en-ca

Searching for: Sustainability

Searching results for “Sustainability”
43 results found...
Sort By Dropdown Icon

Simplified and Sustainable Acoustic Solutions for High-Performance Mass Timber Buildings

Course Overview

Delivering superior acoustic comfort to building occupants doesn’t have to be complicated. In this panel discussion, presented by an industry-leading manufacturer of acoustic treatments, an acoustic expert, and a LEED GA certified engineer, discover the latest ground-breaking advancements in sound technology that are transforming acoustic design in wood construction.

There are many critical factors to consider when looking at acoustic systems: weight reduction, fire performance, structural height, and environmental sustainability must all be taken into account. The panelists will share system recommendations to help designers achieve better sound performance in mass timber buildings.

Learning Objectives

  1. Identify the latest systems solutions in the marketplace.
  2. Understand how to mitigate flanking paths.
  3. Explore impact sound solutions for exposed mass timber ceilings.
  4. Discuss the benefits of dry vs. wet floor toppings based on a building’s design.

Course Video

Speaker Bio

David Dompierre, P.Eng.
Acoustic Engineer
SIBE Acoustics

Having been involved in over a hundred successful projects in North America, David was able to develop expertise in the acoustics of numerous construction systems (steel, concrete, light wood frame, mass timber, hybrids, etc.). His position as R&D director at an acoustics laboratory allowed him to gain knowledge of acoustic materials and flooring types.

For several years, he has had the opportunity to share that knowledge with firms, colleges, and universities.

David’s role as a senior noise consultant at SIBE Acoustics is to help developers and professionals with the selection and implementation of acoustic solutions in their projects.

David Gonzalez, LEED® Green Associate™
Solutions Ambassador
DCC Solutions

With over 20 years of experience in the building materials industry, David assists construction professionals achieve optimal acoustical performance for the soundproofing of buildings using a dry topping flooring system.

He is a keen green building enthusiast and enjoys acquiring knowledge on environmentally friendly, low carbon and healthy building materials that can contribute to making a positive impact on people’s health, the environment, and the construction industry.

André Rioux
Co-Owner- Business Development
AcoustiTECH

André has been working alongside building professionals for 20 years and is recognized for his passion for the field of acoustics and his expert knowledge.

Promoting wood construction across Canada and the US has been a great focus of his, he has participated in various organizations, presented at conferences and been part of innovative projects.

André’s experience with wood construction combined with over 20 years of research and development from AcoustiTECH has resulted in a group that is able to bring invaluable expertise and know-how to the industry.

Elevate Innovate Acoustically Integrate

Course Overview

In this session using specific project case studies, discover the latest ground-breaking advancements in sound technology that are transforming acoustic design in wood construction. There are many critical factors to consider when looking at acoustic systems: weight reduction, fire performance, structural height, on-site sequencing and environmental sustainability must all be taken into account. This session will shed light on the advantages of dry toppings over wet toppings, presenting innovative solutions that not only comply with building codes but also keep the construction process moving forward.

Learning Objectives

  1. Define Basic Acoustic Principles.
  2. Propagation of noise in Wood Construction.
  3. Dry Topping VS Wet Topping.
  4. Case Studies.

Course Video

Speaker Bio

Cristian Wallace
AcoustiTECH

Cristian Wallace brings a wealth of technical knowledge and a genuine passion for collaborating with Developers, Architects, and Acoustical Engineers. His primary objective is to empower clients by educating them on effective strategies to prevent noise-related problems and encourage sustainable construction methods. AcoustiTECH has evolved into a market leader with over 20 years of extensive research and development. Along with Cristian’s expertise they culminated into a team capable of delivering invaluable insights.

The Role of the Wood Industry in Climate Change Mitigation

Course Overview

This presentation will describe the role of the wood industry in mitigating the impacts the built environment has on climate change. Learn about the importance of embodied carbon in construction and how wood has the ability to influence positive change in the building sector’s decarbonization efforts.

This session will highlight current research programs such as National Research Council Canada’s initiative on Low-carbon assets through life cycle assessment (LCA2) and emerging initiatives such as embodied carbon provisions in municipal and national building standards and codes.

Learning Objectives

These objectives are aligned with key concepts in sustainability, building regulations, and lifecycle assessments within the building sector.

  1. Understanding Embodied Carbon:
    Objective: To learn what embodied carbon is, how it is relevant to building materials, and its implications for sustainability in construction.
    Relevance: Knowing the sources of embodied carbon helps in making informed decisions about material selection to reduce environmental impact.
  2. Role of Wood in Sustainable Construction:
    Objective: To understand the environmental benefits of using wood in construction, including its properties as a low-carbon material.
    Relevance: Grasping why wood is considered a sustainable choice can influence policies, building practices, and material selection, supporting climate change mitigation efforts.
  3. Biogenic Carbon Concept:
    Objective: To comprehend what biogenic carbon is, how it is stored in wood, and the significance of using wood to capture and store carbon.
    Relevance: Learning about biogenic carbon can lead to greater appreciation of sustainable forestry and its role in carbon sequestration, promoting the use of renewable resources.
  4. Regulatory Expectations and Future Trends in Building Materials:
    Objective: To gain insight into future regulatory changes regarding building materials, specifically the focus on reducing embodied carbon.
    Relevance: Understanding these regulatory trends prepares professionals to comply with upcoming standards and encourages the adoption of sustainable practices in construction.
These objectives help learners—from construction professionals to students and policy makers—understand critical aspects of sustainability in the building industry, encouraging the implementation of practices that reduce the environmental impact of construction activities.

Course Video

Speaker Bio

Natasha Jeremic, MASc, PEng, LEED GA
Manager Codes and Standards – Sustainability
Canadian Wood Council

Natasha Jeremic is Manager of Sustainability in the Codes and Standards group at the Canadian Wood Council. She is engaged in strategic building code and standards initiatives related to sustainability, circularity, and durability. Natasha leverages her experience in structural design, building performance, and whole life carbon accounting to demonstrate that wood products are a viable solution for a sustainable and low-carbon built environment.

T3 Bayside

Course Overview

Coming Soon

Learning Objectives

  1. Understand the design and sustainability features of the T3 Bayside project, emphasizing mass timber construction.
  2. Analyze the challenges and solutions in implementing mass timber in large-scale commercial projects – logistical, regulatory, and construction.
  3. Evaluate the benefits of mass timber in terms of construction efficiency and workplace environment – understand how mass timber construction impacts project timelines, cost-effectiveness, and creates biophilic, worker-friendly environments.
  4. Discuss the implications of mass timber construction for commercial buildings in urban settings.

Course Video

Speaker Bio

Michael Gross
Vice President Construction
Hines Canada

Michael has become a key member of the Hines Canada platform since returning to Toronto in 2014. He leads several projects, provides support to the business generation team, and takes pride in mentoring junior colleagues.

Michael’s main responsibility has been leading the delivery of Hines’ 13-acre Bayside Toronto mixed-use master planned community which includes 1,300 residential units, 500,000 sq. ft. of office space, and 115,000 sq. ft. of retail space, and several public amenities. He led a trailblazing building code approval effort for the 10-storey T3 Bayside heavy timber office project and leads the design and construction of that project. He also provides senior leadership and guidance to other construction teams across Canada– most recently for the 64-86 Bathurst Multifamily project and T3 Sterling Road.

Michael joined Hines in 2007 to work on the Dr. Philips Center for the Performing Arts in Orlando Florida after having spent a considerable part of his early career on the development and construction of arts and cultural venues. He is passionate about the quality of the built environment and the livability of cities, and this passion informs his approach to his work at Hines. Michael has served as a Board Member of St. Hilda’s Towers and Lewis Garnsworthy Residence in Toronto and the Mad Cow Theatre in Orlando.

Michael holds a Bachelor of Applied Science in Mechanical Engineering from the University of Toronto and a Bachelor of Architecture from McGill University. Outside the office, he enjoys spending time with his family, entertaining, and canoe trips.

Nicola Casciato OAA, MRAIC, AANB
Principal
WZMH

Since joining the firm in 2005, Nicola has brought a high level of energy and creativity to the design of a number of major projects, including the Durham Consolidated Courthouse, Bay-Adelaide Centre and the Caesar’s Casino in Windsor, Ontario. He joined WZMH as a Senior Designer with experience in institutional, multi-unit residential and recreational buildings. Nicola’s strengths lie within the realm of design with a deeply rooted connection to the architecture of humanism while maintaining a full understanding of the production of contract documents and contract administration. His skills were acquired through six years as an associate at Montgomery Sisam Architects, a distinguished Toronto practice, and four years of formative training at Perkins and Will, an internationally renowned Chicago practice. In recognition of his outstanding contribution to the firm, Nicola was appointed a Principal of WZMH in 2010. Nicola has a Master of Architecture from the University of Illinois and a Bachelor of Technology in Architectural Science from Ryerson University.

Jack Keays
Principal
Vortex Fire

Jack is an accomplished fire safety engineer, building code expert, and mass timber innovator with extensive project experience in Canada, Singapore, the Middle East, and North Africa. He has advanced analytical skills with the ability to recognize and address fire safety challenges while developing practical engineering solutions. With each project, Jack engages both internal and external stakeholders in constructive and collaborative relationships. Jack brings value to each project by taking a holistic approach to fire and life safety and by working closely with a cross section of disciplines to deliver optimal solutions.

Lucas Driussi
Project Manager
Eastern Construction

Lucas Driussi, project manager, is a sought-after project management resource within Eastern Construction, who provides critical leadership and direction to help guide his team and project stake holders through all phases of a project. Lucas has amassed an impressive list of diverse projects, clients, and delivery methods gained over a career that spans more than 15-years in the construction industry.

Starting as a Project Coordinator, then serving stints in the field and estimating, and then taking on the role of Assistant Project Manager and subsequently Project Manager on large-scale projects, Lucas offers extensive expertise with construction management coupled with a strong appreciation for LEAN Construction practices. Currently, Lucas is managing T3 Bayside, a LEED Gold, high-performance, mass timber commercial office building located along Toronto’s waterfront. Once complete, T3 Bayside will be the tallest wood tower constructed in North America.

Durability

Throughout history, wherever wood has been available as a resource, it has found favour as a building material for its durability, strength, cost-competitiveness, ease-of-use, sustainability, and beauty.  Wood-frame and timber buildings have an established record of long-term durability. From the ancient temples of China and Japan built in the 1000s, and the great stave churches of Norway to the numerous  North American buildings built in the 1800s, wood construction has proven it can stand the test of time.

Although wood building technology has been changing over time, wood’s natural durability properties will continue to make it the material of choice.

This website helps designers, construction professionals, and building owners understand what durability hazards exist for wood, and describes durability solutions that ensure wood, as a building material, will perform well for decades, and even centuries, to come.


Durability Guidelines

Wood structures, properly designed and properly treated, will last indefinitely. This section includes guidance on specific applications of structures that have constant exposure to the elements.

Mass timber exteriors

Modern Mass Timber Construction includes building systems otherwise known as post-and-beam, or heavy-timber, and cross laminated timber (CLT). Typical components include solid sawn timbers, glue-laminated timbers (glulam), parallel strand lumber (PSL) laminated veneer lumber (LVL) laminated strand (LSL), and CLT. Heavy-timber post and beam with infill walls of various materials is one of the oldest construction systems known to man. Historic examples still standing range from Europe through Asia to the long-houses of the Pacific Coastal first nations. Ancient temples in Japan and China dating back thousands of years are basically heavy timber construction with some components semi-exposed to the weather. Heavy-timber-frame warehouses with masonry walls dating back 100 years or more are still serviceable and sought-after as residences or office buildings in cities like Toronto, Montreal and Vancouver (Koo 2013). Besides their historic value, these old warehouses offer visually impressive wood structures, open plan floors and resultant flexibility of use and repurposing. Building on this legacy, modern mass timber construction is becoming increasingly popular in parts of Canada and the USA for non-residential construction, recreational properties and even multi-unit residential buildings. Owners and architects typically see a need to express these structural materials, particularly glulam, on the exterior of the building where they are at semi-exposed to the elements. In addition wood components are being increasingly used to soften the exterior look of non-wood buildings and make them more appealing. They are anticipated to remain structurally sound and visually appealing for the service life. However, putting wood outside creates a risk of deterioration that needs to be managed. Similar to wood used for landscaping, the major challenges to wood in these situations are decay, weathering and black-stain fungi. This document provides assistance to architects and specifiers in making the right decisions to maximize the durability and minimize maintenance requirements for glulam and other mass timber on the outside of residential and non-residential buildings. It focusses on general principles, rather than providing detailed recommendations. This is primarily focussed on a Canadian and secondarily on a North American audience.

Click here to read more

Disaster Relief Housing

Shelter needs after natural disasters come in three phases:

Immediate shelter: normally supplied by tarpaulins or light tents
Transition shelter: may be heavy-duty tents or more robust medium-term shelters.
Permanent buildings: Ultimately permanent shelters need to be constructed when the local economy recovers.

Immediate and transition shelters are typically supplied by aid agencies. Light wood frame is ideal for rapid provision of medium- to long-term shelter after natural disasters. However, there are challenges in certain climates for wood frame construction that must be addressed in order to sustainably and responsibly build them. For example, many of the regions which experience hurricanes, earthquakes and tsunamis also have severe decay and termite hazards including aggressive Coptotermes species and drywood termites. In extreme northern climates, high occupancy loads are common and when combined with the need for substantial thermal insulation to ensure comfortable indoor temperatures, can result in condensation and mould growth if wall and roof systems are not carefully designed.

The desire of aid organizations to maximize the number of shelters delivered tends to drive down the allowable cost dictating simplified designs with fewer moisture management features. It may also be difficult to control the quality of construction in some regions. Once built, “temporary” structures are commonly used for much longer than their design life. Occupier improvements over the longer term can potentially increase moisture and termite problems. All of these factors mean that the wood used needs to be durable.

One method of achieving more durable wood products is by treating the wood to prevent decay and insect/termite attack. However, commonly available preservative treated wood in Canada may not be suitable for use in other countries. Selection of the preservative and treatment process must take into account the regulations in both the exporting and receiving countries, including consideration of the potential for human contact with the preserved wood, where the product will be within the building design, the treatability of wood species, and the local decay and termite hazard. Simple design features, such as ensuring wood does not come into contact with the ground and is protected from rain, can reduce moisture and termite problems.

Building with concrete and steel does not eliminate termite problems. Termites will happily forage in a concrete or masonry block buildings looking for wood components, furniture, cupboards, and other cellulosic materials, such as the paper on drywall, cardboard boxes, books etc. Mud tubes running 10ft over concrete foundations to reach cellulosic building materials have been documented. Indeed, termites have caused major economic damage to cellulosic building materials even in concrete and steel high-rises in Florida and in southern China.

Timber bridges

Timber bridges are an excellent way to showcase the strength and durability of wood structures, even under harsh conditions, when material selection, design, construction and maintenance are done well. They could also be critical infrastructure elements that span fast rivers or deep gorges. Consequences of failure of these structures can be severe in loss of life and loss of access to communities. Durability is as critical as engineering to ensure safe use of timber bridges for the design life, typically 75 years in North America.

There are numerous examples of old wood bridges still in service in North America (Figure 1). The oldest are traditional covered bridges (Figure 2), three of which are around 190 years old. In Southeast China, Fujian and Zhejiang provinces have numerous covered bridges that are almost 1000 years old (Figure 3). The fact that these bridges are still standing is a testament to the craftsmen that selected the materials, designed the structures, built them, monitored their condition and kept them maintained and repaired. They would have selected the most durable wood species available, likely Chestnut or cedars in North America, china fir (china cedar) in southeast China. They would have adzed off the thin perishable sapwood exposing only the naturally durable heartwood. The fact the covered bridges around today all look similar is because those were the tried and tested designs that worked. They clearly designed those bridges to shed water with a wood shingle roof, vertical siding projecting below the deck and structural elements sheltered from all but the worst wind-driven rain. Any rain that did not drip off the bottom of the vertical siding and wicked up the end grain would also dry out reasonably rapidly. Slow decay that did occur at the bottom of these boards was inconsequential because it was remote from connections to structural elements. Construction must have been meticulously performed by experienced craftsmen. Those craftsmen may well have been locals that would continue to monitor the bridge over its life and make any repairs necessary. Of course, not every component in those ancient bridges is original, particularly shingle roofs that typically last 20-30 years depending on climate. These bridges have all been repaired due to decay and in some cases dismantled and re-built over the years for various reasons (e.g., due to changes in traffic loads, arson, flooding, fire, hurricanes, etc.). The Wan’an Bridge in Fujian is known to have been built in 1090, refaced in 1708 and rebuilt in 1845, 1932 and 1953. The apparently increasing frequency of rebuilding may suggest a loss of knowledge and skills, but all repairs and reconstruction prior to 1845 may not have been recorded.

Permanent Wood Foundations

A permanent wood foundation (PWF) is a strong, durable and proven construction method that has a number of unique advantages over other foundation systems for both the builder and the homeowner. The first Canadian examples were built as early as 1950 and are still being used today. PWFs can also be designed for projects such as crawl spaces, room additions and knee-wall foundations for garages and mobile homes. Concrete slab-on-grade, wood sleeper floors and suspended wood floors can all be used with PWFs.

A permanent wood foundation is an in-ground engineered construction system designed to turn a home’s foundation into useable living space. A below-grade stud wall constructed of preservative treated plywood and lumber supports the structure and encloses the living space. PWFs are suitable for all types of light-frame construction covered under Part 9 (Housing and Small Buildings) of the National Building Code of Canada, under clauses 9.15.2.4.(1) and 9.16.5.1.(1). This includes single-family detached houses, townhouses, low-rise apartments, and institutional and commercial buildings. In addition, the recently revised CSA S406 standard, Specification of permanent wood foundations for housing and small buildings, allows for three-storey construction supported by PWF.

Click here to read more


Durability Solutions

Wood has been a valuable and effective structural material since the earliest days of human civilisation. With normal good practice, wood can deliver many years of reliable service. But, like other building materials, wood can suffer as a result of mistakes made in storage, design, construction, and maintenance practices.

How can you ensure long life of a wood building? The best approach is always to remember that wood meant for dry application must stay dry. Start out by buying dry wood, store it carefully to keep it dry, design the building to protect the wood elements, keep wood dry during construction, and practice good maintenance of the building. This approach is called durability by design.

If wood won’t stay dry, you have two choices in approach. Because wet wood is at risk of decay, you must select a product with decay resistance. One choice is to choose a naturally durable species like Western red cedar. This approach is called durability by nature.

Most of our construction lumber is not naturally durable, but we can make it decay resistant by treating it with a preservative. Preservative-treated lumber is more reliably resistant to decay than naturally durable lumber. This approach is called durability by treated wood.

The level of attention you give to durability issues during the course of design depends on your decay hazard. In other words, the more that your circumstances put wood at risk, the more care you must take in protecting against  decay. In outdoor applications, for example, any wood in contact with the ground is at high risk of decay and should be pressure-treated with a preservative. For wood that is exposed to the weather but not in direct ground contact, the degree of hazard correlates with climate. The fungi that harm wood generally grow best in moist environments with warm temperatures. Researchers have developed hazard zones in North America using mean monthly temperature and number of rainy days. This map in particular shows the rainfall hazard and applies to exposed uses of wood such as decks, shingles and fence boards. A high degree of hazard would indicate a need to carefully choose a wood species or preservative treatment for maximum service life. In the future, building codes may provide more specific directives as a function of decay hazard. For wood not exposed to weather, such as framing lumber, this map is only moderately useful. This is because the environmental conditions in the wall may be substantially different than those outdoors.


Durability Hazards

Moisture, Decay, and Termites

Wood is a natural, biodegradable material.  That means certain insects and fungi can break wood down to be recycled via earth into new plant material.

Decay, also called rot, is the decomposition of organic material by fungal activity.  A few specialized species of fungi can do this to wood.  This is an important process in the forest.  But it is obviously a process to be avoided for wood products in service.

The key to controlling decay is controlling excessive moisture.  Water by itself doesn’t cause harm to wood, but water enables these fungal organisms to grow.  Wood is actually quite tolerant of water and forgiving of many moisture errors.  But too much unintended moisture (for example, a major wall leak) can lead to a significant decay hazard.  If a wood product is to be used in an application that will frequently be wet for extended periods, then measures need to be taken to protect the wood against decay.

Various types of insects can damage wood, but the predominant ones causing problems are termites.  Termites live everywhere in the world where the climate is warm or temperate.


Durability – FAQ

Please refer to the pdf documents below for Frequently Asked Questions pertaining to durability:

The Durability site is a joint CWC/ FPInnovations – website whose intent is to provide current information on the durability of wood products in order to ensure long service life of wood structures. The site is maintained and updated regularly by both groups, which ensures that architects, engineers, builders, and homeowners get answers to their inquiries regarding wood durability.

Durability

The 2025 Ottawa Wood Solutions Conference will be presented on February 5, 2025 at the National Arts Centre

December 19, 2024 (Ottawa) – The 2025 Ottawa Wood Solutions Conference will be presented on Wednesday, February 5, 2025, from 8:00 am to 5:00 pm, at the National Arts Centre, located at 1 Elgin St. in Ottawa. 

First launched over 20 years ago to serve design and construction professionals interested in building with wood, this event has evolved from a niche gathering into a cornerstone of professional education, driven by the growing demand for sustainable wood construction. The program offers a range of presentations—from technical deep dives to inspiring case studies—catering to participants at every stage of their professional journey, from newcomers to seasoned experts. Attendees can also take advantage of valuable opportunities to connect, collaborate, and expand their professional networks within the wood community. 

Conference organizers are delighted to welcome Christophe Ouhayoun of KOZ Architects (France) to share insights into the innovative, collaborative development of the Paris Olympics Athletes’ Village. His presentation will also explore the current effort underway to convert these structures into much-needed permanent housing, highlighting this progressive mass timber development as a model of adaptability and sustainability. 

Another program highlight pays tribute to the venue itself. Donald Schmitt, CM, of Diamond Schmitt Architects will present on the revitalization of the National Arts Centre, offering a behind-the-scenes look at the timber structure and prefabrication process that transformed this iconic building into a modern landmark. 

Other technical presentations include managing sound and vibration in mass timber buildings and growing Canadian capacity for industrialized wood construction, advancing wood products in our changing climate, and a discussion of the value of conventional wood frame construction in small communities where it provides job opportunities, with a specific focus on Indigenous housing projects. 

Early Bird registration of just $99+HST is available until the end of December. In the new year, registration for the conference will be $149 +HST. Delegates can find the Ottawa Wood Solutions Conference on Eventbrite or jump directly to online registration with this link: https://www.eventbrite.ca/e/2025-ottawa-wood-solutions-conference-tickets-1080654991169

A limited number of discounted passes are available for post-secondary educators and students in AEC+D programs of study. Please contact Kelsey Dayler for more information kdayler@cwc.ca 

Environmental Issues

Safe Handling

Using common sense and standard safety equipment (personal protection and wood-working machinery) applies when working with any building products. Gloves, dust masks and goggles are appropriate for use with all woodworking. Here are a few key points specific to treated wood:

  • Pressure-treated wood is not a pesticide, and it is not a hazardous product. In most municipalities, you may dispose of treated wood by ordinary garbage collection. However, you should check with your local regulations.
  • Never burn treated wood because toxic chemicals may be produced as part of the smoke and ashes.
  • If preservatives or sawdust accumulate on clothes, launder before reuse. Wash your work clothes separately from other household clothing.
  • Treated wood used for patios, decks and walkways should be free of surface preservative residues.
  • Treated wood should not be used for compost heaps where free organic acids produced early in the composting process can remove the fixed chemicals. It is, however, safe to use for growing vegetables in raised soil beds. If, after reading this, you are still concerned, place a layer of plastic sheet between the soil and the treated wood wall.
  • Treated wood should not be cleaned with harsh reducing agents since these can also remove the fixed chemicals.

Environmental Concerns

All wood preservatives used in the U.S. and Canada are registered and regularly re-examined for safety by the U.S. Environmental Protection Agency and Health Canada’s Pest Management and Regulatory Agency, respectively. 

Wood preservation is not an exact science, due to the biological – and therefore variable and unpredictable – nature of both wood and the organisms that destroy it. Wood scientists are trying to understand more about how wood decays to ensure that durability is achieved through smart design and construction choices where possible, so that as a society we can be selective in our use of preservatives.

Comparing treated wood to alternative products

A series of life cycle assessments has been completed comparing preservative treated wood to alternative products. In most cases, the treated wood products had lower environmental impacts.

Environmental Issues Environmental Issues

 

 

 

 

 

 

Click for consumer safety information on handling treated wood (Canada).

Read More

Environmental product declarations (EPDs)

EPD Link
An Industry Average EPD for Canadian Pre-fabricated Wood I-Joists View Resource
A Regionalized Industry Average EPD for Canadian Softwood Lumber View Resource
A Regionalized Industry Average EPD for Canadian Oriented Strand Board View Resource
An Industry Average EPD for Canadian Softwood Plywood View Resource
A Regionalized Industry Average EPD for Canadian Wood Trusses View Resource

Stakeholders within the building design and construction community are increasingly being asked to include information in their decision-making processes that take into consideration potential environmental impacts. These stakeholders and interested parties expect unbiased product information that is consistent with current best practices and based on objective scientific analysis. In the future, building product purchasing decisions will likely require the type of environmental information provided by environmental product declarations (EPDs). In addition, green building rating systems, including LEED®, Green Globes™ and BREEAM®, recognize the value of EPDs for the assessment of potential environmental impacts of building products.

EPDs are concise, standardized, and third-party verified reports that describe the environmental performance of a product or a service. EPDs are able to identify and quantify the potential environmental impacts of a product or service throughout the various stages of its life cycle (resource extraction or harvest, processing, manufacturing, transportation, use, and end-of-life). EPDs, also known as Type III environmental product declarations, provide quantified environmental data using predetermined parameters that are based on internationally standardized approaches. EPDs for building products can help architects, designers, specifiers, and other purchasers better understand a product’s potential environmental impacts and sustainability attributes.

An EPD is a disclosure by a company or industry to make public the environmental data related to one or more of its products. EPDs are intended to help purchasers better understand a product’s environmental attributes in order for specifiers to make more informed decisions selecting products. The function of EPDs are somewhat analogous to nutrition labels on food packaging; their purpose is to clearly communicate, to the user, environmental data about products in a standardized format.

EPDs are information carriers that are intended to be a simple and user-friendly mechanism to disclose potential environmental impact information about a product within the marketplace. EPDs do not rank products or compare products to baselines or benchmarks. An EPD does not indicate whether or not certain environmental performance criteria have been met and does not address social and economic impacts of construction products.

Data reported in an EPD is collected using life cycle assessment (LCA), an internationally standardized scientific methodology. LCAs involve compiling an inventory of relevant energy and material inputs and environmental releases, and evaluating their potential impacts. It is also possible for EPDs to convey additional environmental information about a product that is outside the scope of LCA.

EPDs are primarily intended for business-to-business communication, although they can also be used for business-to-consumer communication. EPDs are developed based on the results of a life cycle assessment (LCA) study and must be compliant with the relevant product category rules (PCR), which are developed by a registered program operator. The PCR establishes the specific rules, requirements and guidelines for conducting an LCA and developing an EPD for one or more product categories.

The North American wood products industry has developed several industry wide EPDs, applicable to all the wood product manufacturers located across North America. These industry wide EPDs have obtained third-party verification from the Underwriters Laboratories Environment (ULE), an independent certification body. North American wood product EPDs provide industry average data for the following environmental metrics:

  • Global warming potential;
  • Acidification potential;
  • Eutrophication potential;
  • Ozone depletion potential;
  • Smog potential;
  • Primary energy consumption;
  • Material resources consumption; and
  • Non-hazardous waste generation.

Industry wide EPDs for wood products are business-to-business EPDs, covering a cradle-to-gate scope; from raw material harvest until the finished product is ready to leave the manufacturing facility. Due to the multitude of uses for wood products, the potential environmental impacts related to the delivery of the product to the customer, the use of the product, and the eventual end-of-life processes are excluded from the analysis.

For further information, refer to the following resources:

Mid-Rise Buildings

In the early 1900s, light-frame wood construction and heavy timber, up to ten-storeys in height, was commonplace in major cities throughout Canada. The longevity and continued appeal of these buildings types is apparent in the fact that many of them are still in use today. Over the past decade, there has been a revival in the use of wood for taller buildings in Canada, including mid-rise light-frame wood construction up to six-storeys in height.

Mid-rise light-frame wood construction is more than basic 2×4 framing and wood sheathing panels. Advances in wood science and building technology have resulted in stronger, safer, more sophisticated engineered building products and systems that are expanding the options for wood construction, and providing more choices for builders and designers. Modern mid-rise light-frame wood construction in incorporates well researched and safe solutions. The engineering design and technology that has been developed and brought to market is positioning Canada as a leader in the mid-rise wood-frame construction industry.

In 2009, via its provincial building codes, British Columbia became the first province in Canada to allow mid-rise buildings to be made from wood. Since this change to the British Columbia Building Code (BCBC), which increased the permissible height for wood frame residential buildings from four- to six-storeys, more than 300 of these structures have been completed or are underway with BC. In 2013 and 2015, Québec, Ontario, and Alberta, respectively, also moved to permit mid-rise wood-frame construction up to six-storeys in height. These regulatory changes indicate that there is clear market confidence in this type of construction.

Scientific evidence and independent research has shown that mid-rise wood-frame buildings can meet performance requirements in regard to structural integrity, fire safety, and life safety. That evidence has now also contributed to the addition of new prescriptive provisions for wood construction, as well as paved the way for future changes that will include more permissible uses and ultimately greater permissible heights for wood buildings. As a result of this research, and the successful implementation of many mid-rise wood-frame residential buildings, primarily in British Columbia and Ontario, the Canadian Commission on Building and Fire Codes (CCBFC) approved similar changes to the National Model Construction Codes. The 2015 edition of the National Building Code of Canada (NBC) permits the construction of six-storey residential, business, and personal services buildings using traditional combustible construction materials. The NBC changes recognize the advancements in wood products and building systems, as well as in fire detection, suppression, and containment systems.

In relation to mid-rise wood-frame buildings, several changes to the 2015 NBC are designed to further reduce the risks posed by fire, including:

  • increased use of automatic sprinklers in concealed areas in residential buildings;
  • increased use of sprinklers on balconies;
  • greater water supply for firefighting purposes; and
  • 90 percent noncombustible or limited-combustible exterior cladding on all storeys.

Most mid-rise wood-frame buildings are located in the core of smaller municipalities and in the inner suburbs of larger ones, offering economic and sustainability advantages. Mid-rise wood-frame construction supports the goals of many municipalities; densification, affordable housing to accommodate a growing population, sustainability in the built environment and resilient communities.

Many of these buildings have employed light-frame wood construction from the ground up, with a five- or six-storey wood-frame structure being constructed on a concrete slab-on-grade, or on top of a concrete basement parking garage; others have been constructed above one- or two-storeys of noncombustible commercial occupancy.

Mid-rise wood buildings are inherently more complex and involve the adaptation of structural and architectural details that address considerations related to structural, acoustic, thermal and fire performance design criteria. Several key aspects of design and construction that become more critical in this new generation of mid-rise wood buildings include:

  • increased potential for cumulative shrinkage and differential movement between different types of materials, as a result of the increased building height;
  • increased, dead, live, wind and seismic loads that are a consequence of taller building height;
  • requirements for continuous stacked shearwall layouts;
  • increased fire-resistance ratings for fire separations, as required for buildings of greater height and area;
  • ratings for sound transmission, as required for buildings of multi-family residential occupancy, as well as other uses;
  • potential for longer exposure to the elements during construction;
  • mitigation of risk related to fire during construction; and
  • modified construction sequencing and coordination, resulting from the employment of prefabrication technologies and processes.

There are many alternative approaches and solutions to these new design and construction considerations that are associated with mid-rise wood construction systems. Reference publications produced by the Canadian Wood Council provide more detailed discussion, case studies and details for mid-rise design and construction techniques.

 

For further information, refer to the following resources:

Mid-Rise Best Practice Guide (Canadian Wood Council)

2015 Reference Guide: Mid-Rise Wood Construction in the Ontario Building Code (Canadian Wood Council)

Mid-Rise 2.0 – Innovative Approaches to Mid-Rise Wood Frame Construction (Canadian Wood Council)

Mid-Rise Construction in British Columbia (Canadian Wood Council)

National Building Code of Canada

Wood Design Manual (Canadian Wood Council)

CSA O86 Engineering design in wood

Wood for Mid-Rise Construction (Wood WORKS! Atlantic)

Fire Safety and Security: A Technical Note on Fire Safety and Security on Construction Sites in British Columbia/Ontario (Canadian Wood Council)

Bridges

Timber bridges have a long history as vital components of the roadway, railway and logging road networks within Canada. Dependent on the availability of materials, technology, and labour, the design and construction of wood bridges has evolved significantly over the last 200 hundred years throughout North America. Wood bridges take on many forms and use alternative support systems; including simple span log bridges, different types of trussed bridges, and stress-laminated or composite bridge decks and components. Timber bridges remain an important part of our transportation network in Canada.

The benefits of building modern timber bridges include:

  • reduced initial cost, particularly for remote areas;
  • speed of construction, through the use of prefabrication;
  • sustainability advantages;
  • aesthetics;
  • lighter foundations;
  • lower earthquake loads, coupled with less complex connections to substructures;
  • smaller temporary structures and cranes; and
  • lower transportation costs associated with lower weight materials.

The different types of materials used to construct wood bridges include: sawn lumber, round logs, straight and curved glued-laminated timber (glulam), laminated veneer lumber (LVL), parallel strand lumber (PSL), cross-laminated timber (CLT), nail-laminated timber (NLT), and composite systems such as stress-laminated decks, wood-concrete laminated decks, and fibre-reinforced polymers.

Two main wood species used for wood bridge construction in Canada are Douglas fir and the Spruce-Pine-Fir species combination. Other species within the Hem-Fir and Northern species combinations are also recognized under CSA O86, however, they are less commonly used in bridge construction.

All metal fasteners used for bridges must be protected against corrosion. The most common method for providing protection is hot dip galvanizing, a process whereby a sacrificial metal is added to exterior of the fastener. Different fastener types that are used in wood bridge construction include, but are not limited to, bolts, lag screws, split rings, shear plates, and nails (for deck laminations only).

All highway bridges in Canada must be designed to meet the requirements outlined in CSA S6 and CSA O86. The CSA S6 standard requires that the main structural components of any bridge in Canada, regardless of construction type, be able to withstand a minimum of 75 years of loading during its service life.

The style and span of bridges varies greatly depending on the application. In hard to reach locations with deep valleys, timber trestle bridges were common at the end of the 19th century and into the beginning of the 20th century. Historically, trestle bridges relied heavily on ample timber resources and in some cases, were considered to be temporary. Initial construction of North America’s transcontinental railways would not have been possible without the use of timbers to construct bridges and trestles.

Many examples of trussed timber bridges for have been built for well over a century. Trussed bridges allow for longer spans compared to simple girder bridges and historically had spans in the range of 30 to 60 m (100 to 200 ft). Bridges that are designed with trusses located above the deck provide a great opportunity to build a roof over the roadway. Installing a roof overhead is an excellent way to shed water away from the main bridge structure and protect it from the sun. The presence of these covered roofs is the main reason these century-old covered bridges remain in service today. The fact that they remain part of our landscape is as much a testament to their hardiness as to their attractiveness.

Although originally devised as a rehabilitation measure for aging bridge decks, the stress-laminating technique has been extended to new bridges through the application of stressing at the time of original construction. Stress-laminated decks provide improved structural behaviour, through their excellent resistance to the effects of repeated loading.

Three main considerations related to durability of wood bridges include protection by design, preservative treatment of wood, and replaceable elements. A bridge can be designed such that it is inherently self-protecting by deflecting water away from the structural elements. Preservative treated wood has the ability to resist the effects of de-icing chemicals and attack by biotic agents. Lastly, the bridge should be designed such that, at some point in its future, a single element can be replaced relatively easily, without significant disruption or cost.

 

For further information, refer to the following resources:

  • Wood Highway Bridges (Canadian Wood Council)
  • Ontario Wood Bridge Reference Guide (Canadian Wood Council)
  • CSA S6 Canadian Highway Bridge Design Code
  • CSA O86 Engineering design in wood

Bridges

Timber bridges have a long history as vital components of the roadway, railway and logging road networks within Canada. Dependent on the availability of materials, technology, and labour, the design and construction of wood bridges has evolved significantly over the last 200 hundred years throughout North America. Wood bridges take on many forms and use alternative support systems; including simple span log bridges, different types of trussed bridges, and stress-laminated or composite bridge decks and components. Timber bridges remain an important part of our transportation network in Canada.

  • reduced initial cost, particularly for remote areas;
  • speed of construction, through the use of prefabrication;
  • sustainability advantages;
  • aesthetics;
  • lighter foundations;
  • lower earthquake loads, coupled with less complex connections to substructures;
  • smaller temporary structures and cranes; and
  • lower transportation costs associated with lower weight materials.

The benefits of building modern timber bridges include:

The different types of materials used to construct wood bridges include: sawn lumber, round logs, straight and curved glued-laminated timber (glulam), laminated veneer lumber (LVL), parallel strand lumber (PSL), cross-laminated timber (CLT), nail-laminated timber (NLT), and composite systems such as stress-laminated decks, wood-concrete laminated decks, and fibre-reinforced polymers.

Two main wood species used for wood bridge construction in Canada are Douglas fir and the Spruce-Pine-Fir species combination. Other species within the Hem-Fir and Northern species combinations are also recognized under CSA O86, however, they are less commonly used in bridge construction.

All metal fasteners used for bridges must be protected against corrosion. The most common method for providing protection is hot dip galvanizing, a process whereby a sacrificial metal is added to exterior of the fastener. Different fastener types that are used in wood bridge construction include, but are not limited to, bolts, lag screws, split rings, shear plates, and nails (for deck laminations only).

All highway bridges in Canada must be designed to meet the requirements outlined in CSA S6 and CSA O86. The CSA S6 standard requires that the main structural components of any bridge in Canada, regardless of construction type, be able to withstand a minimum of 75 years of loading during its service life.

The style and span of bridges varies greatly depending on the application. In hard to reach locations with deep valleys, timber trestle bridges were common at the end of the 19th century and into the beginning of the 20th century. Historically, trestle bridges relied heavily on ample timber resources and in some cases, were considered to be temporary. Initial construction of North America’s transcontinental railways would not have been possible without the use of timbers to construct bridges and trestles.

Many examples of trussed timber bridges for have been built for well over a century. Trussed bridges allow for longer spans compared to simple girder bridges and historically had spans in the range of 30 to 60 m (100 to 200 ft). Bridges that are designed with trusses located above the deck provide a great opportunity to build a roof over the roadway. Installing a roof overhead is an excellent way to shed water away from the main bridge structure and protect it from the sun. The presence of these covered roofs is the main reason these century-old covered bridges remain in service today. The fact that they remain part of our landscape is as much a testament to their hardiness as to their attractiveness.

Although originally devised as a rehabilitation measure for aging bridge decks, the stress-laminating technique has been extended to new bridges through the application of stressing at the time of original construction. Stress-laminated decks provide improved structural behaviour, through their excellent resistance to the effects of repeated loading.

Three main considerations related to durability of wood bridges include protection by design, preservative treatment of wood, and replaceable elements. A bridge can be designed such that it is inherently self-protecting by deflecting water away from the structural elements. Preservative treated wood has the ability to resist the effects of de-icing chemicals and attack by biotic agents. Lastly, the bridge should be designed such that, at some point in its future, a single element can be replaced relatively easily, without significant disruption or cost.

For further information, refer to the following resources:

Wood Highway Bridges (Canadian Wood Council)
Ontario Wood Bridge Reference Guide (Canadian Wood Council)
CSA S6 Canadian Highway Bridge Design Code
CSA O86 Engineering design in wood

Life Cycle Assessment

Construction products and the building sector as a whole have significant impacts on the environment. Policy instruments and market forces are increasingly pushing governments and businesses to document and report environmental impacts and track improvements. One tool that is available to help understand the environmental aspects related to new construction, renovation, and retrofits of buildings and civil engineering works is life cycle assessment (LCA). LCA is a decision-making tool that can help to identify design and construction approaches that yield improved environmental performance.

Several European jurisdictions, including Germany, Zurich and Brussels, have made LCA a mandatory requirement prior to issuing a building permit. In addition, the application of LCA to building design and materials selection is a component of green building rating systems. LCA can benefit manufacturers, architects, builders, and government agencies by providing quantitative information about potential environmental impacts and providing data to identify areas for improvement.

LCA is a performance-based approach to assessing the environmental aspects related to building design and construction. LCA can be used to understand the potential environmental impacts of a product or structure at every stage of its life; from resource extraction or raw material acquisition, transportation, processing and manufacturing, construction, operation, maintenance and renovation to the end-of-life.

LCA is an internationally accepted, science-based methodology which has existed in alternative forms since the 1960s. The requirements and guidance for conducting LCA has been established through international consensus standards; ISO 14040 and ISO 14044. LCA considers all input and output flows (materials, energy, resources) associated with a given product system and is an iterative procedure that includes goal and scope definition, inventory analysis, impact assessment, and interpretation.

The inventory analysis, also known as the life cycle inventory (LCI), consists of data collection and the tracking of all input and output flows within a product system. Publicly available LCI databases, such as the U.S. Life Cycle Inventory Database, are accessible free of charge in order to source this LCI data. During the impact assessment phase of the LCA, the LCI flows are translated into potential environmental impact categories using theoretical and empirical environmental modelling techniques. LCA is able to quantify potential environmental impacts and aspects of a product, such as:

  • Global warming potential;
  • Acidification potential;
  • Eutrophication potential;
  • Ozone depletion potential;
  • Smog potential;
  • Primary energy consumption;
  • Material resources consumption; and
  • Hazardous and non-hazardous waste generation.

LCA tools are available to building designers that are publicly accessible and user friendly. These tools allow designers to rapidly obtain potential environmental impact information for an extensive range of generic building assemblies or develop full building life cycle assessments on their own. LCA software offers building professionals powerful tools for calculating the potential life cycle impacts of building products or assemblies and performing environmental comparisons.

It is also possible to use LCA to perform objective comparisons between alternate materials, assemblies and whole buildings, measured over the respective life cycles and based on quantifiable environmental indicators. LCA enables comparison of the environmental trade-offs associated with choosing one material or design solution over another and, as a result, provides an effective basis for comparing relative environmental implications of alternative building design scenarios.

An LCA that examines alternative design options must ensure functional equivalence. Each design scenario considered, including the whole building, must meet building code requirements and offer a minimum level of technical performance or functional equivalence. For something as complex as a building, this means tracking and tallying the environmental inputs and outputs for the multitude of assemblies, subassemblies and components in each design option. The longevity of a building system also impacts the environmental performance. Wood buildings can remain in service for long periods of time if they are designed, built and maintained properly.

Numerous LCA studies worldwide have demonstrated that wood building products and systems can yield environmental advantages over other building materials and methods of construction. FPInnovations conducted a LCA of a four-storey building in Quebec constructed using cross-laminated timber (CLT). The study assessed how the CLT design would compare with a functionally equivalent concrete and steel building of the same floor area, and found improved environmental performance in two of six impact categories, and equivalent performance in the rest. In addition, at the end-of-life, bio-based products have the ability to become part of a subsequent product system when reused, recycled or recovered for energy; potentially reducing environmental impacts and contributing to the circular economy.

Life cycle of wood construction products

Life Cycle Assessment
Photo source: CEI-Bois

For further information, refer to the following resources:

www.naturallywood.com

Athena Sustainable Materials Institute

Building for Environmental and Economic Sustainability (BEES)

FPInnovations. A Comparative Life Cycle Assessment of Two Multistory Residential Buildings: Cross-Laminated Timber vs. Concrete Slab and Column with Light Gauge Steel Walls, 2013.

American Wood Council

U.S. Life Cycle Inventory Database

ISO 14040 Environmental management – Life cycle assessment – Principles and framework

ISO 14044 Environmental management – Life cycle assessment – Requirements and guidelines

Simplified and Sustainable Acoustic Solutions for High-Performance Mass Timber Buildings
Elevate Innovate Acoustically Integrate
The Role of the Wood Industry in Climate Change Mitigation
T3 Bayside
Durability
The 2025 Ottawa Wood Solutions Conference will be presented on February 5, 2025 at the National Arts Centre
Environmental Issues
Environmental product declarations (EPDs)
Mid-Rise Buildings
Bridges
Bridges
Life Cycle Assessment
Course Overview Delivering superior acoustic comfort to building occupants doesn’t have to be complicated. In this panel discussion, presented by an industry-leading...
Course Overview In this session using specific project case studies, discover the latest ground-breaking advancements in sound technology that are transforming acoustic...
Course Overview This presentation will describe the role of the wood industry in mitigating the impacts the built environment has on climate change. Learn about the...
Course Overview Coming Soon Learning Objectives Understand the design and sustainability features of the T3 Bayside project, emphasizing mass timber construction. Analyze the...
Throughout history, wherever wood has been available as a resource, it has found favour as a building material for its durability, strength, cost-competitiveness...
December 19, 2024 (Ottawa) - The 2025 Ottawa Wood Solutions Conference will be presented on Wednesday, February 5, 2025, from 8:00 am to 5:00 pm, at the National Arts Centre...
Safe Handling Using common sense and standard safety equipment (personal protection and wood-working machinery) applies when working with any building products. Gloves, dust...
EPD Link An Industry Average EPD for Canadian Pre-fabricated Wood I-Joists [epdlink...
In the early 1900s, light-frame wood construction and heavy timber, up to ten-storeys in height, was commonplace in major cities throughout Canada. The longevity and...
Timber bridges have a long history as vital components of the roadway, railway and logging road networks within Canada. Dependent on the availability of materials...
Timber bridges have a long history as vital components of the roadway, railway and logging road networks within Canada. Dependent on the availability of materials...
Construction products and the building sector as a whole have significant impacts on the environment. Policy instruments and market forces are increasingly pushing...

Get Access to Our Resources

Stay in the loop and don’t miss a thing!

1
2
3

Get Access to Our Resources

Stay in the loop and don’t miss a thing!

What’s Your Occupation?

Help us personalize the content for you.

What Interests You the Most?

Help us personalize the content for you.

Filters

Post Type Icon
Post Type
Persona Icon
Persona
Language Icon
Language
Tags Icon
Tags
Mass Timber Plus Icon Environment Plus Icon Safety Plus Icon Durability Plus Icon Design Systems Plus Icon Budget Plus Icon Construction Management Plus Icon Fire Resistance Plus Icon Tall Buildings Plus Icon Short Buildings Plus Icon
Date Icon
Date
Line Separator