement lisse. Elles ne doivent pas être déchargées sur un terrain accidenté ou sur des espaces irréguliers qui pourraient entraîner des tensions latérales excessives susceptibles de déformer les plaques de connexion métalliques ou d'endommager des parties des fermes.

Les fermes à ossature légère peuvent être stockées horizontalement ou verticalement. Si elles sont stockées en position horizontale, les fermes doivent être soutenues par des cales espacées de 2,4 à 3 m (8 à 10 ft) pour éviter les flexions latérales et réduire le gain d'humidité par le sol. Lorsqu'elles sont stockées en position verticale, les fermes doivent être placées sur une surface horizontale stable et contreventées pour éviter qu'elles ne basculent ou ne se renversent. Si les fermes doivent être stockées pendant une période prolongée, des mesures doivent être prises pour les protéger des intempéries, en les gardant sèches et bien ventilées.

Les fermes à ossature légère nécessitent un contreventement temporaire pendant le montage, avant l'installation d'un contreventement permanent. Les plaques de fermes ne doivent pas être utilisées avec du bois incisé. Contacter le fabricant de fermes pour obtenir des conseils supplémentaires sur l'utilisation des fermes à ossature légère dans des environnements corrosifs, des conditions de service humides ou lorsqu'elles sont traitées avec un produit ignifuge.

Pour plus d'informations, consultez les ressources suivantes :

Bois d’échantillon

Le bois d’échantillon est du bois massif scié d’une épaisseur inférieure à 89 mm (3 1/2 po). Le bois peut être désigné par sa taille nominale en pouces, ce qui équivaut à la taille réelle arrondie à un pouce près, ou par sa taille réelle en millimètres. Par exemple, une pièce de 38 × 89 mm (1 1/2 × 3 1/2 po) est désignée comme du bois de 2 × 4. Le bois surfacé-sec (S-Dry), séché à l’air ou au séchoir (étuve) à un taux d’humidité de 19 % ou moins, est très courant en épaisseur de 38 mm (1 1/2 po). Les épaisseurs de bois d’échantillon de 64 et 89 mm (2 1/2 et 3 1/2 po) sont généralement distribuées sous la forme du bois surfacé-vert (S-Grn), c’est-à-dire avec une teneur en humidité supérieure à 19 %.

La longueur maximum du bois d’échantillon sur le marché est d’environ 7 m (23 pi), mais elle varie d’une région à l’autre du pays.

Les utilisations prédominantes du bois d’échantillon en construction sont les charpentes de toit, les planchers, les contreventements verticaux et horizontaux et les murs porteurs. Le bois peut être utilisé directement comme matériau d’ossature ou pour fabriquer des produits d’ingénierie tels que les fermes et les poutres en I préfabriquées. Un bois d’échantillon spécial appelé bois pour lamellés est fabriqué exclusivement pour la production de lamellé-collé.

Planche de bois 2x4

L'assurance de la qualité du bois d'œuvre canadien est assurée par un système complexe de normes de produits, de normes de conception technique et de codes de construction, impliquant une supervision du classement, un soutien technique et un cadre réglementaire.

Bois d’échantillon

         

      

  •   
       
  •    

   

   

Bois d’échantillon

   

Avantages de la conception du bois abouté

Le bois abouté est un produit d'ingénierie qui est recherché pour plusieurs raisons :

  • rectitude
  • stabilité dimensionnelle
  • l'interchangeabilité avec du bois non abouté
  • utilisation très efficace de la fibre de bois

Les avantages de ce produit en bois d'ingénierie en termes de conception et de performance sont sa rectitude et sa stabilité dimensionnelle. La rectitude et la stabilité dimensionnelle du bois abouté sont le résultat de la combinaison de pièces de bois courtes, au grain relativement droit et présentant moins de défauts naturels, pour former une pièce de bois plus longue. Le grain du bois abouté devient non uniforme et aléatoire lorsque de nombreuses pièces courtes sont assemblées. Le bois abouté est donc moins susceptible de se déformer que le bois de sciage massif. Le processus d'aboutage permet également de réduire ou d'éliminer les défauts qui réduisent la résistance, ce qui donne un produit structurel en bois dont les propriétés techniques sont moins variables que celles du bois de sciage massif. L'utilisation la plus courante du bois abouté est celle des montants dans les murs de cisaillement et les murs porteurs verticaux.

Le facteur le plus important pour les montants est la rectitude. Les montants assemblés par entures multiples resteront plus droits que les montants en bois de construction massif lorsqu'ils sont soumis à des changements de température et d'humidité. Cette caractéristique présente des avantages considérables pour le constructeur et le propriétaire, notamment une construction de qualité supérieure, l'élimination des sauts de clous dans les cloisons sèches et d'autres problèmes liés aux variations dimensionnelles. Cette caractéristique fait également du bois abouté un candidat idéal pour les cloisons intérieures non porteuses.

Le bois abouté est également couramment utilisé comme matériau de bride dans les poutrelles en I. Cette application exige que les fibres du bois et le joint collé résistent à des charges de tension à long terme lors de l'utilisation. Cette application du produit exige que les fibres du bois et le joint collé résistent à des charges de tension à long terme lors de l'utilisation. C'est pourquoi le bois abouté utilisé pour la fabrication de poutrelles en I doit être conforme aux exigences de la norme NLGA SPS 1. Les fabricants de poutrelles en I en bois appliquent des procédures supplémentaires d'évaluation de la qualité au cours de la production.

Types de bois aboutés

Le bois d'œuvre canadien abouté est fabriqué conformément à la norme SPS 1 de la NLGA, Bois de charpente abouté, à la norme SPS 3, Bois d'œuvre abouté à usage exclusif de poteaux verticaux, ou à la norme SPS 4, Bois d'œuvre abouté calibré à la machine. Dans presque tous les cas, le bois abouté fabriqué conformément aux exigences de la norme SPS 1 est interchangeable avec le bois de sciage massif de même essence, qualité et longueur, et peut être utilisé pour des applications porteuses horizontales ou verticales, telles que les solives, les chevrons, les colonnes et les poteaux muraux. Le bois abouté fabriqué selon la norme SPS 3 ne peut être utilisé qu'en tant qu'éléments verticaux en compression, par exemple les poteaux de mur, lorsque les composantes de flexion et de tension ne dépassent pas une courte durée, que la teneur en humidité du bois ne dépasse pas 19% et que la température ne dépasse pas 50 °C pendant une période prolongée. Le bois d'œuvre SPS 3 est fabriqué dans des sections allant jusqu'à 38 x 140 mm (2 x 6), dans des longueurs allant jusqu'à 3,66 m (12 ft). Le bois d'œuvre abouté fabriqué conformément à la norme SPS 4 peut être utilisé pour les brides de poutrelles en I en bois et les fermes raccordées à des plaques métalliques. Le bois abouté classé SPS 4 désigné comme "usage à sec uniquement" ne doit être utilisé que dans des applications où la teneur en humidité à l'équilibre du bois ne doit pas dépasser 19%. Le bois abouté est généralement produit à partir de bois dont la teneur en humidité ne dépasse pas 19% afin de faciliter la fabrication du joint et de répondre aux normes strictes de contrôle de la qualité. C'est pourquoi le bois abouté est presque toujours vendu comme "S-Dry".

Il existe plusieurs types d'adhésifs utilisés dans la fabrication du bois abouté. Les normes spéciales de produits (SPS) de la National Lumber Grades Authority (NLGA) décrivent les types d'adhésifs pouvant être utilisés dans les bois aboutés SPS 1, SPS 3 et SPS 4, ainsi que les normes d'essai auxquelles ces adhésifs doivent satisfaire. L'assemblage SPS 1, parfois appelé aboutage structural, utilise un adhésif phénol-résorcinol-formaldéhyde (PRF), similaire à celui utilisé dans les panneaux structuraux ou dans le bois lamellé-collé. Le SPS 3 utilise généralement un adhésif à base d'acétate de polyvinyle. Les adhésifs utilisés dans la fabrication du bois abouté SPS 3 ne conviennent pas à l'assemblage de bois mouillés, c'est pourquoi seul le bois "S-Dry" est utilisé afin de garantir un assemblage de qualité.

Les adhésifs utilisés dans les charpentes assemblées par entures multiples sont désignés comme adhésifs résistants à la chaleur (HRA) ou non résistants à la chaleur (Non-HRA). Pour être qualifié d'adhésif HRA, un adhésif doit être exposé à des températures élevées au cours d'un essai standard de résistance au feu d'un assemblage de poteaux porteurs assemblés par entures multiples, chargé à 100 % de la charge de conception admissible du mur. Tous les produits SPS 1 doivent être fabriqués avec des adhésifs HRA. Les produits SPS 3 peuvent être fabriqués avec des adhésifs HRA ou non HRA. Tous les produits SPS 4 doivent être fabriqués avec des adhésifs HRA.

Protocoles d'essais structuraux pour les bois assemblés par entures multiples

La résistance des aboutages est contrôlée en stipulant la qualité du bois qui doit être présent dans la zone de l'aboutage. Pour la majorité des bois aboutés, les segments entre les aboutages sont classés visuellement conformément aux règles de la NLGA pour la qualité de bois indiquée sur le timbre de qualité. Près des joints, des limites visuelles plus restrictives sont généralement imposées. Les propriétés structurelles sont confirmées par un programme complet d'assurance qualité avec vérification par une tierce partie indépendante. Des tests structurels quotidiens sont certifiés pour vérifier que le produit répond aux exigences du système nord-américain de classement du bois d'œuvre. Chaque pièce doit être composée d'essences du même groupe, et des tolérances strictes sont établies pour l'usinage des doigts, la qualité, le mélange et le durcissement de l'adhésif. Selon le type de bois abouté fabriqué, des essais de flexion sur chant et à plat et des essais de traction sont effectués sur chaque pièce pour s'assurer que l'assemblage peut répondre aux valeurs de conception technique du bois. Les exigences des essais du bois abouté sont sélectionnées pour permettre d'attribuer au bois abouté la même résistance et la même rigidité que le bois non abouté de la même qualité et de la même taille. Les méthodes d'essai (par exemple, essais de flexion ou de traction) et la charge d'essai cible (par exemple, résistance minimale et 5e centile de l'aboutage) pour les échantillons d'aboutages simples ne sont pas seulement liées à la taille, à la qualité et à l'essence à assembler, mais tiennent également compte de l'espacement moyen entre les aboutages. Les aboutages utilisés avec un espacement moyen des aboutages inférieur doivent atteindre un niveau de résistance du 5e centile plus élevé que les mêmes aboutages utilisés avec un espacement moyen des aboutages supérieur. Lors de la sélection des essais, seules certaines propriétés, telles que la résistance à la flexion, sont directement testées. D'autres caractéristiques sont établies par corrélation avec la propriété contrôlée, ou impliquées par la spécification imposée à l'adhésif (par exemple, la performance de la ligne de collage de l'adhésif). Pour plus d'informations sur la performance des adhésifs dans les bois aboutés dans les assemblages muraux résistants au feu, se référer au document suivant

Le bois abouté doit répondre aux mêmes exigences que celles énoncées dans les règles de classement du bois de sciage ordinaire. Les règles de classement ne considèrent pas que la présence d'aboutages réduise les propriétés de résistance. Le bois abouté doit également répondre à des normes de produit spéciales concernant les exigences de contrôle de la qualité pour la résistance et la durabilité des joints. Les normes spéciales SPS 1, SPS 3 et SPS 4 de la National Lumber Grades Authority (NLGA) au Canada ou le document Glued Products Procedures & Quality Control, C/QC 101.97 de la Western Wood Products Association (WWPA) sont des exemples de ces normes de produit. Tous les bois aboutés fabriqués conformément aux normes canadiennes de la NLGA portent une estampille indiquant - l'identification de l'essence ou de la combinaison d'essences - la désignation du séchage (S-Dry ou S-Green) - le symbole enregistré de l'organisme de classement - le grade - l'identification de l'usine - le type d'adhésif utilisé (HRA ou Non-HRA) - le numéro de la norme NLGA et la désignation SPS 1 CERT FGR JNT (joint à entures multiples certifié), ou SPS 3 CERT FGR JNT-VERT STUD USE ONLY (aboutage certifié pour utilisation verticale uniquement), ou SPS 4 CERT FGR JNT (aboutage certifié) Des informations supplémentaires sur le bois abouté SPS 1 et SPS 3 sont fournies dans le tableau 1 ci-dessous.

Désignation du timbre de grade Fac-similé du timbre de grade Normes de produits Comparaison avec le bois non abouté Utilisations autorisées Adhésifs Grades autorisés Dimensions et longueurs
USAGE VERTICAL UNIQUEMENT - SPS 3 CERT FGR JNT Bois d’échantillon SPS 3 et C/QCl0l.97 Destinés à être utilisés comme montants muraux, limités à des charges normales de flexion et de tension à court terme. Montants porteurs, montants non porteurs, usage intérieur uniquement Typiquement l'acétate de polyvinyle, mais toute colle répondant aux normes. Stud, Construction, Standard, No.1, No.2, No.3 2×2, 2×3, 2×4, 2×6, 8′ à 12′
JOINT STRUCTUREL - SPS 1 CERT FGR JNT Bois d’échantillon SPS 1 et C/QCl0l.97 Entièrement interchangeable avec des bois de même qualité et de même essence Goujons porteurs et non porteurs, chevêtres, linteaux, poutres, solives Phénol-résorcinol ou équivalent, de couleur foncée Select Structural (SS), No.1, No.2 2×2, 2×3, 2×4, 2×6, 2×8, 2×10, 2×12, 8′ à 40′

Dimensions du bois de charpente

Surface sèche (S-Dry), Taille, mm Surface sèche (S-Dry), taille, en pouces (réelle) Dimension brute de sciage, en pouces (nom.) Vert surfacé (S-Grn) Taille, en pouces (réelle)
38 x 38 1-1/2 x 1-1/2 2 x 2 1-9/16 x 1-9/16
38 x 64 1-1/2 x 2-1/2 2 x 3 1-9/16 x 2-9/16
38 x 89 1-1/2 x 3-1/2 2 x 4 1-9/16 x 3-9/16
38 x 140 1-1/2 x 5-1/2 2 x 6 1-9/16 x 5-5/8
38 x 184 1-1/2 x 7-1/4 2 x 8 1-9/16 x 7-3/8
38 x 235 1-1/2 x 9-1/4 2 x 10 1-9/16 x 9-1/2
38 x 286 1-1/2 x 11-1/4 2 x 12 1-9/16 x 11-1/2
64 x 64 2-1/2 x 2-1/2 3 x 3 2-9/16 x 2-9/16
64 x 89 2-1/2 x 3-1/2 3 x 4 2-9/16 x 3-9/16
64 x 140 2-1/2 x 5-1/2 3 x 6 2-9/16 x 5-5/8
64 x 184 2-1/2 x 7-1/4 3 x 8 2-9/16 x 7-3/8
64 x 235 2-1/2 x 9-1/4 3 x 10 2-9/16 x 9-1/2
64 x 286 2-1/2 x 11-1/4 3 x 12 2-9/16 x 11-1/2
89 x 89 3-1/2 x 3-1/2 4 x 4 3-9/16 x 3-9/16
89 x 140 3-1/2 x 5-1/2 4 x 6 3-9/16 x 5-5/8
89 x 184 3-1/2 x 7-1/4 4 x 8 3-9/16 x 7-3/8
89 x 235 3-1/2 x 9-1/4 4 x 10 3-9/16 x 9-1/2
89 x 286 3-1/2 x 11-1/4 4 x 12 3-9/16 x 11-1/2

Notes :

  • Le bois de 38 mm (2″ nominal) est facilement disponible en S-Dry.
  • Le bois S-Dry est surfacé à un taux d'humidité inférieur ou égal à 19 %.
  • Après séchage, les dimensions du bois S-Green seront approximativement les mêmes que celles du bois S-Dry.
  • Les tailles métriques indiquées dans le tableau sont équivalentes aux tailles impériales S-Dry, arrondies au millimètre le plus proche.
  • S-Dry est la dimension finale pour le bois sec en place et c'est la dimension utilisée dans les calculs de conception.

Teneur en eau

Le bois gagne ou perd de l'humidité en fonction des conditions environnementales auxquelles il est soumis. Les variations d'humidité affectent les produits du bois de deux manières. Tout d'abord, la variation de la teneur en humidité entraîne des changements dimensionnels (retrait et gonflement) du bois. Deuxièmement, lorsqu'elle est combinée à d'autres conditions préalables, une humidité excessive peut entraîner la détérioration du bois par la pourriture. Le taux d'humidité est le poids de l'eau contenue dans le bois par rapport au poids du bois séché au four. La variation de la taille d'une pièce de bois est liée à la quantité d'eau qu'elle absorbe ou qu'elle perd. Pour des taux d'humidité compris entre 0 et 28 % environ, l'humidité est retenue dans les parois des cellules du bois. À environ 28 %, les parois cellulaires atteignent leur capacité ou point de saturation des fibres (PSF) et toute eau supplémentaire doit être retenue dans les cavités cellulaires.

Tampons de teneur en eau

Le bois estampillé "S-Grn" (surfaced green) est un bois dont le taux d'humidité était supérieur à 19 % au moment de la fabrication (rabotage ou dressage). Le bois d'œuvre S-Grn est également appelé bois d'œuvre non séché ou bois d'œuvre vert. Le bois estampillé "S-Dry" (surfaced dry) est un bois dont le taux d'humidité ne dépassait pas 19 % au moment de la fabrication. L'estampille relative au taux d'humidité n'indique pas si le séchage a été effectué à l'air libre ou au four. Certaines scieries apposent volontairement un cachet "KD" indiquant que le bois a été séché au four. Le bois d'œuvre séché à l'air et le bois d'œuvre séché au four ont les mêmes résistances spécifiées utilisées pour la conception technique. Le bois S-Dry est jusqu'à 15 % plus cher que le bois S-Grn, en raison de l'augmentation des coûts liés à l'emballage et au séchage.

Mesure de la teneur en eau

La mesure de la teneur en humidité des produits du bois peut s'avérer difficile, en particulier si elle est effectuée dans des conditions variables. Il convient de suivre des lignes directrices pour mesurer et interpréter les résultats afin d'évaluer correctement si les produits en bois sont secs au moment de la pose. Par exemple, lors de la mesure de la teneur en humidité d'une pièce de bois, les facteurs suivants influencent le résultat individuel :

  • le type de test (l'étuvage est le plus précis)
  • le type d'appareil de mesure (diélectrique, résistance au courant continu)
  • type de produit
  • température
  • les essences de bois
  • variation du bois (poches humides)
  • la fréquence, l'emplacement et la profondeur de l'échantillonnage pour représenter correctement l'ensemble de la pièce

Les facteurs suivants doivent être pris en compte lors de la mesure et de l'évaluation de la performance d'une structure en bois, dans des conditions d'utilisation finale données et en fonction des variations d'humidité :

  • répartition de l'humidité dans la structure
  • le(s) lieu(x) où l'humidité s'accumule
  • nombre d'étages
  • type(s) de construction
  • l'orientation, l'exposition et l'ombrage
  • échantillonnage et analyse des résultats individuels

Resources in PDF:

i -Joïstes

Les solives en I préfabriquées en bois sont des éléments structuraux en bois exclusifs qui consistent en des brides de bois de sciage massif ou de bois de placage stratifié (LVL) assemblées par entures multiples et fixées à une âme de contreplaqué ou de panneau à copeaux orientés (OSB) à l'aide d'un adhésif. Les joints de panneaux en bande sont collés et assemblés selon plusieurs méthodes, telles que l'aboutage des extrémités carrées des panneaux, l'écharpe des extrémités des panneaux, ou la formation d'un joint de type dentelé ou à rainure et languette. Les adhésifs imperméables à l'extérieur, tels que le phénol-formaldéhyde et le phénol-résorcinol, sont principalement utilisés pour les joints de l'âme à l'âme et de l'âme à l'aile. Plusieurs fabricants proposent différentes combinaisons de matériaux pour les ailes et les âmes, ainsi que d'autres types de connexions entre les âmes et les ailes (voir la figure 3.20 ci-dessous). Les solives en I en bois sont disponibles dans une variété de profondeurs standard et dans des longueurs allant jusqu'à 20 m (66 ft).

Chaque fabricant produit des solives en I dont les caractéristiques de résistance et de rigidité sont uniques. Pour s'assurer que leurs produits ont été fabriqués dans le cadre d'un programme d'assurance qualité supervisé par un organisme de certification indépendant, les fabricants font généralement évaluer et enregistrer leurs produits conformément aux exigences et aux directives du Centre canadien des matériaux de construction (CCMC).

La forme en "I" de la section transversale de ces produits structuraux en bois offre un rapport résistance/poids plus élevé que le bois de sciage massif traditionnel. La rigidité uniforme, la résistance et la légèreté de ces éléments préfabriqués permettent d'utiliser des solives et des chevrons de plus grande portée dans la construction résidentielle et commerciale. Les solives en I en bois sont généralement fabriquées à partir d'ailes et d'âmes non traitées et ne sont donc généralement pas utilisées pour les applications extérieures. Les solives en I en bois sont également stables sur le plan dimensionnel car elles sont fabriquées avec un taux d'humidité compris entre 6 et 12 %.

Pour l'installation des services mécaniques et électriques, de nombreux fabricants fournissent des exigences et des conseils concernant la forme, la taille et l'emplacement des ouvertures, des encoches, des trous et des coupes. La plupart des fournisseurs de solives en bois en I stockent également des suspensions de solives standard et d'autres éléments de connexion préfabriqués spécialement conçus pour être utilisés avec les solives en bois en I.

Pour de plus amples informations sur les solives en I en bois, veuillez consulter les ressources suivantes :

APA - The Engineered Wood Association (Association du bois d'ingénierie)

Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction (CNRC)

Association des fabricants de poutrelles en I en bois (WIJMA)

CSA O86 Conception technique en bois

ASTM D5055 Spécification normalisée pour l'établissement et le contrôle des capacités structurelles des poutres en I préfabriquées en bois

i -Joïstes

i -Joïstes

Bois de placage stratifié

Utilisé pour la première fois pendant la Seconde Guerre mondiale pour fabriquer des hélices d'avion, le bois de placage stratifié (LVL) est disponible comme produit de construction depuis le milieu des années 1970. Le LVL est le produit de bois composite structurel (SCL) le plus largement utilisé et offre des caractéristiques telles qu'une grande résistance, une grande rigidité et une grande stabilité dimensionnelle. Le processus de fabrication du LVL permet de fabriquer des éléments de grande taille à partir d'arbres relativement petits, ce qui permet une utilisation efficace des ressources forestières. Le LVL est généralement fabriqué à partir d'essences de bois telles que le sapin de Douglas, le mélèze, le pin jaune du Sud et le peuplier.

Le LVL est principalement utilisé comme ossature structurelle dans la construction résidentielle et commerciale. Les applications courantes du LVL dans la construction comprennent les chevêtres et les poutres, les chevrons d'arêtier et de noue, les planches d'échafaudage et le matériau de la bride pour les solives en I préfabriquées en bois. Le LVL peut également être utilisé pour les poteaux de signalisation routière et comme plancher de camion.

Les LVL sont constitués de placages de bois séchés et classés, enduits d'un adhésif imperméable à base de résine phénol-formaldéhyde, assemblés selon un schéma bien défini et transformés en billettes par durcissement dans une presse chauffée. Les billettes LVL sont ensuite sciées aux dimensions souhaitées en fonction de l'application finale.

Le grain de chaque couche de placage est orienté dans le même sens (long), ce qui permet de charger le LVL sur son bord court (axe fort) comme une poutre ou sur sa face large (axe faible) comme une planche. Ce type de stratification est appelé stratification parallèle et produit un matériau plus uniforme et plus prévisible que les produits en bois d'ingénierie fabriqués à l'aide d'une stratification croisée, comme le contreplaqué.

Le LVL est un produit solide, hautement prévisible et uniforme, car les défauts naturels tels que les nœuds, l'inclinaison du grain et les fentes ont été dispersés dans tout le matériau ou ont été complètement éliminés au cours du processus de fabrication.

L'épaisseur la plus courante du LVL est de 45 mm (1-3/4 in), ce qui permet de construire facilement des poutres plus larges en fixant plusieurs plis LVL ensemble sur le chantier. Le LVL peut également être fabriqué dans des épaisseurs allant de 19 mm (3/4 po) à 178 mm (7 po). Les poutres LVL les plus courantes ont une profondeur de 241 mm, 302 mm, 356 mm, 406 mm, 476 mm et 606 mm. D'autres largeurs et profondeurs peuvent également être disponibles auprès de certains fabricants. Les LVL sont disponibles en longueurs allant jusqu'à 24,4 m (80 ft), les longueurs les plus courantes étant 14,6 m (48 ft), 17 m (56 ft), 18,3 m (60 ft) et 20,1 m (66 ft). Le LVL peut facilement être coupé à la longueur voulue sur le chantier.

Toutes les coupes, entailles ou perçages spéciaux doivent être effectués conformément aux recommandations du fabricant. Le LVL est un produit à base de bois dont le comportement au feu est similaire à celui d'un bois de sciage massif ou d'une poutre en lamellé-collé de taille comparable. Les catalogues et les rapports d'évaluation des fabricants sont les principales sources d'information pour la conception, les détails d'installation typiques et les caractéristiques de performance.

Le LVL est principalement utilisé comme élément structurel, le plus souvent dans des espaces cachés où l'apparence n'est pas importante. Certains fabricants proposent des produits finis ou de qualité architecturale, généralement moyennant un supplément de prix. Toutefois, lorsque l'on souhaite utiliser le LVL dans des applications où l'aspect est important, on peut utiliser les techniques courantes de finition du bois pour accentuer le grain et protéger la surface du bois. Dans son aspect fini, le LVL ressemble au contreplaqué ou au bois d'œuvre sur la face large.

Comme tout autre produit du bois, le LVL doit être protégé des intempéries pendant l'entreposage sur le chantier et après la pose. L'emballage du produit avant son expédition sur le chantier est important pour assurer la protection contre l'humidité. Le scellement des extrémités et des bords du produit renforce sa résistance à la pénétration de l'humidité.

Le LVL est un produit breveté et, par conséquent, les propriétés techniques et les dimensions spécifiques sont propres à chaque fabricant. Il n'existe donc pas de norme commune de production ni de valeurs de calcul communes pour le LVL. Les valeurs de calcul sont dérivées des résultats d'essais analysés conformément à la norme CSA O86 et à la norme ASTM D5456, et les valeurs de calcul sont examinées et approuvées par le Centre canadien des matériaux de construction (CCMC). Les produits conformes aux directives du CCMC reçoivent un numéro d'évaluation et un rapport d'évaluation comprenant les résistances nominales spécifiées, qui sont ensuite répertoriées dans le registre des évaluations de produits du CCMC. Le nom du fabricant ou l'identification du produit et la classe de résistance sont marqués sur le matériau à différents intervalles, mais en raison de la coupe en bout, ils peuvent ne pas être présents sur chaque pièce.

 

Pour plus d'informations, consultez les ressources suivantes :

APA - The Engineered Wood Association (Association du bois d'ingénierie)

Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction

CSA O86 Conception technique en bois

ASTM D5456 Spécification standard pour l'évaluation des produits de bois de charpente composite

Bois de sciage stratifié

Le bois lamellé-collé (LSL) est l'un des produits les plus récents du bois composite structurel (SCL) dont l'utilisation s'est répandue. Le bois lamellé offre des caractéristiques telles qu'une grande résistance, une grande rigidité et une grande stabilité dimensionnelle. Le processus de fabrication du LSL permet de fabriquer de grandes pièces à partir d'arbres relativement petits, ce qui permet une utilisation efficace des ressources forestières. Le LSL est généralement fabriqué à partir d'essences de bois à croissance rapide telles que le tremble et le peuplier.

Le bois lamellé-collé est principalement utilisé comme ossature structurelle dans la construction résidentielle, commerciale et industrielle. Les applications courantes du LSL dans la construction comprennent les chevêtres et les poutres, les montants des murs hauts, les planches de rive, les plaques d'appui, la menuiserie et l'encadrement des fenêtres. Le LSL offre également une bonne résistance aux fixations.

À l'instar du bois de sciage à copeaux parallèles (PSL) et du bois de sciage à copeaux orientés (OSL), le LSL est fabriqué à partir de copeaux de bois dont le rapport longueur/épaisseur est d'environ 150. Combinés à un adhésif, les brins sont orientés et formés en un grand matelas ou une billette, puis pressés. Le LSL ressemble au panneau à lamelles orientées (OSB), car ils sont tous deux fabriqués à partir d'essences de bois similaires et contiennent des lamelles de bois, mais, contrairement à l'OSB, les lamelles du LSL sont disposées parallèlement à l'axe longitudinal de l'élément.

Le LSL est un produit de bois d'ingénierie solide, hautement prévisible et uniforme, car les défauts naturels tels que les nœuds, l'inclinaison du grain et les fentes ont été dispersés dans l'ensemble du matériau ou ont été complètement éliminés au cours du processus de fabrication. Comme d'autres produits SCL tels que le LVL et le PSL, le LSL offre des propriétés de résistance et de rigidité prévisibles et une stabilité dimensionnelle qui minimise la torsion et le retrait.

Toutes les coupes, entailles ou perçages spéciaux doivent être effectués conformément aux recommandations du fabricant. Les catalogues et les rapports d'évaluation des fabricants sont les principales sources d'information pour la conception, les détails d'installation typiques et les caractéristiques de performance.

Comme tout autre produit en bois, le LSL doit être protégé des intempéries pendant le stockage sur le chantier et après l'installation. L'emballage du produit avant son expédition sur le chantier est important pour assurer la protection contre l'humidité. Le scellement des extrémités et des bords du produit renforce sa résistance à la pénétration de l'humidité.

Le LSL est un produit breveté et, par conséquent, les propriétés techniques et les dimensions spécifiques sont propres à chaque fabricant. Il n'existe donc pas de norme commune de production ni de valeurs de conception communes pour le LSL. Les valeurs de conception sont dérivées des résultats d'essais analysés conformément à la norme CSA O86 et à la norme ASTM D5456, et les valeurs de conception sont examinées et approuvées par le Centre canadien des matériaux de construction (CCMC). Les produits conformes aux directives du CCMC reçoivent un numéro d'évaluation et un rapport d'évaluation comprenant les résistances nominales spécifiées, qui sont ensuite répertoriées dans le registre des évaluations de produits du CCMC. Le nom du fabricant ou l'identification du produit et la classe de résistance sont marqués sur le matériau à différents intervalles, mais en raison de la coupe en bout, ils peuvent ne pas être présents sur chaque pièce.

 

Bloc de bois lamellé-collé

 

Pour plus d'informations, consultez les ressources suivantes :

APA - The Engineered Wood Association (Association du bois d'ingénierie)

Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction

CSA O86 Conception technique du bois

ASTM D5456 Standard Specification for Evaluation of Structural Composite Lumber Products (Spécification standard pour l'évaluation des produits de bois de charpente composite)

Bois de sciage orienté

Bois de sciage orienté (OSL)

Le bois d'œuvre à lamelles orientées (OSL) présente des caractéristiques telles qu'une grande résistance, une grande rigidité et une grande stabilité dimensionnelle. Le processus de fabrication de l'OSL permet de fabriquer de grandes pièces à partir d'arbres relativement petits, ce qui permet une utilisation efficace des ressources forestières.

L'OSL est principalement utilisé comme ossature structurelle dans la construction résidentielle, commerciale et industrielle. Les applications courantes de l'OSL dans la construction comprennent les chevêtres et les poutres, les montants des murs hauts, les planches de rive, les plaques d'appui, la menuiserie et l'encadrement des fenêtres. L'OSL offre également une bonne résistance aux fixations.

Comme le bois lamellé-collé (LSL), l'OSL est fabriqué à partir de lamelles de bois dont le rapport longueur/épaisseur est d'environ 75. Les brins de bois utilisés dans l'OSL sont plus courts que ceux du LSL. Combinés à un adhésif, les brins sont orientés et formés en un grand mat ou billette, puis pressés. L'OSL ressemble au panneau de lamelles orientées (OSB), car ils sont tous deux fabriqués à partir d'essences de bois similaires et contiennent des lamelles de bois, mais, contrairement à l'OSB, les lamelles de l'OSL sont disposées parallèlement à l'axe longitudinal de l'élément.

L'OSL est un produit de bois d'ingénierie solide, hautement prévisible et uniforme, car les défauts naturels tels que les nœuds, l'inclinaison du grain et les fentes ont été dispersés dans l'ensemble du matériau ou ont été complètement éliminés au cours du processus de fabrication. Comme d'autres produits SCL tels que le LVL et le PSL, l'OSL offre des propriétés de résistance et de rigidité prévisibles et une stabilité dimensionnelle qui minimise la torsion et le retrait.

Toutes les coupes, entailles ou perçages spéciaux doivent être effectués conformément aux recommandations du fabricant. Les catalogues et les rapports d'évaluation des fabricants sont les principales sources d'information pour la conception, les détails d'installation typiques et les caractéristiques de performance.

Comme tout autre produit en bois, l'OSL doit être protégé des intempéries pendant le stockage sur le chantier et après l'installation. L'emballage du produit avant son expédition sur le chantier est important pour assurer la protection contre l'humidité. Le scellement des extrémités et des bords du produit renforcera sa résistance à la pénétration de l'humidité.

L'OSL est un produit breveté et, par conséquent, les propriétés techniques et les dimensions spécifiques sont propres à chaque fabricant. Il n'existe donc pas de normes de production ni de valeurs de conception communes pour l'OSL. Les valeurs de conception sont dérivées des résultats d'essais analysés conformément à la norme CSA O86 et à la norme ASTM D5456 et les valeurs de conception sont examinées et approuvées par le Centre canadien des matériaux de construction (CCMC). Les produits conformes aux directives du CCMC reçoivent un numéro d'évaluation et un rapport d'évaluation comprenant les résistances nominales spécifiées, qui sont ensuite répertoriées dans le registre des évaluations de produits du CCMC. Le nom du fabricant ou l'identification du produit et la classe de résistance sont marqués sur le matériau à différents intervalles, mais en raison de la coupe en bout, ils peuvent ne pas être présents sur chaque pièce.

Bloc de bois d'œuvre orienté

Pour plus d'informations, consultez les ressources suivantes :

APA - The Engineered Wood Association (Association du bois d'ingénierie)

Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction

CSA O86 Conception technique en bois

ASTM D5456 Spécification standard pour l'évaluation des produits de bois de charpente composite

Bois de sciage à fils parallèles

Bois de sciage à fils parallèles (PSL)

Le bois de sciage à fils parallèles (PSL) présente des caractéristiques telles qu'une grande résistance, une grande rigidité et une grande stabilité dimensionnelle. Le processus de fabrication de l'OSL permet de fabriquer de grandes pièces à partir d'arbres relativement petits, ce qui permet une utilisation efficace des ressources forestières. Au Canada, le PSL est fabriqué à partir de sapin de Douglas.

Le PSL est principalement utilisé comme ossature structurelle dans la construction résidentielle, commerciale et industrielle. Les applications courantes du PSL dans la construction comprennent les chevêtres, les poutres et les linteaux dans les constructions à ossature légère, ainsi que les poutres et les colonnes dans les constructions à poteaux et à poutres. Le PSL est un matériau structurel attrayant qui convient aux applications où l'aspect fini est important.

Comme le bois lamellé-collé (LSL) et le bois orienté (OSL), le PSL est fabriqué à partir de lamelles de bois disposées parallèlement à l'axe longitudinal de l'élément et dont le rapport longueur/épaisseur est d'environ 300. Les brins de bois utilisés dans le PSL sont plus longs que ceux utilisés pour fabriquer le LSL et l'OSL. Combinées à un adhésif phénol-formaldéhyde imperméable à l'extérieur, les lamelles sont orientées et formées en une grande billette, puis pressées ensemble et durcies à l'aide d'un rayonnement micro-ondes.

Les poutres PSL sont disponibles en épaisseurs de 68 mm (2-11/16 in), 89 mm (3-1/2 in), 133 mm (5-1/4 in), et 178 mm (7 in) et une profondeur maximale de 457 mm (18 in). Les colonnes PSL sont disponibles en dimensions carrées ou rectangulaires de 89 mm (3-1/2 po), 133 mm (5-1/4 po) et 178 mm (7 po). Les épaisseurs les plus faibles peuvent être utilisées individuellement en tant que couches simples ou être combinées pour des applications multicouches. Le PSL peut être fabriqué en grandes longueurs, mais il est généralement limité à 20 m par les contraintes de transport.

Le PSL est un produit de bois d'ingénierie solide, hautement prévisible et uniforme, car les défauts naturels tels que les nœuds, l'inclinaison du grain et les fentes ont été dispersés dans tout le matériau ou ont été complètement éliminés au cours du processus de fabrication. Comme les autres produits SCL (LVL, LSL et OSL), le PSL offre des propriétés de résistance et de rigidité prévisibles ainsi qu'une stabilité dimensionnelle. Fabriqué à un taux d'humidité de 11 %, le PSL est moins sujet au rétrécissement, au gauchissement, à la déformation, à la courbure et au fendillement.

Toutes les coupes, entailles ou perçages spéciaux doivent être effectués conformément aux recommandations du fabricant. Les catalogues et les rapports d'évaluation des fabricants sont les principales sources d'information pour la conception, les détails d'installation typiques et les caractéristiques de performance.

Le PSL présente une texture riche et conserve de nombreuses lignes de colle foncées. Le PSL peut être usiné, teinté et fini en utilisant les techniques applicables au bois de sciage. Les membres du PSL acceptent facilement la teinture pour rehausser la chaleur et la texture du bois. Tous les PSL sont poncés à la fin du processus de production afin de garantir des dimensions précises et de fournir une surface de haute qualité pour l'apparence.

Comme tout autre produit en bois, le PSL doit être protégé des intempéries pendant le stockage sur le chantier et après l'installation. L'emballage du produit avant son expédition sur le chantier est important pour assurer la protection contre l'humidité. Le scellement des extrémités et des bords du produit renforce sa résistance à la pénétration de l'humidité. Le PSL accepte facilement un traitement de préservation et il est possible d'obtenir un degré élevé de pénétration du produit. Le PSL traité peut être spécifié pour les expositions à une humidité élevée.

Le PSL est un produit breveté et, par conséquent, les propriétés techniques et les dimensions spécifiques sont propres à chaque fabricant. Il n'existe donc pas de norme commune de production ni de valeurs de conception communes pour les PSL. Les valeurs de conception sont dérivées des résultats d'essais analysés conformément à la norme CSA O86 et à la norme ASTM D5456 et les valeurs de conception sont examinées et approuvées par le Centre canadien des matériaux de construction (CCMC). Les produits conformes aux directives du CCMC reçoivent un numéro d'évaluation et un rapport d'évaluation comprenant les résistances nominales spécifiées, qui sont ensuite répertoriées dans le registre des évaluations de produits du CCMC. Le nom du fabricant ou l'identification du produit et la classe de résistance sont marqués sur le matériau à différents intervalles, mais en raison de la coupe en bout, ils peuvent ne pas être présents sur chaque pièce.

Le Centre canadien des matériaux de construction (CCMC) a accepté que le PSL soit utilisé comme construction en bois lourd, conformément aux dispositions de la partie 3 du Code national du bâtiment du Canada.

Bloc de bois de sciage à fils parallèles

Pour plus d'informations, consultez les ressources suivantes :

APA - The Engineered Wood Association (Association du bois d'ingénierie)

Centre canadien des matériaux de construction (CCMC), Institut de recherche en construction

CSA O86 Conception technique en bois

ASTM D5456 Spécification standard pour l'évaluation des produits de bois de charpente composite

Bois lamellé-croisé (CLT)

Le bois lamellé-croisé (CLT) est un produit d'ingénierie en bois breveté qui est préfabriqué à l'aide de plusieurs couches de bois d'œuvre séché au four, posées à plat et collées ensemble sur leurs faces larges. Les panneaux sont généralement constitués de trois, cinq, sept ou neuf couches alternées de bois de construction. L'alternance des directions des lamelles du CLT lui confère une grande stabilité dimensionnelle. Le CLT présente également un rapport résistance/poids élevé, ainsi que des avantages en termes de performances structurelles, thermiques, acoustiques et de résistance au feu.

L'épaisseur des panneaux est généralement comprise entre 100 et 300 mm (4 à 12 pouces), mais il est possible de produire des panneaux d'une épaisseur allant jusqu'à 500 mm (20 pouces). Les dimensions des panneaux varient de 1,2 à 3 m de largeur et de 5 à 19,5 m de longueur. La taille maximale des panneaux est limitée par la taille de la presse du fabricant et par les réglementations en matière de transport.

Les dispositions de conception du CLT au Canada s'appliquent aux panneaux de bois scié fabriqués conformément à la norme ANSI/APA PRG 320. En règle générale, toutes les lamelles dans une direction sont fabriquées avec la même qualité et la même essence de bois d'œuvre. Toutefois, les couches adjacentes peuvent avoir une épaisseur différente et être fabriquées dans d'autres qualités ou essences. La teneur en humidité des lamelles de bois d'œuvre au moment de la fabrication du CLT est comprise entre 9 et 15%.

Il existe cinq grades de contraintes primaires pour le CLT : E1, E2, E3, V1 et V2. La classe de contrainte E1 est la plus facilement disponible. La désignation "E" indique un bois d'œuvre soumis à des contraintes mécaniques (MSR, ou classé E) et la désignation "V" indique un bois d'œuvre classé visuellement. Les qualités de contrainte E1, E2 et E3 se composent de bois MSR dans toutes les couches longitudinales et de bois classé visuellement dans les couches transversales, tandis que les qualités de contrainte V1 et V2 se composent de bois classé visuellement dans les couches longitudinales et transversales. Les propriétés des qualités de contraintes du CLT sur mesure sont également publiées par les différents fabricants. Comme pour d'autres produits structuraux en bois, le CLT peut être évalué par le Centre canadien des matériaux de construction (CCMC) afin de produire un rapport d'évaluation du produit.

Contrairement aux classes de contraintes primaires et personnalisées du CLT qui sont associées à la capacité structurelle, les classes d'apparence se réfèrent à la finition de la surface des panneaux CLT. Toute classe de contrainte peut généralement être produite dans n'importe quelle finition de surface souhaitée par le concepteur. Il faut tenir compte des réductions de résistance et de rigidité dues au profilage des panneaux ou à d'autres finitions des faces ou des bords. L'annexe de la norme ANSI/APA PRG 320 fournit des exemples de classification de l'aspect du CLT.

Les adhésifs structuraux utilisés pour coller les laminés doivent être conformes aux normes CSA O112.10 et ASTM D7247 et sont également évalués en termes de résistance à la chaleur lors d'une exposition au feu.

Les différentes catégories d'adhésifs structurels généralement utilisées sont les suivantes :

  • Isocyanate de polymère en émulsion (EPI) ;
  • Polyuréthane monocomposant (PUR) ;
  • Les types phénoliques tels que le formaldéhyde phénol-résorcinol (PRF).

Étant donné que le traitement sous pression avec des produits de conservation à base d'eau peut avoir une incidence négative sur l'adhérence, il est interdit de traiter le CLT avec des produits de conservation à base d'eau après le collage. Pour le CLT traité avec des produits ignifuges ou d'autres produits chimiques susceptibles de réduire la résistance, la résistance et la rigidité doivent être basées sur des résultats d'essais documentés.

Dans le cadre du processus de préfabrication, les panneaux CLT sont découpés sur mesure, y compris les ouvertures de portes et de fenêtres, à l'aide de défonceuses à commande numérique par ordinateur (CNC) ultramodernes, capables de réaliser des coupes complexes avec de faibles tolérances. Les éléments préfabriqués en CLT arrivent sur le chantier prêts à être installés immédiatement. Le CLT offre une grande souplesse de conception et un faible impact sur l'environnement pour les planchers, les toits et les murs des bâtiments innovants en bois de moyenne et grande hauteur.

Pour plus d'informations sur le CLT, consultez les ressources suivantes :

ANSI/APA PRG 320 Standard for Performance-Rated Cross-Laminated Timber (Norme pour le bois lamellé-croisé à haute performance)

CSA O86 Conception technique du bois

CSA O112.10 Évaluation des adhésifs pour produits structuraux en bois (exposition limitée à l'humidité)

ASTM D7247 Standard Test Method for Evaluating the Shear Strength of Adhesive Bonds in Laminated Wood Products at Elevated Temperatures (Méthode d'essai standard pour évaluer la résistance au cisaillement des adhésifs dans les produits en bois stratifié à des températures élevées)

Glulam

Le bois lamellé-collé est un produit structurel en bois d'ingénierie constitué de plusieurs couches individuelles de bois de dimension qui sont collées ensemble dans des conditions contrôlées. Tous les bois lamellés-collés canadiens sont fabriqués à l'aide d'adhésifs imperméables pour l'assemblage des extrémités et pour le collage des faces, et conviennent donc aussi bien aux applications extérieures qu'intérieures. Le bois lamellé-collé a une capacité structurelle élevée et constitue également un matériau de construction architectural attrayant.

Le bois lamellé-collé est couramment utilisé dans les structures à poteaux et à poutres, les structures en bois lourd et en bois de masse, ainsi que dans les ponts en bois. Le bois lamellé-collé est un produit structurel en bois d'ingénierie utilisé pour les chevêtres, les poutres, les poutrelles, les pannes, les colonnes et les fermes lourdes. Le bois lamellé-collé est également fabriqué sous forme d'éléments courbes, qui sont généralement soumis à des charges combinées de flexion et de compression. Il peut également être façonné pour créer des poutres coniques inclinées et une variété de configurations d'arcs et de fermes portantes. Le bois lamellé-collé est souvent utilisé lorsque les éléments structurels sont laissés apparents, ce qui constitue un élément architectural.

Bloc de lamellé-collé

Dimensions disponibles pour le bois lamellé-collé

Des dimensions standard ont été développées pour le bois lamellé-collé canadien afin de permettre une utilisation optimale du bois d'œuvre qui est un multiple des dimensions du lamstock utilisé pour la fabrication du lamellé-collé. Adaptées à la plupart des applications, les dimensions standard permettent au concepteur de réaliser des économies et de bénéficier d'une livraison rapide. D'autres dimensions non standard peuvent être commandées spécialement, moyennant un coût supplémentaire en raison de l'éboutage supplémentaire nécessaire pour produire des dimensions non standard. Les largeurs et profondeurs standard du bois lamellé-collé sont indiquées dans le tableau 6.7 ci-dessous. La profondeur du bois lamellé-collé est fonction du nombre de lamelles multiplié par l'épaisseur de la lamelle. Par souci d'économie, des lamelles de 38 mm sont utilisées dans la mesure du possible, et des lamelles de 19 mm sont utilisées lorsque des degrés de courbure plus importants sont requis.

Largeurs standard du bois lamellé-collé

Les largeurs finies standard des éléments en bois lamellé-collé et les largeurs courantes du matériau de stratification à partir duquel ils sont fabriqués sont indiquées dans le tableau 4 ci-dessous. Pour les éléments d'une largeur inférieure à 275 mm (10-7/8″), une seule largeur est utilisée pour la dimension de la largeur totale. Toutefois, les éléments d'une largeur supérieure à 175 mm (6-7/8″) peuvent être constitués de deux planches posées côte à côte. Tous les éléments d'une largeur supérieure à 275 mm (10-7/8″) sont constitués de deux pièces de bois placées côte à côte, les joints de bordures étant décalés dans la profondeur de l'élément. Les éléments d'une largeur supérieure à 365 mm (14-1/4″) sont fabriqués par incréments de 50 mm (2″), mais sont plus chers que les largeurs standard. Les fabricants doivent être consultés pour obtenir des conseils.

Largeur initiale du bois lamellé-collé Largeur finie du bois lamellé-collé
mm. en. mm. en.
89 3-1/2 80 3
140 5-1/2 130 5
184 7-1/4 175 6-7/8
235 (ou 89 + 140) 9-1/4 (ou 3-1/2 + 5-1/2) 225 (ou 215) 8-7/8 (ou 8-1/2)
286 (ou 89 + 184) 11-1/4 (ou 3-1/2 + 7-1/4) 275 (ou 265) 10-7/8 (ou 10-1/4)
140 + 184 5-1/2 + 7-1/4 315 12-1/4
140 + 235 5-1/2 + 9-1/4 365 14-1/4

Notes :

  • Les éléments d'une largeur supérieure à 365 mm (14-1/4″) sont disponibles par incréments de 50 mm (2″) mais doivent faire l'objet d'une commande spéciale.
  • Les éléments d'une largeur supérieure à 175 mm (6-7/8″) peuvent être constitués de deux panneaux posés côte à côte avec des joints longitudinaux décalés dans les lamelles adjacentes.

Profondeurs standard du bois lamellé-collé

Les profondeurs standard des éléments en bois lamellé-collé vont de 114 mm (4-1/2″) à 2128 mm (7′) ou plus, par incréments de 38 mm (1-1/2″) et 19 mm (3/4″). Un élément fabriqué à partir de lamelles de 38 mm (1-1/2″) coûte nettement moins cher qu'un élément équivalent fabriqué à partir de lamelles de l9 mm (3/4″). Toutefois, les laminés de 19 mm (3/4″) permettent une plus grande courbure que les laminés de 38 mm (1-1/2″).

Largeur en. Plage de profondeur
mm en.
80 3 114 à 570 4-1/2 à 22-1/2
130 5 152 à 950 6 à 37-1/2
175 6-7/8 190 à 1254 7-1/2 à 49-1/2
215 8-1/2 266 à 1596 10-1/2 à 62-3/4
265 10-1/4 342 à 1976 13-1/2 à 77-3/4
315 12-1/4 380 à 2128 15 à 83-3/4
365 14-1/4 380 à 2128 15 à 83-3/4

Remarque :
1. Les profondeurs intermédiaires sont des multiples de l'épaisseur de la lamelle, qui est de 38 mm (1-1/2″ nom.), sauf pour certains éléments courbes qui nécessitent des lamelles de 19 mm (3/4″ nom.).

Les produits de contrecollage peuvent être assemblés par l'extrémité en longueurs allant jusqu'à 40 m (130′), mais la limite pratique peut dépendre des restrictions de transport. Par conséquent, il convient de déterminer les restrictions de transport pour une région donnée avant de spécifier la longueur, la largeur ou la hauteur d'expédition.

Classes d'aspect du bois lamellé-collé

Lors de la spécification des produits canadiens en bois lamellé-collé, il est nécessaire d'indiquer à la fois la classe de résistance et la classe d'aspect requises. L'aspect du bois lamellé-collé est déterminé par le degré de finition effectué après le laminage et non par l'aspect des pièces individuelles de laminage.

Le bois lamellé-collé est disponible dans les qualités d'aspect suivantes :

  • Industrie
  • Commercial
  • Qualité

Le degré d'apparence définit l'importance des travaux de réparation et de finition effectués sur les surfaces exposées après la stratification (tableau 6.8) et n'a pas d'incidence sur la résistance. Le degré de qualité offre le plus haut degré de finition et est destiné aux applications où l'aspect est important. La qualité industrielle est celle qui présente le moins de finition.

Grade Description
Qualité industrielle Destiné à être utilisé lorsque l'aspect n'est pas une préoccupation majeure, par exemple dans les bâtiments industriels ; le bois stratifié peut contenir des caractéristiques naturelles autorisées pour la catégorie de contrainte spécifiée ; les faces sont rabotées aux dimensions spécifiées, mais des manques et des aspérités occasionnels sont autorisés ; la surface peut présenter des nœuds brisés, des trous de nœuds, des grains déchirés, des carreaux, des flaches et d'autres irrégularités.
Qualité commerciale Destiné aux surfaces peintes ou vernies à brillant plat ; le bois stratifié peut contenir des caractéristiques naturelles autorisées pour la catégorie de contrainte spécifiée ; les côtés sont rabotés aux dimensions spécifiées et toute la colle pressée est enlevée de la surface ; les trous de nœuds, les nœuds lâches, les vides, les poches de flache ou de poix ne sont pas remplacés par des inserts en bois ou du mastic sur la surface exposée.
Niveau de qualité Destiné aux surfaces transparentes ou polies très brillantes, il met en valeur la beauté naturelle du bois pour un meilleur attrait esthétique ; le bois stratifié peut contenir des caractéristiques naturelles autorisées pour le degré de contrainte spécifié ; les côtés sont rabotés aux dimensions spécifiées et toute la colle éliminée de la surface ; les côtés peuvent présenter des nœuds serrés, une tache de cœur ferme et une tache d'aubier de taille moyenne ; Les nœuds légèrement cassés ou fendus, les éclats, le grain déchiré ou les carreaux de la surface sont comblés ; les nœuds lâches, les trous de nœuds, les poches de flaches et de poix sont enlevés et remplacés par un produit de remplissage non rétrécissant ou par des inserts en bois correspondant au grain et à la couleur du bois ; les stratifiés de la face ne présentent pas de caractéristiques naturelles nécessitant un remplacement ; les faces et les côtés sont poncés de manière à être lisses.

Cambrure en lamellé-collé

Pour les longs éléments droits, le bois lamellé-collé est généralement fabriqué avec une cambrure intégrée afin d'assurer un drainage positif en annulant la déflexion. Cette capacité à fournir une cambrure positive est un avantage majeur du bois lamellé-collé. Les cambrures recommandées sont indiquées dans le tableau 5 ci-dessous.

Tableau 5 : Recommandations de cambrure pour les poutres de toiture en lamellé-collé
Type de structure Recommandation
Poutres de toit simples en lamellé-collé Cambrure égale à la flèche due à la charge morte plus la moitié de la charge vive ou 30 mm par 10 m (1″ par 30′) de portée ; en cas de risque de formation de mares, une cambrure supplémentaire est généralement prévue pour l'évacuation des eaux de toiture.
Poutres de plancher simples en lamellé-collé Cambrure égale à la charge morte plus un quart de la déflexion de la charge vive ou pas de cambrure.
Fermes à arbalétrier et fermes inclinées Seule la membrure inférieure est cambrée. Pour une membrure inférieure continue en lamellé-collé, la cambrure de la membrure inférieure est égale à 20 mm par 10 m (3/4″ par 30′) de portée.
Fermes de toit plat (fermes de toit Howe et Pratt) Cambrure des membrures supérieures et inférieures en lamellé-collé égale à 30 mm par 10 m (1″ par 30′) de portée.

Fabrication de lamellé-collé

Les pièces de bois de dimension qui composent le lamellé-collé sont jointes en bout et disposées en couches horizontales ou en lamelles. Le bois utilisé pour la fabrication du lamellé-collé est une qualité spéciale (lamstock) achetée directement auprès des scieries. Le lamstock est séché à un taux d'humidité maximal de 15 % et raboté avec une tolérance plus étroite que celle requise pour le bois d'œuvre classé visuellement. La stratification de plusieurs pièces est un moyen efficace d'utiliser du bois de dimension à haute résistance de longueur limitée pour fabriquer des éléments en bois lamellé-collé dans de nombreuses formes et longueurs de section transversale. La catégorie spéciale de bois utilisée pour le lamellé-collé, le lamstock, est reçue et stockée à l'usine de lamellé-collé dans des conditions contrôlées. Le bois lamellé doit être séché à un taux d'humidité compris entre 7 et 15% avant d'être stratifié afin de maximiser l'adhérence et de minimiser le retrait en service. Les lamelles de bois d'œuvre (lamstock) sont triées visuellement et mécaniquement en fonction de leur résistance et de leur rigidité. Les évaluations de la résistance et de la rigidité sont utilisées pour déterminer l'emplacement d'une pièce donnée dans une poutre ou un poteau. Par exemple, les pièces à haute résistance sont placées dans les lamelles les plus extérieures d'une poutre, là où les contraintes de flexion sont les plus importantes, tandis que pour les colonnes et les éléments de traction, les lamelles les plus résistantes sont réparties de manière plus égale. Ce mélange des caractéristiques de résistance est connu sous le nom de combinaison de grades et garantit une performance constante du produit fini. Les laminés sont collés sous pression à l'aide d'un adhésif imperméable. Voir la figure 3.7 ci-dessous pour une représentation schématique de la fabrication du lamellé-collé. Les poutres en lamellé-collé peuvent également être cambrées, ce qui signifie qu'elles peuvent être produites avec un léger arc vers le haut afin de réduire la déflexion sous les charges de service. Une cambrure typique est de 2 à 4 mm par mètre de longueur. Le bois lamellé-collé est fabriqué pour répondre aux exigences de la norme CSA O122 Structural GluedLaminated Timber.

Contrôle de la qualité

Le bois lamellé-collé est un produit d'ingénierie qui exige un contrôle de qualité rigoureux à tous les stades de la fabrication. Les usines de fabrication certifiées respectent les normes de contrôle de la qualité qui régissent le classement du bois, l'assemblage par entures multiples, le collage et la finition. Les fabricants canadiens de bois lamellé-collé doivent être qualifiés et certifiés conformément à la norme CSA O177, Code de qualification des fabricants de bois de charpente lamellé-collé. Cette norme définit des lignes directrices obligatoires pour l'équipement, la fabrication, les essais et les procédures d'archivage. En tant que procédure de fabrication obligatoire, des tests doivent être effectués régulièrement à plusieurs étapes critiques de la fabrication, et les résultats des tests doivent être consignés. Par exemple, des échantillons représentatifs sont testés pour vérifier l'adéquation du collage et tous les joints d'extrémité sont soumis à des essais de contrainte pour s'assurer que chaque joint dépasse les exigences de conception. Chaque élément fabriqué fait l'objet d'un enregistrement d'assurance qualité indiquant les résultats des tests de collage, la classification du bois, les tests des joints d'extrémité et les conditions de stratification pour chaque élément fabriqué, y compris le taux d'étalement de la colle, le temps d'assemblage, les conditions de durcissement et le temps de durcissement. En outre, des audits de qualité obligatoires sont réalisés par des organismes de certification indépendants afin de s'assurer que les procédures en vigueur dans l'usine sont conformes aux exigences de la norme de fabrication. Un certificat de conformité aux normes de fabrication pour une commande de lamellé-collé donnée est disponible sur demande.

Essence de bois lamellé-collé

Le bois lamellé-collé est principalement produit au Canada à partir de deux groupes d'essences : le douglas, le mélèze et l'épicéa. Des essences de sapin sont également utilisées occasionnellement.

Bois lamellé-collé canadien - Espèces commerciales
Désignation du groupe d'espèces commerciales Espèces en combinaison Caractéristiques du bois
Sapin de Douglas-Mélèze (D.Fir-L) Douglas, mélèze de l'Ouest Bois similaires en termes de résistance et de poids. Dureté élevée et bonne résistance à la pourriture. Bonne tenue des clous, bonne aptitude au collage et à la peinture. La couleur va du brun rougeâtre au blanc jaunâtre.
Hémérocalle Ciguë de l'Ouest, sapin d'Amérique, sapin de Douglas Bois légers qui se travaillent facilement, prennent bien la peinture et tiennent bien les clous. Bonnes caractéristiques de collage. La gamme de couleurs s'étend du jaune-brun au blanc.
Épicéa-Pin Épicéa (toutes les espèces sauf l'épicéa de Sitka), pin tordu, pin gris Bois aux caractéristiques similaires, ils se travaillent facilement, prennent aisément la peinture et tiennent bien les ongles. Généralement de couleur blanche à jaune pâle.

Classes de résistance du bois lamellé-collé

Lors de la spécification des produits canadiens en bois lamellé-collé, il est nécessaire d'indiquer à la fois la classe de contrainte et la classe d'aspect requises. La spécification de la classe de contrainte appropriée dépend de l'utilisation finale prévue de l'élément : poutre, poteau ou élément de traction, comme le montre le tableau 2.

Tableau 2 : Bois lamellé-collé canadien - degrés de contrainte
Niveau de stress Espèces Description
Grades de pliage 20f-E et 20f-EX D.Sapin-L ou Pin-Épicéa Utilisé pour les éléments sollicités principalement en flexion (poutres) ou en flexion et charge axiale combinées.
24f-E et 24f-EX D.Fir-L ou Hem-Fir Spécifier EX lorsque les éléments sont soumis à des moments positifs et négatifs ou lorsqu'ils sont soumis à des charges combinées de flexion et axiales, comme les arcs et les membrures supérieures des fermes.
Grades de compression 16c-E 12c-E D.Sapin-L Épicéa Utilisé pour les éléments sollicités principalement en compression axiale, tels que les colonnes.
Grades de tension 18t-E 14t-E D.Sapin-L Épicéa Utilisé pour les éléments soumis principalement à une tension axiale, tels que les membrures inférieures des poutrelles.

Pour les grades de flexion 20f-E, 20f-EX, 24f-E et 24f-EX, les chiffres 20 et 24 indiquent la contrainte de flexion admissible en unités impériales (2000 et 2400 livres par pouce carré). De même, les descriptions des qualités de compression, 16c-E et 12c-E, et des qualités de tension, 18t-E et 14t-E, indiquent les contraintes de compression et de tension admissibles. Le "E" indique que la rigidité de la plupart des laminés doit être testée à la machine. Les lettres minuscules indiquent l'utilisation du grade comme suit : "f" pour les éléments de flexion, "c" pour les éléments de compression et "t" pour les éléments de traction. Les qualités de contrainte avec la désignation EX (20f-EX et 24f-EX) sont spécifiquement conçues pour les cas où les éléments de flexion sont soumis à des inversions de contrainte. Dans ces cas, les exigences de laminage du côté de la tension sont le reflet de celles du côté de la compression. Contrairement aux bois sciés classés visuellement, pour lesquels il existe une corrélation entre l'apparence et la résistance, il n'y a pas de relation entre les niveaux de contrainte et les niveaux d'apparence du bois lamellé-collé, puisque la surface exposée peut être modifiée ou réparée sans affecter les caractéristiques de résistance.

Contrôle de l'humidité du bois lamellé-collé

Le fendillement du bois est dû au retrait différentiel des fibres du bois dans les parties internes et externes d'une pièce de bois. Le bois lamellé-collé est fabriqué à partir de lamelles dont le taux d'humidité est compris entre 7 et 15 %. Comme cette fourchette se rapproche des conditions d'humidité de la plupart des utilisations finales, le contrôle est minime dans les éléments en lamellé-collé. Des méthodes de transport, de stockage et de construction appropriées permettent d'éviter les variations rapides de la teneur en humidité des éléments lamellés-collés. De fortes variations de la teneur en humidité peuvent résulter de l'application soudaine de chaleur à des bâtiments en construction par temps froid, ou de l'exposition d'éléments non protégés à des conditions alternativement humides et sèches, comme cela peut se produire pendant le transport et l'entreposage. Le bois lamellé-collé canadien reçoit généralement une couche de scellant protecteur avant d'être expédié et est enveloppé pour le protéger pendant le transport et le montage. L'emballage doit être laissé en place aussi longtemps que possible et idéalement jusqu'à ce qu'une protection permanente contre les intempéries soit mise en place. Pendant le stockage sur le chantier, le bois lamellé-collé doit être entreposé au-dessus du sol et des blocs d'espacement doivent être placés entre les éléments. En cas de retard dans la construction, l'emballage doit être coupé sur la face inférieure afin d'éviter l'accumulation de condensation.

Traitement et scellement du bois lamellé-collé

Le traitement conservateur n'est pas souvent nécessaire, mais il doit être spécifié pour toute application susceptible d'entrer en contact avec le sol. Il convient de demander au fabricant des conseils sur le traitement conservateur approprié. Le bois lamellé-collé non traité peut être utilisé dans des environnements humides tels que les piscines, les pistes de curling ou les bâtiments industriels qui utilisent de l'eau dans leur processus de fabrication. Lorsque les extrémités des éléments en bois lamellé-collé risquent d'être mouillées, il convient de prévoir des surplombs ou des solins de protection. Dans les applications où le contact direct avec l'eau n'est pas un facteur, un scellant appliqué en usine empêchera les variations importantes de la teneur en humidité. L'enduit alkyde appliqué en usine sur les éléments en bois lamellé-collé offre une protection suffisante pour la plupart des applications à forte humidité. Le bois étant résistant à la corrosion, le bois lamellé-collé est utilisé dans de nombreux environnements corrosifs tels que les dômes de stockage de sel et les entrepôts de potasse.

Formes courantes de lamellé-collé

Pour plus d'informations sur les différents fabricants de bois lamellé-collé au Canada, veuillez consulter les liens suivants :

Archipel de l'Ouest
Mercer Mass Timber
À propos de Nordic Structures
Goodfellow
Kalesnikoff Bois de charpente
Élément5

Codes modèles nationaux au Canada
Traitabilité
Humidité et bois
Décroissance
Adhésifs
Connecteurs d'encadrement
Ongles
Menuiserie en bois
OSB
Panneau de lamelles orientées (OSB)

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône d'expertise
Domaine d'expertise
Icône de la province
Province
Type de membre Icône
Partenaires nationaux de WoodWork
Icône de type de message
Type de poste
Icône Persona
Persona
Icône de langue
Langue
Tags Icône
Tags
Bois massif Icône Plus Environnement Icône Plus Sécurité Icône Plus Durabilité Icône Plus Systèmes de conception Icône Plus Budget Icône Plus Gestion de la construction Icône Plus Résistance au feu Icône Plus Bâtiments de grande taille Icône Plus Bâtiments courts Icône Plus
Icône de date
Date
Séparateur de ligne