Conseils rapides pour la finition

Pour le bois neuf, n'oubliez pas : Le bois doit être sec. Le temps de séchage dépend de plusieurs facteurs. Idéalement, le bois devrait être séché au four (estampillé "S-DRY", "KD" ou "KDAT", voir le glossaire du "bois sec"). Si le bois est mouillé en surface par la pluie ou le lavage, laissez-le sécher 1 à 2 jours. Si le bois est humide à cœur (bois vert, bois traité sous pression non estampillé "KDAT"), 2 jours de séchage sont acceptables si l'on utilise un revêtement "respectueux de l'humidité". Dans le cas contraire : Il faut laisser le bois sécher complètement jusqu'à ce qu'il atteigne un taux d'humidité stable à l'extérieur, soit environ 15% dans la plupart des climats. Les caractéristiques du bois et les caractéristiques climatiques de son environnement sont si variables qu'il est difficile de prévoir le temps de séchage. La méthode la plus courante pour déterminer le taux d'humidité du bois est l'utilisation d'un humidimètre. (Remarque : des facteurs de correction spécifiques doivent être appliqués si un humidimètre est utilisé sur du bois traité avec des produits de conservation). Les conditions météorologiques pendant l'application du revêtement peuvent affecter le séchage, l'apparence et la performance du revêtement. Suivez les recommandations du fabricant du revêtement. Appliquez le revêtement dès que possible après avoir raboté ou poncé le bois. Appliquez les finitions dans les deux semaines suivant l'exposition, ou plus tôt si possible (Préparation de la surface pour le bois frais). Sinon, suivez les instructions ci-dessous pour le bois vieilli (altéré). Si le bois est très lisse, poncez légèrement la surface avec du papier de verre de grain 100-120 pour la rendre plus rugueuse. Cela améliore considérablement l'adhérence du revêtement. Brosser sans saleté ni sciure de bois. Si vous peignez le bois, appliquez une couche d'apprêt. Utilisez un apprêt bloquant l'extraction, si nécessaire (par exemple, pour le cèdre rouge de l'Ouest ou le séquoia) sur l'ensemble de la pièce, ou un apprêt scellant les nœuds, si nécessaire (considérations particulières). Après séchage, appliquer deux couches de peinture de qualité supérieure. Pour les teintures et les hydrofuges, suivez les instructions figurant sur la boîte en ce qui concerne le nombre de couches. Suivre scrupuleusement les instructions figurant sur le bidon concernant les meilleures conditions environnementales pour le revêtement, les recommandations d'application, les précautions de sécurité et le nettoyage. Pour le bois vieilli (altéré par les intempéries), ne pas oublier : Pour le bois qui a déjà été recouvert, veuillez lire les informations relatives à la remise en état. Nettoyez le bois et éliminez les décolorations telles que la tache de fer, si vous le souhaitez. Exposez le bois frais, car les revêtements sont plus performants lorsqu'ils sont appliqués sur des surfaces de bois fraîchement exposées. Laissez sécher. Voir Préparation de la surface pour le bois vieilli. Brosser pour éliminer la saleté et la sciure et procéder à l'application du revêtement. Lors de l'entretien ou de la remise à neuf, n'oubliez pas : Évitez de devoir refaire le revêtement en le surveillant et en ajoutant une nouvelle couche avant que la précédente ne s'use, ne se fissure ou ne s'écaille. Cette opération peut être effectuée tous les six mois pour les hydrofuges, tous les ans ou tous les deux ans pour les taches, et tous les quelques années pour la peinture (voir Entretien). Traiter ponctuellement les zones usées pour prolonger la période entre les applications complètes d'une nouvelle couche. Poncez tout revêtement défectueux et tout bois altéré, puis réappliquez le revêtement (voir Entretien). Si le revêtement a cédé sur une grande échelle, ou si le revêtement devient trop épais pour être rénové, ou si vous souhaitez changer de type de revêtement, enlevez complètement l'ancien revêtement - lisez à ce sujet les informations sur la rénovation.
Glossaire

Acrylique Type de produit de revêtement en phase aqueuse contenant des polymères acryliques. Alkyde Type de résine polyester. Terme souvent utilisé pour désigner les revêtements en phase solvant, par exemple les peintures à l'huile. Apprêt dorsal Application d'une couche de finition sur la face arrière du bois, comme les bardeaux ou le bardage. Liant Partie solide non volatile formant un film dans un revêtement, qui lie les particules de pigment entre elles après le séchage du film et crée la liaison avec le substrat. Les liants typiques sont les résines alkydes, les résines acryliques et les résines polyuréthanes. Saignement Lorsque la couleur d'une décoloration ou d'une autre matière remonte à travers un revêtement jusqu'à la surface. Couramment utilisé pour décrire le lessivage des tanins dans les essences extractives comme le cèdre rouge occidental et le séquoia (se produit généralement au cours de la première année environ si la teinture n'est pas bloquée). Blister Lorsqu'un revêtement forme des bulles sous l'effet de l'air, de la vapeur d'eau ou d'un solvant sous le film. Bois sec Bois qui a été séché jusqu'à un taux d'humidité de 19% ou moins. Les planches de 4" et moins ou le bois de construction surfacé à un taux d'humidité (MC) de 19% ou moins peuvent être estampillés "S-DRY" et "KD" s'ils ont été séchés au four jusqu'à un taux d'humidité maximum de 19%. Aux États-Unis, le bois peut être estampillé "KDAT" s'il a été séché au four après avoir subi un traitement sous pression avec des agents de conservation. Émail Terme générique pour un revêtement pigmenté à base d'alkyde qui sèche pour donner une finition lisse, dure et brillante. Le terme est souvent utilisé de manière plus large pour un revêtement qui donne un film dur et résistant aux taches. Extractibles Produits chimiques solubles particulièrement présents dans le bois de cœur de certaines essences, qui confèrent au bois une résistance à la pourriture et aux insectes. Fongicide Substance qui inhibe la croissance des champignons. Souvent ajoutée aux revêtements pour protéger les revêtements eux-mêmes de la croissance fongique. Latex Terme utilisé pour désigner les peintures en phase aqueuse. Laque Matériau de revêtement caractérisé par l'évaporation rapide du solvant pour produire un film mince et dur. Huile de lin Obtenue par broyage des graines de lin, cette huile naturelle peut être utilisée comme véhicule dans les peintures, comme agent adoucissant pour les résines dans les vernis, ou peut être utilisée seule comme matériau de finition du bois. L'huile de lin brute est une source de nourriture pour les champignons et doit être bouillie pour détruire ces nutriments. La plupart des huiles de lin "bouillies" ne le sont pas, mais contiennent des siccatifs métalliques et des biocides. Peintures à l'huile Peintures utilisant des huiles naturelles telles que l'huile de lin ou l'huile de tung comme liant, avec de l'essence de térébenthine comme solvant habituel. Le terme est maintenant généralement utilisé pour désigner les peintures contenant à la fois des alkydes et de l'huile comme liants, et un support d'essence minérale ou d'autres solvants. Peinture Revêtement opaque généralement composé d'un liant, de liquides, d'additifs et de pigments. Appliquée sous forme liquide, elle sèche pour former un film continu qui protège et améliore l'aspect du support. Pigment Matières solides finement broyées qui confèrent la couleur, le pouvoir couvrant (opacité) et la protection contre les rayons ultraviolets. Poix Également appelée résine, cette substance collante est un mélange de colophane et d'essence de térébenthine que l'on trouve dans la plupart des résineux, mais surtout dans les pins, les épicéas et le douglas. Elle peut suinter des poches de poix et parfois des nœuds pendant un an ou deux si elle n'est pas fixée par le séchage au four. La résine peut déteindre sur les finitions et durcir en perles, mais cela peut être nettoyé avec de l'essence minérale et finira par s'arrêter. Apprêt Première couche complète de peinture appliquée dans un système de peinture. De nombreux apprêts sont conçus pour améliorer l'adhérence entre la surface et les couches de finition ultérieures. La plupart des apprêts contiennent des pigments, certains donnent de l'uniformité à la couche de finition, d'autres inhibent la corrosion du substrat et d'autres encore stoppent la décoloration de la couche de finition. Résine Pour la résine d'arbre, voir Brai. Dans les revêtements, voir Liant. Scellant Liquide qui scelle les pores du bois afin qu'ils n'absorbent pas les couches suivantes. Les vitrificateurs peuvent être transparents et agir comme des apprêts. Certains scellants sont conçus pour ne pas être recouverts. Teinture semi-transparente Teinture qui modifie la couleur naturelle du bois tout en laissant apparaître le grain et la texture. Le terme s'applique généralement aux produits extérieurs, mais techniquement, il s'applique également aux teintures intérieures à essuyer utilisées pour les boiseries, les meubles et les planchers. Gomme laque Résine claire à orangée, soluble dans l'alcool, dérivée de la laque, une substance sécrétée par les insectes. Autrefois utilisée comme scellant et finition transparente pour les sols, pour sceller les nœuds et dans les apprêts "à base d'alcool" ; rarement utilisée aujourd'hui. Le diluant est de l'alcool dénaturé. Il s'agit d'un produit respectueux de l'environnement, généralement disponible auprès des fournisseurs de produits de finition. Teinture de couleur unie Teinture extérieure qui masque la couleur naturelle et le grain du bois, tout en laissant apparaître la texture - essentiellement une peinture fine. Teinture Produit de revêtement qui peut être soit opaque, comme une teinture de couleur unie, soit partiellement transparent, comme une teinture semi-transparente. Se réfère également aux décolorations du bois telles que les décolorations causées par les tanins dans les extraits de bois, ou les taches causées par des champignons tels que le bleuissement. Solvant Dans la terminologie générique des revêtements, désigne le liquide volatil utilisé pour améliorer les propriétés de fonctionnement d'un revêtement, généralement de l'eau ou des hydrocarbures. Dans les revêtements "à base de solvant", se réfère spécifiquement à un revêtement à base d'hydrocarbures. Huile de tung Obtenue à partir de la noix de l'arbre asiatique tung. Elle n'est pratiquement jamais utilisée à l'état brut, car elle sèche pour donner un fini non lustré. Utilisée dans les vernis. Vernis Terme générique désignant une finition transparente formant un film. Liquides transparents ou translucides appliqués en film mince, qui durcissent. Ils peuvent être à base de solvant ou d'eau. COV Composé organique volatil. Les COV sont des composés chimiques organiques dont la pression de vapeur est suffisamment élevée dans des conditions normales pour qu'ils se vaporisent de manière significative et pénètrent dans l'atmosphère où ils peuvent participer à des réactions photochimiques. Ils sont souvent associés aux solvants, généralement considérés comme des polluants, et font l'objet de réglementations dans de nombreuses juridictions.
L'industrie canadienne de la préservation

Le Canada possède une industrie de préservation du bois depuis environ 100 ans. Le Canada est, à égalité avec le Royaume-Uni, le deuxième producteur mondial de bois traité (les États-Unis sont largement en tête). En 1999, l'année la plus récente pour laquelle nous disposons de données, le Canada a produit 3,5 millions de mètres cubes de bois traité. Il existe environ 65 usines de traitement au Canada. Comme la plupart des autres pays industrialisés, le Canada a développé une industrie de préservation du bois utilisant la créosote, d'abord pour les chemins de fer (les traverses qui maintiennent les rails), puis pour les services publics (les poteaux électriques). La production de créosote a commencé à décliner dans les années 1950 et, dans les années 1970, elle a été quelque peu remplacée par le pentachlorophénol pour ces utilisations traditionnelles. Aujourd'hui, ces produits de préservation à base de pétrole ne représentent plus que 17% de la production canadienne de bois traité. Les 83% restantes utilisent des produits de préservation à base d'eau tels que l'ACC, l'ACQ et l'AC. L'industrie a commencé à se tourner vers les produits à base d'eau dans les années 1970, lorsque l'intérêt des consommateurs pour les terrasses et autres structures résidentielles extérieures s'est considérablement accru. Pendant de nombreuses années, l'ACC a été de loin le principal produit de préservation pour les applications résidentielles et industrielles. En 2004, la réglementation relative à l'ACC a été modifiée de telle sorte que l'ACC n'est plus disponible pour de nombreuses applications résidentielles. Par la suite, les entreprises de traitement canadiennes ont transféré environ 80% de leur production antérieure d'ACC vers l'ACQ ou l'AC. La majeure partie du bois traité au Canada est utilisée sur le territoire national ; le Canada n'exporte que 10% de sa production. Le Canada possède ses propres normes de préservation du bois, soutient plusieurs organisations techniques et commerciales et conserve une position de leader dans certains domaines de la recherche sur la préservation du bois. L'industrie s'est surtout attachée à répondre aux réglementations de plus en plus strictes en matière de santé et de protection de l'environnement.
Recherche et développement en matière de durabilité

FPInnovations has been field testing the performance of treated wood products for years. Click one of these categories for performance data from our field tests. Borate-treated Wood vs. Termites Naturally Durable Species The heartwood of species reported to have some natural durability was evaluated in ground contact (stakes) and above-ground (decking) tests. Commodity: 2×4 and 2×6 lumber from naturally durable species: Western redcedar, yellow cypress, eastern white cedar, larch, tamarack, Douglas-fir Control species: Ponderosa pine sapwood Test method: Stake test (AWPA E7) and Decking test (AWPA E25) Test sites: FPInnovations – Maple Ridge, BC; Petawawa, ON Michigan Technological University – Gainesville, Florida; Kipuka, Hawaii Date of installation: 2004-2005 Estimated service life: In the ground-contact stake test, after 5 years moderate to high levels of decay were found in all species at all sites. Yellow cypress and western redcedar were the most durable at all site. Eastern white cedar had similar durability at the Canadian and Florida sites, but was less durable in Hawaii. There were no major performance differences observed between old-growth and second-growth materials used in this study. Untreated naturally durable heartwood is not recommended for long-term performance in ground contact. In the above ground decking test, at the Canadian test sites after 10 years only small amounts of decay were observed in any of the naturally durable heartwoods tested. In contrast, the ponderosa pine controls had moderate to advanced decay. Decay was more rapid at the Florida and Hawaii test sites, with moderate to advanced decay present in all material types after 7 years. Untreated naturally durable heartwood is not recommended for long-term performance in exposed above ground applications in high decay hazard areas such as Florida and Hawaii. However, in temperate climates these naturally durable heartwoods can provide service lives greater than 10 years. References: Morris, P. I., Ingram, J., Larkin, G., & Laks, P. (2011). Field tests of naturally durable species. Forest Products Journal, 61(5), 344-351. Morris, P. I., Laks, P., Larkin, G., Ingram, J. K., & Stirling, R. (2016). Aboveground decay resistance of selected Canadian softwoods at four test sites after 10 years of exposure. Forest products journal, 66(5), 268-273.
L'héritage durable du bois

Il n'y a aucune raison pour qu'une structure en bois ne dure pas pratiquement éternellement - ou au moins des centaines d'années, bien plus longtemps que nous n'aurons besoin du bâtiment. Si l'on sait comment protéger le bois de la pourriture et du feu, on peut s'attendre à ce que les bâtiments en bois d'aujourd'hui soient là aussi longtemps qu'on le souhaite. Si le bois n'a pas la longévité historique de la pierre, il reste néanmoins de très vieux bâtiments en bois. En Europe, le bois a longtemps été un matériau de construction dominant, et ce dès le début de la civilisation. La plupart de ces bâtiments anciens ont disparu depuis longtemps, victimes du feu, de la dégradation ou de la déconstruction à d'autres fins. Dans les premiers temps de la construction en bois, les éléments structurels primaires étaient placés directement dans le sol, ce qui entraînait à terme leur pourrissement. Ce n'est qu'à partir des années 1100 que les bâtisseurs ont commencé à utiliser des semelles en pierre, de sorte que les exemples de bâtiments en bois encore debout ne datent généralement pas d'avant cette époque. Les églises norvégiennes à douves sont peut-être les plus célèbres constructions anciennes en bois d'Europe encore visibles aujourd'hui. Des centaines d'entre elles ont été construites aux 12e et 13e siècles et 25 à 30 d'entre elles subsistent encore aujourd'hui. Leurs revêtements extérieurs ont généralement été remplacés, mais le bois de la structure est d'origine. En Amérique du Nord, l'abondance du bois et les compétences des premiers colons en matière de bois ont conduit à une utilisation généralisée du bois, qui a toujours été et reste le principal matériau structurel pour les petits bâtiments. Les plus anciennes maisons en bois conservées aux États-Unis datent du début des années 1600. Près de 80 maisons datent de cette époque dans les États de la Nouvelle-Angleterre. De nombreux autres bâtiments en bois nord-américains datent du 18e siècle. Même dans le climat rigoureux de la Louisiane, où les conditions chaudes et humides sont un défi pour la durabilité du bois, on peut encore trouver certains des premiers établissements français datant de la première moitié des années 1700. Et bien sûr, il existe d'innombrables bâtiments en bois datant des années 1800 et du début des années 1900, dont la plupart sont probablement encore occupés. Le Japon a une histoire bien connue en matière d'utilisation du bois et abrite la plus ancienne structure en bois encore existante au monde, un temple bouddhiste situé près de l'ancienne capitale de Nara. Le temple Horyu-ji aurait été construit au début du huitième siècle (vers 711) et peut-être même avant, car l'un des poteaux de hinoki (cyprès japonais) semble avoir été abattu en l'an 594. La longévité de ce temple est en grande partie due à un entretien et à des réparations minutieux. Toute cette région du Japon compte de nombreux autres bâtiments anciens en bois encore debout. Pour les bâtiments modernes, nous n'avons normalement pas besoin d'une longévité aussi exceptionnelle. La durée de vie d'une maison nord-américaine typique ne dépasse pas 100 ans (la moyenne est inférieure), et nos bâtiments non résidentiels sont généralement démolis en 50 ans ou moins. Le bois est parfaitement adapté à ces attentes de longévité. Cliquez ici pour consulter des données d'enquête montrant que les bâtiments en bois durent aussi longtemps, voire plus longtemps, que les bâtiments construits avec d'autres matériaux. Référence : Architecture en bois : Une histoire de la construction en bois et de ses techniques en Europe et en Amérique du Nord. Hans Jrgen Hansen, Ed., Faber et Faber, Londres, 1971. Études de cas 1865 House, Vancouver BC Irving House est une grande résidence à ossature bois d'un étage et demi plus un sous-sol, conçue dans le style néo-gothique, située sur son site d'origine à l'angle de l'avenue Royal et de la rue Merivale dans le quartier Albert Crescent de New Westminster. Irving House est remarquable pour la mesure dans laquelle ses éléments extérieurs et intérieurs d'origine ont été conservés. Exploitée en tant que maison-musée historique, elle comprend également une collection de nombreux meubles originaux de la famille Irving. Maison Irving Emplacement 302 Royal Avenue, New Westminster, C.-B. Fin de la construction 1865 Autres informations Propriétaires d'origine - Capitaine William et Elizabeth Jane Irving Statut actuel Patrimoine de New Westminster Méthode de construction Plate-forme-armature Style néo-gothique Charpente Bois d'œuvre de Douglas taxifolié de 2 pouces Revêtement Revêtement en planches de bois de Redwood à larges lattes et garnitures en bois Condition Aucun signe de pourriture sur les éléments de la charpente Réparation majeure 1880 Avec l'aimable autorisation du New Westminster Museum and Archives, New Westminster, Colombie-Britannique Autre lien : http://www.flickr.com/photos/bobkh/297751638/in/set-72157594340707368/ 1912 House, Vancouver BC Cette maison classique du début du siècle devait être démolie en 1990. Elle était déjà vidée de sa substance lorsqu'elle a été achetée par un nouveau propriétaire qui souhaitait la convertir en appartements. À la demande du nouveau propriétaire, le bâtiment a été inspecté par le Dr Paul Morris de Forintek en 1991 pour y déceler des signes de détérioration. Après 80 ans de service, il n'y avait aucun signe de détérioration sur les éléments de la charpente ni sur les cadres des fenêtres, dont la plupart étaient d'origine. Maison de 1912 Emplacement Vancouver Date de construction 1912 (estimée) Documents d'origine Service d'eau 1909 Dans les dossiers de la ville 1915 Autres informations Propriétaire d'origine - Henry B. Ford État actuel Inventaire des ressources patrimoniales de Vancouver Méthode de construction Plate-forme-Cadre Style patrimonial, avec des toits à plusieurs pentes et de larges surplombs Charpente Bois d'œuvre brut vert de 2 pouces en sapin Douglas Revêtement Planches en sapin Douglas brut vert Papier de construction Papier imprégné d'asphalte Revêtement Bardeaux de cèdre rouge de l'Ouest Revêtement en cèdre rouge de l'Ouest Toiture Bardeaux de cèdre rouge de l'Ouest (nouveau en 1991) État Aucun signe de pourriture sur les éléments de la charpente Temple de Nara, Japon Le temple bouddhiste Horyuji de Nara est probablement la plus ancienne structure en bois au monde. Nara est devenue la première capitale permanente du Japon en 710. Temple bouddhiste Horyuji à Nara Emplacement Nara, Japon Date de construction 670 - 714 (estimation) Documents d'origine Construit sur le site du temple d'origine de 607 Autres informations Propriétaire d'origine - Prince Shotoku Statut actuel Bâtiment du patrimoine culturel mondial Méthode de construction Bois lourd Style bois d'œuvre Douglas taxifolié de 2 pouces Charpente Hinoki (durable - cyprès japonais) Toiture Toit à plusieurs niveaux avec tuiles d'argile État Aucun signe de dégradation sur les éléments de la charpente Programme d'entretien
Avantages du bois

Le bois résiste à certains des produits chimiques qui détruisent l'acier et le béton. Par exemple, le bois est souvent le matériau de choix lorsqu'il est exposé à des composés organiques, à des solutions chaudes ou froides d'acides ou de sels neutres, à des acides dilués, à des gaz de combustion industriels, à l'air marin et à une humidité relative élevée. En raison de sa résistance aux produits chimiques, le bois est souvent utilisé dans les applications suivantes : Bâtiments de stockage de potasse Dômes de stockage de sel Tours de refroidissement Réservoirs industriels pour divers types de produits chimiques Avec une conception réfléchie et une exécution soignée, les ponts en bois s'avèrent remarquablement durables. Dans le monde entier, il existe de nombreux exemples de ponts en bois durables, qu'ils soient historiques ou modernes. Les tabliers des ponts modernes sont soumis à des attaques incessantes de produits chimiques de déglaçage, et le bois est de plus en plus accepté comme une option viable pour ces applications. Les piliers qui sont constamment immergés dans l'eau douce sont connus pour durer des siècles. Les pieux de fondation situés sous les structures ne se décomposeront pas si la nappe phréatique reste plus élevée que le sommet des pieux. De nombreuses structures importantes dans le monde sont construites sur des pilotis en bois, notamment une grande partie de la ville de Venise et l'Empire State Building à New York.
Ponts

Les ponts en bois sont depuis longtemps des éléments essentiels des réseaux routiers, ferroviaires et forestiers du Canada. Dépendant de la disponibilité des matériaux, de la technologie et de la main-d'œuvre, la conception et la construction des ponts en bois ont évolué de manière significative au cours des 200 dernières années dans toute l'Amérique du Nord. Les ponts en bois prennent de nombreuses formes et utilisent différents systèmes de support, notamment des ponts en rondins à portée simple, différents types de ponts à treillis, ainsi que des tabliers et des éléments de pont en matériaux composites ou stratifiés. Les ponts en bois restent un élément important de notre réseau de transport au Canada. Les avantages de la construction de ponts en bois modernes sont les suivants : coût initial réduit, en particulier pour les régions éloignées ; rapidité de la construction, grâce à l'utilisation de la préfabrication ; avantages en termes de durabilité ; esthétique ; fondations plus légères ; charges sismiques plus faibles, associées à des connexions moins complexes avec les sous-structures ; structures temporaires et grues plus petites ; et coûts de transport plus faibles associés à des matériaux plus légers. Les différents types de matériaux utilisés pour construire des ponts en bois comprennent : le bois de sciage, les rondins, le bois lamellé-collé droit et courbe (lamellé-collé), le bois de placage stratifié (LVL), le bois à copeaux parallèles (PSL), le bois lamellé-croisé (CLT), le bois lamellé-cloué (NLT), et les systèmes composites tels que les tabliers stratifiés sous contrainte, les tabliers stratifiés bois-béton, et les polymères renforcés de fibres. Les deux principales essences de bois utilisées pour la construction de ponts en bois au Canada sont le sapin de Douglas et la combinaison d'essences épicéa-pin-sapin. D'autres espèces appartenant aux combinaisons d'espèces Hem-Fir et Northern sont également reconnues par la norme CSA O86, mais elles sont moins couramment utilisées dans la construction de ponts. Toutes les attaches métalliques utilisées pour les ponts doivent être protégées contre la corrosion. La méthode la plus courante pour assurer cette protection est la galvanisation à chaud, un processus par lequel un métal sacrificiel est ajouté à l'extérieur de la fixation. Les différents types de fixations utilisés dans la construction des ponts en bois comprennent, entre autres, les boulons, les tire-fonds, les anneaux fendus, les plaques de cisaillement et les clous (pour les stratifiés de pont uniquement). Tous les ponts routiers au Canada doivent être conçus pour répondre aux exigences des normes CSA S6 et CSA O86. La norme CSA S6 exige que les principaux éléments structurels de tout pont au Canada, quel que soit le type de construction, soient capables de résister à un minimum de 75 ans de charge pendant sa durée de vie. Le style et la portée des ponts varient considérablement en fonction de l'application. Dans les endroits difficiles d'accès et les vallées profondes, les ponts à chevalets en bois étaient courants à la fin du 19e siècle et au début du 20e siècle. Historiquement, les ponts à chevalets dépendaient fortement de l'abondance des ressources en bois et, dans certains cas, étaient considérés comme temporaires. La construction initiale des chemins de fer transcontinentaux d'Amérique du Nord n'aurait pas été possible sans l'utilisation de bois pour construire les ponts et les chevalets. De nombreux exemples de ponts en bois à treillis ont été construits depuis plus d'un siècle. Les ponts à treillis permettent des portées plus longues que les ponts à poutres simples et, historiquement, leurs portées étaient comprises entre 30 et 60 m (100 et 200 pieds). Les ponts conçus avec des fermes situées au-dessus du tablier offrent une excellente occasion de construire un toit au-dessus de la chaussée. L'installation d'un toit au-dessus de la chaussée est un excellent moyen d'évacuer l'eau de la structure principale du pont et de la protéger du soleil. La présence de ces toits est la principale raison pour laquelle ces ponts couverts centenaires sont encore en service aujourd'hui. Le fait qu'ils fassent toujours partie de notre paysage témoigne autant de leur robustesse que de leur attrait. Bien que conçue à l'origine comme une mesure de réhabilitation des tabliers de ponts vieillissants, la technique de stratification sous contrainte a été étendue aux nouveaux ponts par l'application d'une contrainte au moment de la construction initiale. Les tabliers stratifiés sous contrainte offrent un meilleur comportement structurel, grâce à leur excellente résistance aux effets des charges répétées. Les trois principales considérations liées à la durabilité des ponts en bois sont la protection par la conception, le traitement de préservation du bois et les éléments remplaçables. Un pont peut être conçu de manière à s'auto-protéger en détournant l'eau des éléments structurels. Le bois traité a la capacité de résister aux effets des produits chimiques de déglaçage et aux attaques des agents biotiques. Enfin, le pont doit être conçu de manière à ce que, à un moment donné, un seul élément puisse être remplacé relativement facilement, sans perturbation ni coût importants. Pour de plus amples informations, veuillez consulter les ressources suivantes : Ponts routiers en bois (Conseil canadien du bois) Ontario Wood Bridge Reference Guide (Conseil canadien du bois) CSA S6 Canadian Highway Bridge Design Code CSA O86 Engineering design in wood
FAQ

Que disent les experts de la construction à ossature bois des immeubles de moyenne hauteur ? Graham Finch, ingénieur de recherche en science du bâtiment Michael Green, directeur, Michael Green Architecture La construction en bois à mi-hauteur - un aperçu détaillé d'un paysage en évolution (Partie 1) La construction en bois à mi-hauteur - un aperçu détaillé d'un paysage en évolution (Partie 2) Test sismique de sept étages à ossature en bois BC Housing soutient la construction à ossature en bois pour les logements locatifs destinés aux personnes âgées La construction à ossature en bois à mi-hauteur et de grande hauteur est-elle un phénomène nouveau ? La construction à ossature en bois et en bois lourd (jusqu'à dix étages) était la norme au début des années 1900, et bon nombre de ces bâtiments existent encore et sont utilisés dans de nombreuses villes canadiennes. Consultez-les ici : http://www.flickr.com/photos/bobkh/337920532/. Depuis une dizaine d'années, on assiste à un renouveau de l'utilisation du bois pour les immeubles de moyenne hauteur (jusqu'à six étages) et les bâtiments de grande hauteur. Rien qu'en Colombie-Britannique, en décembre 2013, on comptait plus de 250 immeubles de cinq ou six étages construits à l'aide de produits du bois, en phase de conception ou de construction. Pourquoi des propositions de modification du code ? Cette modification du code du bâtiment de 2015 ne vise pas à favoriser le bois par rapport à d'autres matériaux de construction ; il s'agit de reconnaître, par le biais du processus très approfondi du code, que l'innovation scientifique en matière de produits du bois et de systèmes de construction peut conduire et conduira à un plus grand choix pour les constructeurs et les occupants. Ces bâtiments sont-ils sûrs ? Quel que soit le matériau de construction en question, rien n'est construit s'il n'est pas conforme au code. Les immeubles de moyenne hauteur à ossature en bois reflètent une nouvelle norme d'ingénierie dans la mesure où les problèmes de structure, d'incendie et de séisme ont tous été pris en compte par les comités d'experts de la Commission canadienne des codes du bâtiment et de prévention des incendies. Par exemple, en ce qui concerne les préoccupations des pompiers, les espaces cachés et les balcons sont davantage protégés par des gicleurs, l'approvisionnement en eau pour la protection contre l'incendie est plus important, des restrictions sont imposées sur les types de revêtements utilisés et l'accès des pompiers est mieux pris en compte. En fin de compte, lorsqu'ils sont occupés, ces bâtiments répondent pleinement aux mêmes exigences du code de la construction que tout autre type de construction du point de vue de la santé, de la sécurité et de l'accessibilité. Quelles sont les nouvelles dispositions proposées en matière de sécurité ? Sécurité incendie : Augmentation du niveau de protection par gicleurs/eau : Davantage d'espaces cachés protégés par gicleurs Les balcons doivent être protégés par gicleurs Alimentation en eau plus importante pour la protection contre les incendies Revêtement extérieur des murs non combustible ou peu combustible aux 5e et 6e étages 25% du périmètre doivent faire face à une rue (à moins de 15 m de la rue) pour permettre l'accès des pompiers Dispositions relatives aux séismes et aux vents : Similaire au BC Building Code Guidance (Annexe) sur l'impact de l'augmentation des charges de pluie et de vent pour les 5 et 6 étages Acoustique : Exigences relatives à la classe de transmission du son apparent (ASTC) Soutenues par les travaux scientifiques de FPInnovations, du CNRC et de nombreux autres organismes. Le bois ne brûle-t-il pas ? Aucun matériau de construction n'est à l'abri des effets du feu. Les modifications proposées au code vont au-delà des exigences minimales énoncées dans le CNBC. La santé, la sécurité, l'accessibilité, la protection contre les incendies et la protection structurelle des bâtiments restent les objectifs fondamentaux du CNB et de l'industrie du bois dans son ensemble. Qu'en est-il de la sécurité sur les chantiers de construction ? Le Conseil canadien du bois a élaboré des guides de sécurité incendie sur les chantiers de construction qui décrivent les meilleures pratiques et les mesures de sécurité à prendre pendant la phase de construction d'un bâtiment. Les immeubles de moyenne hauteur à ossature en bois sont-ils rentables ? Dans l'ensemble, oui. Les immeubles de moyenne hauteur à ossature bois constituent souvent une option de construction moins coûteuse pour les constructeurs. C'est une bonne nouvelle pour le Canada, où les terrains sont très chers. Les modifications recommandées du Code national du bâtiment du Canada (CNB) permettraient de construire des bâtiments sûrs et conformes au code, ce qui ne serait pas possible autrement. L'avantage net de la réduction des coûts de construction est une plus grande accessibilité pour les acheteurs de maisons. En termes de nouvelles opportunités économiques, la possibilité d'aller de l'avant "maintenant" crée de nouveaux emplois dans le secteur de la construction dans les villes et soutient l'emploi dans les communautés forestières. Cela offre également des possibilités d'exportation accrues pour les produits du bois actuels et innovants, dont l'adoption au Canada sert d'exemple à d'autres pays.
Codes modèles nationaux au Canada

On behalf of the Canadian Commission on Building and Fire Codes (CCBFC) the National Research Council (NRC) Codes Canada publishes national model codes documents that set out minimum requirements relating to their scope and objectives. These include the National Building Code (NBC), the National Fire Code (NFC), the National Energy Code for Buildings (NECB), the National Plumbing Code (NPC) and other documents. The Canadian Standards Association (CSA) publishes other model codes that address electrical, gas and elevator systems. The NBC is the model building code in Canada that forms the basis of most building design in the country. The NBC is a highly regarded model building code because it is a consensus-based process for producing a model set of requirements which provide for the health and safety of the public in buildings. Its origins are deeply entrenched within Canadian history and culture and a need to house the growing population of Canada safely and economically. Historical events have shaped many of the health and safety requirements of the NBC. Model codes such as the NBC and NECB have no force in law until they are adopted by a government authority having jurisdiction. In Canada, that responsibility resides within the provinces, territories and in some cases, municipalities. Most regions choose to adopt the NBC, or adapt their own version derived from the NBC to suit regional needs. The model codes in Canada are developed by experts, for experts, through a collaborative and consensus-based process that includes input from all segments of the building community. The Canadian model codes build on the best expertise from across Canada and around the world to provide effective building and safety regulations that are harmonized across Canada. The Codes Canada publications are developed by the Canadian Commission on Building and Fire Codes (CCBFC). The CCBFC oversees the work of a number of technical standing committees. Representing all major facets of the construction industry, commission members include building and fire officials, architects, engineers, contractors and building owners, as well as members of the public. Canadian Wood Council representatives hold membership status on several of the standing committees and task groups acting under the CCBFC and participate actively in the technical updates and revisions related to aspects of the Canadian model codes that apply to wood building products and systems. During any five-year code-revision cycle, there are many opportunities for the Canadian public to contribute to the process. At least twice during the five-year cycle, proposed changes to the Code are published and the public is invited to comment. This procedure is crucial as it allows input from all those concerned and broadens the scope of expertise of the Committees. Thousands of comments are received and examined by the Committees during each cycle. A proposed change may be approved as written, modified and resubmitted for public review at a later date, or rejected entirely.
La conception du bois dans le code national du bâtiment du Canada

The current edition of the National Building Code of Canada (NBC) is published in an objective-based format intended to allow more flexibility when evaluating non-traditional or alternative solutions. The objective-based format currently in use provides additional information that helps proponents and regulators determine what minimum performance level must be achieved to facilitate evaluation of new alternatives. Although the NBC helps users understand the intent of the requirements, it is understood that proponents and regulators will still have a challenge in terms of demonstrating compliance. In any case, objective-based codes are expected to foster a spirit of innovation and create new opportunities for Canadian manufacturers. Requirements related to the specification of structural wood products and wood building systems that relates to health, safety, accessibility and the protection of buildings from fire or structural damage is set forth in the NBC. The NBC applies mainly to new construction, but also aspects of demolition, relocation, renovation and change of building use. The current NBC was published in 2015, and is usually updated on a five-year cycle. The next update is expected in 2020. In terms of structural design, the NBC specifies loads, while material resistance is referenced through the use of material standards. In the case of engineering design in wood, CSA O86 provides the designer with the means of calculating the resistance values of structural wood products to resist gravity and lateral loads. Additional design information is found in the companion documents to the NBC; Structural Commentaries (User’s Guide – NBC 2015: Part 4 of Division B) and the Illustrated User’s Guide – NBC 2015: Part 9 of Division B, Housing and Small Buildings. In Canada, structural wood products are specified prescriptively or through engineered design, depending on the application and occupancy. Design professionals, such as architects and engineers, are generally required for structures that exceed three-storeys in height or are greater than 600 m2 or if occupancies are not covered by Part 9 ‘Housing and Small Buildings’ of the NBC. Housing and small buildings can be built without a full structural design using prescriptive requirements found in Part 9 of the Code. Some Part 9 requirements are based on calculations, others are based on construction practices that have a proven performance history. Generally prescriptive use is allowed if the following conditions are met: three-stories or less 600m2 or less uses repetitive wood members spaced within 600 mm spans are less than 12.2 meters floor live loads do not exceed 2.4 kPa residential, office, mercantile or medium-to low-hazard industrial occupancy The rationale for not basing all Part 9 requirements on calculations comes from the fact that there has been historical performance and experience with small wood-frame buildings in Canada, in addition to the notion that many of the non-structural elements actually contribute to the structural performance of a wood-frame system. Quantifying the ‘system’ effects on overall behaviour of a wood-frame building cannot be done adequately using typical design assumptions, such as two-dimensional load paths and single member engineering mechanics. In these instances, the requirements for houses and small buildings is based on alternative criteria of a prescriptive nature. These prescriptive criteria are based on an extensive performance history of wood-frame housing and small buildings that meet current day code objectives and requirements. Buildings that fall outside of prescriptive boundaries or are intended for major occupancy or post disaster situations must be designed by design professionals in accordance with Part 4 of the NBC. Structural resistance of wood products and building systems are engineered according to the requirements of CSA O86 in order to resist the loadings described in Part 4 of the NBC.
Immeubles de moyenne hauteur

Au début des années 1900, les constructions en bois à ossature légère et en bois lourd, d'une hauteur pouvant atteindre dix étages, étaient monnaie courante dans les grandes villes du Canada. La longévité et l'attrait continu de ces types de bâtiments sont évidents dans le fait que beaucoup d'entre eux sont encore utilisés aujourd'hui. Au cours de la dernière décennie, on a assisté à un renouveau de l'utilisation du bois pour les bâtiments plus hauts au Canada, y compris les immeubles de taille moyenne à ossature légère en bois d'une hauteur maximale de six étages. La construction en bois à ossature légère de moyenne hauteur est plus qu'une simple ossature de 2×4 et des panneaux de revêtement en bois. Les progrès de la science du bois et de la technologie du bâtiment ont permis de mettre au point des produits et des systèmes de construction plus solides, plus sûrs et plus sophistiqués, qui élargissent les possibilités de la construction en bois et offrent davantage de choix aux constructeurs et aux concepteurs. Les constructions modernes en bois à ossature légère de moyenne hauteur intègrent des solutions sûres qui ont fait l'objet de recherches approfondies. La conception technique et la technologie qui ont été développées et mises sur le marché positionnent le Canada comme un leader dans l'industrie de la construction à ossature en bois de moyenne hauteur. En 2009, par le biais de ses codes de construction provinciaux, la Colombie-Britannique est devenue la première province canadienne à autoriser la construction d'immeubles de moyenne hauteur en bois. Depuis cette modification du code du bâtiment de la Colombie-Britannique (BCBC), qui a fait passer de quatre à six étages la hauteur autorisée pour les immeubles résidentiels à ossature en bois, plus de 300 de ces structures ont été achevées ou sont en cours de réalisation en Colombie-Britannique. En 2013 et 2015, le Québec, l'Ontario et l'Alberta, respectivement, ont également décidé d'autoriser la construction de bâtiments à ossature en bois de hauteur moyenne jusqu'à six étages. Ces changements réglementaires indiquent que le marché a clairement confiance dans ce type de construction. Des preuves scientifiques et des recherches indépendantes ont montré que les bâtiments à ossature bois de moyenne hauteur peuvent répondre aux exigences de performance en matière d'intégrité structurelle, de sécurité incendie et de sécurité des personnes. Ces preuves ont également contribué à l'ajout de nouvelles dispositions normatives pour la construction en bois, et ont ouvert la voie à de futurs changements qui incluront davantage d'utilisations autorisées et, à terme, de plus grandes hauteurs autorisées pour les bâtiments en bois. À la suite de ces recherches et de la mise en œuvre réussie de nombreux bâtiments résidentiels de moyenne hauteur à ossature en bois, principalement en Colombie-Britannique et en Ontario, la Commission canadienne des codes du bâtiment et de prévention des incendies (CCCBPI) a approuvé des modifications similaires aux codes modèles nationaux de construction. L'édition 2015 du Code national du bâtiment du Canada (CNB) autorise la construction de bâtiments résidentiels, commerciaux et de services personnels de six étages à l'aide de matériaux de construction combustibles traditionnels. Les modifications apportées au CNB tiennent compte des progrès réalisés dans le domaine des produits du bois et des systèmes de construction, ainsi que des systèmes de détection, d'extinction et de confinement des incendies. En ce qui concerne les bâtiments de moyenne hauteur à ossature en bois, plusieurs modifications apportées au CNB 2015 visent à réduire davantage les risques d'incendie, notamment : l'utilisation accrue de gicleurs automatiques dans les zones dissimulées des bâtiments résidentiels ; l'utilisation accrue de gicleurs sur les balcons ; l'augmentation de l'approvisionnement en eau pour la lutte contre l'incendie ; et un revêtement extérieur incombustible ou peu combustible à 90 % à tous les étages. La plupart des immeubles de moyenne hauteur à ossature bois sont situés au cœur des petites municipalités et dans les banlieues des plus grandes, ce qui présente des avantages économiques et de durabilité. La construction à ossature bois de moyenne hauteur soutient les objectifs de nombreuses municipalités : densification, logements abordables pour répondre à la croissance de la population, durabilité de l'environnement bâti et communautés résilientes. Bon nombre de ces bâtiments ont été construits à partir d'une ossature légère en bois, avec une structure à ossature en bois de cinq ou six étages construite sur une dalle de béton au sol, ou sur un parking en sous-sol en béton ; d'autres ont été construits au-dessus d'un ou deux étages de locaux commerciaux incombustibles. Les bâtiments en bois de moyenne hauteur sont intrinsèquement plus complexes et impliquent l'adaptation de détails structurels et architecturaux qui répondent à des critères de conception structurels, acoustiques, thermiques et de performance en cas d'incendie. Plusieurs aspects clés de la conception et de la construction deviennent plus critiques dans cette nouvelle génération de bâtiments en bois de moyenne hauteur : le risque accru de retrait cumulatif et de mouvement différentiel entre les différents types de matériaux, en raison de l'augmentation de la hauteur du bâtiment ; l'augmentation des charges permanentes, vivantes, éoliennes et sismiques qui sont une conséquence de la hauteur plus élevée du bâtiment ; les exigences relatives à la disposition des murs de refend à empilement continu ; l'augmentation des degrés de résistance au feu pour les séparations coupe-feu, comme l'exigent les bâtiments de plus grande hauteur et de plus grande superficie ; les indices de transmission du son, requis pour les bâtiments résidentiels multifamiliaux, ainsi que pour d'autres usages ; la possibilité d'une exposition plus longue aux éléments pendant la construction ; l'atténuation des risques liés aux incendies pendant la construction ; et la modification de la séquence et de la coordination de la construction, résultant de l'utilisation de technologies et de processus de préfabrication. Il existe de nombreuses approches et solutions alternatives à ces nouvelles considérations de conception et de construction associées aux systèmes de construction en bois de moyenne hauteur. Les publications de référence produites par le Conseil canadien du bois fournissent une discussion plus détaillée, des études de cas et des détails sur les techniques de conception et de construction d'immeubles de moyenne hauteur. Pour de plus amples informations, veuillez consulter les ressources suivantes : Guide des meilleures pratiques pour les immeubles de moyenne hauteur (Conseil canadien du bois) Guide de référence 2015 : Mid-Rise Wood Construction in the Ontario Building Code (Conseil canadien du bois) Mid-Rise 2.0 - Innovative Approaches to Mid-Rise Wood Frame Construction (Conseil canadien du bois) Mid-Rise Construction in British Columbia (Conseil canadien du bois) National Building Code of Canada Wood Design Manual (Conseil canadien du bois) CSA O86 Engineering design in wood Wood for Mid-Rise Construction (Wood WORKS ! Atlantic) Fire Safety and Security : Note technique sur la sécurité incendie sur les chantiers de construction en Colombie-Britannique et en Ontario (Conseil canadien du bois)
Traitement correctif

Since remedial treatment is intended to solve a known insect or decay problem, the first thing to do is investigate the extent of the problem and, if necessary, provide temporary structural support. The investigation phase should also identify the causal factors so that these can be eliminated, where possible. Also during the investigation, the parts of the wood that have lost strength may be removed. Be aware that a wood decay fungus may have penetrated well beyond the boundaries of the visibly rotted wood. Since deterioration is underway, a rapid response is normally required. This means that where the deteriorated and infected wood cannot be removed and replaced with sound wood, the remedial treatment must be capable of rapidly penetrating the wood and killing the fungi or insects. Solids Since solids take time to dissolve and move, they are commonly supplemented by liquid treatments for more rapid eradication of the decay fungus or insect. Borate and copper/borate rods are the only solid remedial treatment method available to the homeowner. Liquids, Pastes and Gels Liquids, pastes and gels work rapidly as they do not have to rehydrate or dissolve to start moving and working. Since all visibly decayed wood should be removed wherever possible, these treatments are often used primarily to kill and contain any residual infection inadvertently left behind. Brush or spray applications are quite appropriate for this use. Gels are commonly applied to paint cracks in window joints and to the bottom of door frames, locations where moisture may get into the wood. Where decayed wood is present inside poles and timbers and cannot be removed, liquids, pastes or gels must be inserted deep into the wood for rapid action. Fumigants Gases move the most rapidly and therefore have a faster eradicant action.