en-ca

Aucun terme de recherche n'a été saisi.

Veuillez saisir un terme de recherche pour obtenir des résultats.

141 results found...
Trier par Icône de la liste déroulante

Glulam

Le bois lamellé-collé est un produit structurel en bois d'ingénierie constitué de plusieurs couches individuelles de bois de dimension qui sont collées ensemble dans des conditions contrôlées. Tous les bois lamellés-collés canadiens sont fabriqués à l'aide d'adhésifs imperméables pour l'assemblage des extrémités et pour le collage des faces, et conviennent donc aussi bien aux applications extérieures qu'intérieures. Le bois lamellé-collé a une capacité structurelle élevée et constitue également un matériau de construction architectural attrayant.

Le bois lamellé-collé est couramment utilisé dans les structures à poteaux et à poutres, les structures en bois lourd et en bois de masse, ainsi que dans les ponts en bois. Le bois lamellé-collé est un produit structurel en bois d'ingénierie utilisé pour les chevêtres, les poutres, les poutrelles, les pannes, les colonnes et les fermes lourdes. Le bois lamellé-collé est également fabriqué sous forme d'éléments courbes, qui sont généralement soumis à des charges combinées de flexion et de compression. Il peut également être façonné pour créer des poutres coniques inclinées et une variété de configurations d'arcs et de fermes portantes. Le bois lamellé-collé est souvent utilisé lorsque les éléments structurels sont laissés apparents, ce qui constitue un élément architectural.

Bloc de lamellé-collé

Dimensions disponibles pour le bois lamellé-collé

Des dimensions standard ont été développées pour le bois lamellé-collé canadien afin de permettre une utilisation optimale du bois d'œuvre qui est un multiple des dimensions du lamstock utilisé pour la fabrication du lamellé-collé. Adaptées à la plupart des applications, les dimensions standard permettent au concepteur de réaliser des économies et de bénéficier d'une livraison rapide. D'autres dimensions non standard peuvent être commandées spécialement, moyennant un coût supplémentaire en raison de l'éboutage supplémentaire nécessaire pour produire des dimensions non standard. Les largeurs et profondeurs standard du bois lamellé-collé sont indiquées dans le tableau 6.7 ci-dessous. La profondeur du bois lamellé-collé est fonction du nombre de lamelles multiplié par l'épaisseur de la lamelle. Par souci d'économie, des lamelles de 38 mm sont utilisées dans la mesure du possible, et des lamelles de 19 mm sont utilisées lorsque des degrés de courbure plus importants sont requis.

Largeurs standard du bois lamellé-collé

Les largeurs finies standard des éléments en bois lamellé-collé et les largeurs courantes du matériau de stratification à partir duquel ils sont fabriqués sont indiquées dans le tableau 4 ci-dessous. Pour les éléments d'une largeur inférieure à 275 mm (10-7/8″), une seule largeur est utilisée pour la dimension de la largeur totale. Toutefois, les éléments d'une largeur supérieure à 175 mm (6-7/8″) peuvent être constitués de deux planches posées côte à côte. Tous les éléments d'une largeur supérieure à 275 mm (10-7/8″) sont constitués de deux pièces de bois placées côte à côte, les joints de bordures étant décalés dans la profondeur de l'élément. Les éléments d'une largeur supérieure à 365 mm (14-1/4″) sont fabriqués par incréments de 50 mm (2″), mais sont plus chers que les largeurs standard. Les fabricants doivent être consultés pour obtenir des conseils.

Largeur initiale du bois lamellé-collé Largeur finie du bois lamellé-collé
mm. en. mm. en.
89 3-1/2 80 3
140 5-1/2 130 5
184 7-1/4 175 6-7/8
235 (ou 89 + 140) 9-1/4 (ou 3-1/2 + 5-1/2) 225 (ou 215) 8-7/8 (ou 8-1/2)
286 (ou 89 + 184) 11-1/4 (ou 3-1/2 + 7-1/4) 275 (ou 265) 10-7/8 (ou 10-1/4)
140 + 184 5-1/2 + 7-1/4 315 12-1/4
140 + 235 5-1/2 + 9-1/4 365 14-1/4

Notes :

  • Les éléments d'une largeur supérieure à 365 mm (14-1/4″) sont disponibles par incréments de 50 mm (2″) mais doivent faire l'objet d'une commande spéciale.
  • Les éléments d'une largeur supérieure à 175 mm (6-7/8″) peuvent être constitués de deux panneaux posés côte à côte avec des joints longitudinaux décalés dans les lamelles adjacentes.

Profondeurs standard du bois lamellé-collé

Les profondeurs standard des éléments en bois lamellé-collé vont de 114 mm (4-1/2″) à 2128 mm (7′) ou plus, par incréments de 38 mm (1-1/2″) et 19 mm (3/4″). Un élément fabriqué à partir de lamelles de 38 mm (1-1/2″) coûte nettement moins cher qu'un élément équivalent fabriqué à partir de lamelles de l9 mm (3/4″). Toutefois, les laminés de 19 mm (3/4″) permettent une plus grande courbure que les laminés de 38 mm (1-1/2″).

Largeur en. Plage de profondeur
mm en.
80 3 114 à 570 4-1/2 à 22-1/2
130 5 152 à 950 6 à 37-1/2
175 6-7/8 190 à 1254 7-1/2 à 49-1/2
215 8-1/2 266 à 1596 10-1/2 à 62-3/4
265 10-1/4 342 à 1976 13-1/2 à 77-3/4
315 12-1/4 380 à 2128 15 à 83-3/4
365 14-1/4 380 à 2128 15 à 83-3/4

Remarque :
1. Les profondeurs intermédiaires sont des multiples de l'épaisseur de la lamelle, qui est de 38 mm (1-1/2″ nom.), sauf pour certains éléments courbes qui nécessitent des lamelles de 19 mm (3/4″ nom.).

Les produits de contrecollage peuvent être assemblés par l'extrémité en longueurs allant jusqu'à 40 m (130′), mais la limite pratique peut dépendre des restrictions de transport. Par conséquent, il convient de déterminer les restrictions de transport pour une région donnée avant de spécifier la longueur, la largeur ou la hauteur d'expédition.

Classes d'aspect du bois lamellé-collé

Lors de la spécification des produits canadiens en bois lamellé-collé, il est nécessaire d'indiquer à la fois la classe de résistance et la classe d'aspect requises. L'aspect du bois lamellé-collé est déterminé par le degré de finition effectué après le laminage et non par l'aspect des pièces individuelles de laminage.

Le bois lamellé-collé est disponible dans les qualités d'aspect suivantes :

  • Industrie
  • Commercial
  • Qualité

Le degré d'apparence définit l'importance des travaux de réparation et de finition effectués sur les surfaces exposées après la stratification (tableau 6.8) et n'a pas d'incidence sur la résistance. Le degré de qualité offre le plus haut degré de finition et est destiné aux applications où l'aspect est important. La qualité industrielle est celle qui présente le moins de finition.

Grade Description
Qualité industrielle Destiné à être utilisé lorsque l'aspect n'est pas une préoccupation majeure, par exemple dans les bâtiments industriels ; le bois stratifié peut contenir des caractéristiques naturelles autorisées pour la catégorie de contrainte spécifiée ; les faces sont rabotées aux dimensions spécifiées, mais des manques et des aspérités occasionnels sont autorisés ; la surface peut présenter des nœuds brisés, des trous de nœuds, des grains déchirés, des carreaux, des flaches et d'autres irrégularités.
Qualité commerciale Destiné aux surfaces peintes ou vernies à brillant plat ; le bois stratifié peut contenir des caractéristiques naturelles autorisées pour la catégorie de contrainte spécifiée ; les côtés sont rabotés aux dimensions spécifiées et toute la colle pressée est enlevée de la surface ; les trous de nœuds, les nœuds lâches, les vides, les poches de flache ou de poix ne sont pas remplacés par des inserts en bois ou du mastic sur la surface exposée.
Niveau de qualité Destiné aux surfaces transparentes ou polies très brillantes, il met en valeur la beauté naturelle du bois pour un meilleur attrait esthétique ; le bois stratifié peut contenir des caractéristiques naturelles autorisées pour le degré de contrainte spécifié ; les côtés sont rabotés aux dimensions spécifiées et toute la colle éliminée de la surface ; les côtés peuvent présenter des nœuds serrés, une tache de cœur ferme et une tache d'aubier de taille moyenne ; Les nœuds légèrement cassés ou fendus, les éclats, le grain déchiré ou les carreaux de la surface sont comblés ; les nœuds lâches, les trous de nœuds, les poches de flaches et de poix sont enlevés et remplacés par un produit de remplissage non rétrécissant ou par des inserts en bois correspondant au grain et à la couleur du bois ; les stratifiés de la face ne présentent pas de caractéristiques naturelles nécessitant un remplacement ; les faces et les côtés sont poncés de manière à être lisses.

Cambrure en lamellé-collé

Pour les longs éléments droits, le bois lamellé-collé est généralement fabriqué avec une cambrure intégrée afin d'assurer un drainage positif en annulant la déflexion. Cette capacité à fournir une cambrure positive est un avantage majeur du bois lamellé-collé. Les cambrures recommandées sont indiquées dans le tableau 5 ci-dessous.

Tableau 5 : Recommandations de cambrure pour les poutres de toiture en lamellé-collé
Type de structure Recommandation
Poutres de toit simples en lamellé-collé Cambrure égale à la flèche due à la charge morte plus la moitié de la charge vive ou 30 mm par 10 m (1″ par 30′) de portée ; en cas de risque de formation de mares, une cambrure supplémentaire est généralement prévue pour l'évacuation des eaux de toiture.
Poutres de plancher simples en lamellé-collé Cambrure égale à la charge morte plus un quart de la déflexion de la charge vive ou pas de cambrure.
Fermes à arbalétrier et fermes inclinées Seule la membrure inférieure est cambrée. Pour une membrure inférieure continue en lamellé-collé, la cambrure de la membrure inférieure est égale à 20 mm par 10 m (3/4″ par 30′) de portée.
Fermes de toit plat (fermes de toit Howe et Pratt) Cambrure des membrures supérieures et inférieures en lamellé-collé égale à 30 mm par 10 m (1″ par 30′) de portée.

Fabrication de lamellé-collé

Les pièces de bois de dimension qui composent le lamellé-collé sont jointes en bout et disposées en couches horizontales ou en lamelles. Le bois utilisé pour la fabrication du lamellé-collé est une qualité spéciale (lamstock) achetée directement auprès des scieries. Le lamstock est séché à un taux d'humidité maximal de 15 % et raboté avec une tolérance plus étroite que celle requise pour le bois d'œuvre classé visuellement. La stratification de plusieurs pièces est un moyen efficace d'utiliser du bois de dimension à haute résistance de longueur limitée pour fabriquer des éléments en bois lamellé-collé dans de nombreuses formes et longueurs de section transversale. La catégorie spéciale de bois utilisée pour le lamellé-collé, le lamstock, est reçue et stockée à l'usine de lamellé-collé dans des conditions contrôlées. Le bois lamellé doit être séché à un taux d'humidité compris entre 7 et 15% avant d'être stratifié afin de maximiser l'adhérence et de minimiser le retrait en service. Les lamelles de bois d'œuvre (lamstock) sont triées visuellement et mécaniquement en fonction de leur résistance et de leur rigidité. Les évaluations de la résistance et de la rigidité sont utilisées pour déterminer l'emplacement d'une pièce donnée dans une poutre ou un poteau. Par exemple, les pièces à haute résistance sont placées dans les lamelles les plus extérieures d'une poutre, là où les contraintes de flexion sont les plus importantes, tandis que pour les colonnes et les éléments de traction, les lamelles les plus résistantes sont réparties de manière plus égale. Ce mélange des caractéristiques de résistance est connu sous le nom de combinaison de grades et garantit une performance constante du produit fini. Les laminés sont collés sous pression à l'aide d'un adhésif imperméable. Voir la figure 3.7 ci-dessous pour une représentation schématique de la fabrication du lamellé-collé. Les poutres en lamellé-collé peuvent également être cambrées, ce qui signifie qu'elles peuvent être produites avec un léger arc vers le haut afin de réduire la déflexion sous les charges de service. Une cambrure typique est de 2 à 4 mm par mètre de longueur. Le bois lamellé-collé est fabriqué pour répondre aux exigences de la norme CSA O122 Structural GluedLaminated Timber.

Contrôle de la qualité

Le bois lamellé-collé est un produit d'ingénierie qui exige un contrôle de qualité rigoureux à tous les stades de la fabrication. Les usines de fabrication certifiées respectent les normes de contrôle de la qualité qui régissent le classement du bois, l'assemblage par entures multiples, le collage et la finition. Les fabricants canadiens de bois lamellé-collé doivent être qualifiés et certifiés conformément à la norme CSA O177, Code de qualification des fabricants de bois de charpente lamellé-collé. Cette norme définit des lignes directrices obligatoires pour l'équipement, la fabrication, les essais et les procédures d'archivage. En tant que procédure de fabrication obligatoire, des tests doivent être effectués régulièrement à plusieurs étapes critiques de la fabrication, et les résultats des tests doivent être consignés. Par exemple, des échantillons représentatifs sont testés pour vérifier l'adéquation du collage et tous les joints d'extrémité sont soumis à des essais de contrainte pour s'assurer que chaque joint dépasse les exigences de conception. Chaque élément fabriqué fait l'objet d'un enregistrement d'assurance qualité indiquant les résultats des tests de collage, la classification du bois, les tests des joints d'extrémité et les conditions de stratification pour chaque élément fabriqué, y compris le taux d'étalement de la colle, le temps d'assemblage, les conditions de durcissement et le temps de durcissement. En outre, des audits de qualité obligatoires sont réalisés par des organismes de certification indépendants afin de s'assurer que les procédures en vigueur dans l'usine sont conformes aux exigences de la norme de fabrication. Un certificat de conformité aux normes de fabrication pour une commande de lamellé-collé donnée est disponible sur demande.

Essence de bois lamellé-collé

Le bois lamellé-collé est principalement produit au Canada à partir de deux groupes d'essences : le douglas, le mélèze et l'épicéa. Des essences de sapin sont également utilisées occasionnellement.

Bois lamellé-collé canadien - Espèces commerciales
Désignation du groupe d'espèces commerciales Espèces en combinaison Caractéristiques du bois
Sapin de Douglas-Mélèze (D.Fir-L) Douglas, mélèze de l'Ouest Bois similaires en termes de résistance et de poids. Dureté élevée et bonne résistance à la pourriture. Bonne tenue des clous, bonne aptitude au collage et à la peinture. La couleur va du brun rougeâtre au blanc jaunâtre.
Hémérocalle Ciguë de l'Ouest, sapin d'Amérique, sapin de Douglas Bois légers qui se travaillent facilement, prennent bien la peinture et tiennent bien les clous. Bonnes caractéristiques de collage. La gamme de couleurs s'étend du jaune-brun au blanc.
Épicéa-Pin Épicéa (toutes les espèces sauf l'épicéa de Sitka), pin tordu, pin gris Bois aux caractéristiques similaires, ils se travaillent facilement, prennent aisément la peinture et tiennent bien les ongles. Généralement de couleur blanche à jaune pâle.

Classes de résistance du bois lamellé-collé

Lors de la spécification des produits canadiens en bois lamellé-collé, il est nécessaire d'indiquer à la fois la classe de contrainte et la classe d'aspect requises. La spécification de la classe de contrainte appropriée dépend de l'utilisation finale prévue de l'élément : poutre, poteau ou élément de traction, comme le montre le tableau 2.

Tableau 2 : Bois lamellé-collé canadien - degrés de contrainte
Niveau de stress Espèces Description
Grades de pliage 20f-E et 20f-EX D.Sapin-L ou Pin-Épicéa Utilisé pour les éléments sollicités principalement en flexion (poutres) ou en flexion et charge axiale combinées.
24f-E et 24f-EX D.Fir-L ou Hem-Fir Spécifier EX lorsque les éléments sont soumis à des moments positifs et négatifs ou lorsqu'ils sont soumis à des charges combinées de flexion et axiales, comme les arcs et les membrures supérieures des fermes.
Grades de compression 16c-E 12c-E D.Sapin-L Épicéa Utilisé pour les éléments sollicités principalement en compression axiale, tels que les colonnes.
Grades de tension 18t-E 14t-E D.Sapin-L Épicéa Utilisé pour les éléments soumis principalement à une tension axiale, tels que les membrures inférieures des poutrelles.

Pour les grades de flexion 20f-E, 20f-EX, 24f-E et 24f-EX, les chiffres 20 et 24 indiquent la contrainte de flexion admissible en unités impériales (2000 et 2400 livres par pouce carré). De même, les descriptions des qualités de compression, 16c-E et 12c-E, et des qualités de tension, 18t-E et 14t-E, indiquent les contraintes de compression et de tension admissibles. Le "E" indique que la rigidité de la plupart des laminés doit être testée à la machine. Les lettres minuscules indiquent l'utilisation du grade comme suit : "f" pour les éléments de flexion, "c" pour les éléments de compression et "t" pour les éléments de traction. Les qualités de contrainte avec la désignation EX (20f-EX et 24f-EX) sont spécifiquement conçues pour les cas où les éléments de flexion sont soumis à des inversions de contrainte. Dans ces cas, les exigences de laminage du côté de la tension sont le reflet de celles du côté de la compression. Contrairement aux bois sciés classés visuellement, pour lesquels il existe une corrélation entre l'apparence et la résistance, il n'y a pas de relation entre les niveaux de contrainte et les niveaux d'apparence du bois lamellé-collé, puisque la surface exposée peut être modifiée ou réparée sans affecter les caractéristiques de résistance.

Contrôle de l'humidité du bois lamellé-collé

Le fendillement du bois est dû au retrait différentiel des fibres du bois dans les parties internes et externes d'une pièce de bois. Le bois lamellé-collé est fabriqué à partir de lamelles dont le taux d'humidité est compris entre 7 et 15 %. Comme cette fourchette se rapproche des conditions d'humidité de la plupart des utilisations finales, le contrôle est minime dans les éléments en lamellé-collé. Des méthodes de transport, de stockage et de construction appropriées permettent d'éviter les variations rapides de la teneur en humidité des éléments lamellés-collés. De fortes variations de la teneur en humidité peuvent résulter de l'application soudaine de chaleur à des bâtiments en construction par temps froid, ou de l'exposition d'éléments non protégés à des conditions alternativement humides et sèches, comme cela peut se produire pendant le transport et l'entreposage. Le bois lamellé-collé canadien reçoit généralement une couche de scellant protecteur avant d'être expédié et est enveloppé pour le protéger pendant le transport et le montage. L'emballage doit être laissé en place aussi longtemps que possible et idéalement jusqu'à ce qu'une protection permanente contre les intempéries soit mise en place. Pendant le stockage sur le chantier, le bois lamellé-collé doit être entreposé au-dessus du sol et des blocs d'espacement doivent être placés entre les éléments. En cas de retard dans la construction, l'emballage doit être coupé sur la face inférieure afin d'éviter l'accumulation de condensation.

Traitement et scellement du bois lamellé-collé

Le traitement conservateur n'est pas souvent nécessaire, mais il doit être spécifié pour toute application susceptible d'entrer en contact avec le sol. Il convient de demander au fabricant des conseils sur le traitement conservateur approprié. Le bois lamellé-collé non traité peut être utilisé dans des environnements humides tels que les piscines, les pistes de curling ou les bâtiments industriels qui utilisent de l'eau dans leur processus de fabrication. Lorsque les extrémités des éléments en bois lamellé-collé risquent d'être mouillées, il convient de prévoir des surplombs ou des solins de protection. Dans les applications où le contact direct avec l'eau n'est pas un facteur, un scellant appliqué en usine empêchera les variations importantes de la teneur en humidité. L'enduit alkyde appliqué en usine sur les éléments en bois lamellé-collé offre une protection suffisante pour la plupart des applications à forte humidité. Le bois étant résistant à la corrosion, le bois lamellé-collé est utilisé dans de nombreux environnements corrosifs tels que les dômes de stockage de sel et les entrepôts de potasse.

Formes courantes de lamellé-collé

Pour plus d'informations sur les différents fabricants de bois lamellé-collé au Canada, veuillez consulter les liens suivants :

Archipel de l'Ouest
Mercer Mass Timber
À propos de Nordic Structures
Goodfellow
Kalesnikoff Bois de charpente
Élément5

Bois lourd à sciage massif

Les éléments en bois massif sont principalement utilisés comme éléments structurels principaux dans les constructions à poteaux et à poutres. Le terme "bois lourd" est utilisé pour décrire le bois massif scié dont la plus petite dimension transversale est égale ou supérieure à 140 mm (5-1/2 in). Les bois de grande dimension offrent une meilleure résistance au feu que les bois de construction et peuvent être utilisés pour répondre aux exigences de construction en bois lourd énoncées dans la partie 3 du Code national du bâtiment du Canada.

Les bois sciés sont produits conformément à la norme CSA O141. Bois de construction standard canadien et classé conformément aux règles de classement standard de la NLGA pour le bois d'œuvre canadien.

Il existe deux catégories de bois : les "poutres et longerons" rectangulaires et les "poteaux et poutres" carrés. Les poutres et les longerons, dont la plus grande dimension dépasse la plus petite de plus de 51 mm, sont généralement utilisés comme éléments de flexion, tandis que les poteaux et les poutres, dont la plus grande dimension dépasse la plus petite de 51 mm ou moins, sont généralement utilisés comme colonnes.

Les dimensions des bois sciés vont de 140 à 394 mm (5-1/2 à 15-1/2 in). Les dimensions les plus courantes vont de 140 x 140 mm (5-1/2 x 5-1/2 in) à 292 x 495 mm (11-1/2 x 19-1/2 in) en longueurs de 5 à 9 m (16 à 30 ft). Des dimensions allant jusqu'à 394 x 394 mm (15-1/2 x 15-1/2 in) sont généralement disponibles dans l'ouest du Canada dans les combinaisons d'essences Douglas Fir-Larch et Hem-Fir. Les bois des combinaisons épicéa-pin-sapin (S-P-F) et des essences nordiques ne sont disponibles qu'en petites dimensions. Les bois peuvent être obtenus dans des longueurs allant jusqu'à 9,1 m (30 ft), mais la disponibilité des bois de grande taille et de grande longueur doit toujours être confirmée auprès des fournisseurs avant de spécifier le cahier des charges. Un tableau des dimensions de bois disponibles est présenté ci-dessous.

Les deux catégories de bois, poutres et longerons, et poteaux et poutres, contiennent trois qualités de contrainte : Select Structural, No.1, et No.2, et deux qualités non sollicitées (Standard et Utility). Les catégories de contraintes sont assorties de valeurs de calcul pour l'utilisation en tant qu'éléments de structure. Aucune valeur de calcul n'a été attribuée aux qualités non soumises à des contraintes.

No.1 ou No.2 sont les qualités les plus couramment spécifiées à des fins structurelles. La qualité No.1 peut contenir des quantités variables de Select Structural, selon le fabricant. Contrairement au bois de construction canadien, il existe une différence entre les valeurs de calcul des qualités No.1 et No.2 pour les bois d'œuvre. Select Structural est spécifié lorsque l'aspect et la résistance de la plus haute qualité sont souhaités.

Aucune valeur de calcul n'a été attribuée aux qualités Standard et Utility. Les bois de ces qualités peuvent être utilisés dans des applications spécifiques des codes de construction où une résistance élevée n'est pas importante, comme le blocage ou le contreventement court.

Les coupes transversales peuvent affecter le classement du bois dans la catégorie des poutres et des longerons parce que la taille autorisée du nœud varie sur la longueur de la pièce (un nœud plus grand est autorisé près des extrémités qu'au milieu). Les bois doivent être reclassés en cas de coupe transversale.

Les bois ne sont généralement pas marqués d'un grade (grade stamped) et un certificat de l'usine peut être obtenu pour certifier le grade.

La grande taille des bois rend le séchage au four peu pratique en raison des contraintes de séchage qui résulteraient des différences d'humidité entre l'intérieur et l'extérieur du bois. C'est pourquoi les bois sont généralement traités verts (teneur en humidité supérieure à 19 %), et la teneur en humidité du bois à la livraison dépend de l'importance du séchage à l'air qui a eu lieu.

Comme le bois de construction, le bois d'œuvre commence à se rétracter lorsque son taux d'humidité tombe en dessous de 28 %. Les bois exposés à l'extérieur subissent généralement un retrait de 1,8 à 2,6 % en largeur et en épaisseur, selon l'essence. Les bois utilisés à l'intérieur, où l'air est souvent plus sec, subissent un retrait plus important, de l'ordre de 2,4 à 3,0 % en largeur et en épaisseur. Dans les deux cas, la variation de longueur est négligeable. La conception et la construction doivent tenir compte du retrait anticipé. Le retrait doit également être pris en compte lors de la conception des connexions.

Les petits défauts à la surface d'un bois sont fréquents dans les conditions de service humides et sèches. Ces défauts de surface ont été pris en compte dans l'établissement des résistances nominales spécifiées. Les fissures dans les colonnes n'ont pas d'importance structurelle à moins que la fissure ne se transforme en une fente traversante qui divise la colonne.

 

Pour plus d'informations, consultez les ressources suivantes :

Guilde des charpentiers de bois

Association internationale des constructeurs de bois

BC Log & Timber Building Industry Association (Association de l'industrie de la construction en bois et en rondins de bois de la Colombie-Britannique)

 

Tableau des dimensions du bois massif scié

Grands bâtiments en bois

Grâce aux technologies de construction avancées et aux produits modernes en bois de masse tels que le bois lamellé-collé, le bois lamellé-croisé et le bois composite structurel, construire en hauteur avec du bois est non seulement réalisable mais déjà en cours - avec des bâtiments contemporains de 9 étages et plus achevés en Australie, en Autriche, en Suisse, en Allemagne, en Norvège et au Royaume-Uni. De plus en plus reconnu par le secteur de la construction comme un choix de construction important, nouveau et sûr, la réduction de l'empreinte carbone et la performance énergétique intrinsèque/opérationnelle de ces bâtiments séduisent les communautés qui se sont engagées dans le développement durable et l'atténuation du changement climatique.

Les grands immeubles en bois, construits avec des produits du bois renouvelables provenant de forêts gérées durablement, ont le potentiel de révolutionner une industrie de la construction de plus en plus soucieuse de faire partie de la solution en matière d'intensification urbaine et de réduction de l'impact sur l'environnement. L'industrie canadienne des produits du bois s'est engagée à tirer parti de son avantage naturel en développant et en démontrant des produits de construction et des systèmes de construction à base de bois qui s'améliorent constamment.

Un bâtiment de grande hauteur en bois est un bâtiment de plus de six étages (le dernier étage est situé à plus de 18 m au-dessus du sol) qui utilise des éléments en bois massif comme composante fonctionnelle de son système de soutien structurel. Grâce aux technologies de construction avancées et aux produits modernes en bois de masse tels que le bois lamellé-collé (glulam), le bois lamellé-croisé (CLT) et le bois composite structurel (SCL), il est non seulement possible de construire des immeubles de grande hauteur en bois, mais c'est déjà le cas - des immeubles contemporains de sept étages et plus ont été construits au Canada, aux États-Unis, en Australie, en Autriche, en Suisse, en Allemagne, en Norvège, en Suède, en Italie et au Royaume-Uni.

Les grands bâtiments en bois intègrent des systèmes modernes de protection et d'extinction des incendies, ainsi que de nouvelles technologies pour les performances acoustiques et thermiques. Les grands bâtiments en bois sont couramment utilisés pour des usages résidentiels, commerciaux et institutionnels.

Le bois de masse offre des avantages tels qu'une meilleure stabilité dimensionnelle et une meilleure résistance au feu pendant la construction et l'occupation. Ces nouveaux produits sont également préfabriqués et offrent d'énormes possibilités d'améliorer la vitesse de montage et la qualité de la construction.

Parmi les avantages significatifs des grands bâtiments en bois, citons

  • la possibilité de construire plus haut dans les zones où les sols sont pauvres, car la super structure et les fondations sont plus légères que d'autres matériaux de construction ;
  • plus silencieux, ce qui signifie que les voisins sont moins susceptibles de se plaindre et que les travailleurs ne sont pas exposés à des niveaux de bruit élevés ;
  • la sécurité des travailleurs pendant la construction peut être améliorée grâce à la possibilité de travailler à partir de grandes plaques de plancher en bois massif ;
  • Les éléments préfabriqués fabriqués avec des tolérances serrées peuvent réduire la durée de la construction ;
  • des tolérances étroites dans la structure et l'enveloppe du bâtiment, associées à une modélisation énergétique, peuvent produire des bâtiments présentant une performance énergétique opérationnelle élevée, une étanchéité à l'air accrue, une meilleure qualité de l'air à l'intérieur et un confort humain amélioré.

Les critères de conception des grands bâtiments en bois à prendre en compte sont les suivants : une stratégie intégrée de conception, d'approbation et de construction, le retrait différentiel entre des matériaux dissemblables, les performances acoustiques, le comportement sous l'effet du vent et des charges sismiques, les performances en cas d'incendie (par exemple, l'encapsulation des éléments en bois massif à l'aide de gypse), la durabilité et le séquençage de la construction afin de réduire l'exposition du bois aux éléments.

Il est important de s'assurer de l'implication précoce d'un fournisseur de bois de masse qui peut fournir des services d'assistance à la conception permettant de réduire davantage les coûts de fabrication grâce à l'optimisation de l'ensemble du système de construction et pas seulement des éléments individuels. Même de petites contributions, dans la conception des connexions par exemple, peuvent faire la différence en termes de rapidité de montage et de coût global. En outre, les métiers de la mécanique et de l'électricité devraient être invités à jouer un rôle d'assistance à la conception dès le début du projet. Cela permet d'obtenir un modèle virtuel plus complet, de multiplier les possibilités de préfabrication et d'accélérer l'installation.

Des études de cas récentes portant sur de grands bâtiments modernes en bois au Canada et dans le monde entier montrent que le bois est une solution viable pour réaliser des bâtiments de grande taille sûrs, rentables et performants.

Pour plus d'informations, consultez les études de cas et les références suivantes :

Brock Commons Tall Wood House (Conseil canadien du bois)

Origine Point-aux-Lievres Ecocondos,Québec (Cecobois)

Centre d'innovation et de design du bois (Conseil canadien du bois)

Guide technique pour la conception et la construction de grands bâtiments en bois au Canada (FPInnovations)

Ontario's Tall Wood Building Reference (Ministère des ressources naturelles et des forêts et Ministère des affaires municipales)

Rapport de synthèse : Survey of International Tall Wood Buildings (Forestry Innovation Investment & Binational Softwood Lumber Council)

www.thinkwood.com/building-better/taller-buildings

Immeubles de moyenne hauteur

Lorsqu'il est question de construction en bois, nombreux sont ceux qui pensent à une simple ossature en 2×4, à des panneaux ou à des revêtements de sol pour les maisons individuelles. Cependant, les progrès de la science du bois et de la technologie de construction ont permis de créer des produits plus solides, plus sophistiqués et plus robustes qui élargissent les possibilités de la construction en bois et offrent un plus grand choix aux constructeurs et aux architectes.

Le soutien du Conseil canadien du bois à la construction d'immeubles de moyenne hauteur n'est pas unique. En Ontario, les constructeurs d'habitations, par l'intermédiaire d'organisations telles que RESCON, BILD et l'Association des constructeurs d'habitations de l'Ontario, mettent également l'accent sur cette opportunité.

  • Les immeubles de moyenne hauteur en bois sont une option nouvelle construction pour les constructeurs. C'est une bonne nouvelle pour le Canada, où les terrains sont très chers. L'avantage net de la réduction des coûts de construction est une plus grande accessibilité pour les acheteurs de logements.
  • En termes de une nouvelle opportunité économiqueEn outre, la capacité d'aller de l'avant "maintenant" crée de nouveaux emplois dans le secteur de la construction dans les villes et soutient l'emploi dans les communautés forestières. Cela permet également d'accroître les possibilités d'exportation des produits du bois actuels et innovants, dont l'adoption au Canada constitue un exemple pour les autres pays.
  • Cela reflète également une nouvelle norme d'ingénierie en ce sens que les problèmes structurels, d'incendie et de séisme ont tous été traités par les comités d'experts de la Commission canadienne des codes du bâtiment et de prévention des incendies.

En fin de compte, lorsqu'ils sont occupés, les immeubles de moyenne hauteur satisfont pleinement aux mêmes exigences du code de la construction que tout autre type de construction du point de vue de la santé, de la sécurité et de l'accessibilité.

 

Ponts

Les ponts en bois sont depuis longtemps des éléments essentiels des réseaux routiers, ferroviaires et forestiers du Canada. Dépendant de la disponibilité des matériaux, de la technologie et de la main-d'œuvre, la conception et la construction des ponts en bois ont évolué de manière significative au cours des 200 dernières années dans toute l'Amérique du Nord. Les ponts en bois prennent de nombreuses formes et utilisent différents systèmes de support, notamment des ponts en rondins à portée simple, différents types de ponts à treillis, ainsi que des tabliers et des éléments de pont en matériaux composites ou stratifiés. Les ponts en bois restent un élément important de notre réseau de transport au Canada.

  • un coût initial réduit, en particulier pour les régions éloignées ;
  • la rapidité de la construction, grâce à l'utilisation de la préfabrication ;
  • avantages en matière de durabilité ;
  • l'esthétique ;
  • des fondations plus légères ;
  • des charges sismiques plus faibles, associées à des connexions moins complexes avec les sous-structures ;
  • les structures temporaires et les grues de plus petite taille ; et
  • des coûts de transport moins élevés associés à des matériaux moins lourds.

Les avantages de la construction de ponts en bois modernes sont les suivants :

Les différents types de matériaux utilisés pour la construction des ponts en bois sont les suivants : bois de sciage, rondins, bois lamellé-collé droit et courbe (lamellé-collé), bois de placage stratifié (LVL), bois à copeaux parallèles (PSL), bois lamellé-croisé (CLT), bois lamellé-cloué (NLT) et systèmes composites tels que les tabliers stratifiés sous contrainte, les tabliers stratifiés bois-béton et les polymères renforcés par des fibres.

Les deux principales essences de bois utilisées pour la construction de ponts en bois au Canada sont le sapin de Douglas et la combinaison d'essences épicéa-pin-sapin. D'autres espèces appartenant aux combinaisons d'espèces Hem-Fir et Northern sont également reconnues par la norme CSA O86, mais elles sont moins couramment utilisées dans la construction de ponts.

Toutes les fixations métalliques utilisées pour les ponts doivent être protégées contre la corrosion. La méthode la plus courante pour assurer cette protection est la galvanisation à chaud, un processus par lequel un métal sacrificiel est ajouté à l'extérieur de la fixation. Les différents types de fixations utilisés dans la construction de ponts en bois comprennent, entre autres, les boulons, les tire-fonds, les anneaux fendus, les plaques de cisaillement et les clous (pour les stratifiés de pont uniquement).

Tous les ponts routiers au Canada doivent être conçus pour répondre aux exigences des normes CSA S6 et CSA O86. La norme CSA S6 exige que les principaux éléments structurels de tout pont au Canada, quel que soit le type de construction, soient capables de résister à un minimum de 75 ans de charge pendant sa durée de vie.

Le style et la portée des ponts varient considérablement en fonction de l'application. Dans les endroits difficiles d'accès et les vallées profondes, les ponts à chevalets en bois étaient courants à la fin du 19e siècle et au début du 20e siècle. Historiquement, les ponts à chevalets dépendaient fortement de l'abondance des ressources en bois et, dans certains cas, étaient considérés comme temporaires. La construction initiale des chemins de fer transcontinentaux d'Amérique du Nord n'aurait pas été possible sans l'utilisation de bois pour construire les ponts et les chevalets.

De nombreux exemples de ponts en bois à treillis ont été construits depuis plus d'un siècle. Les ponts à poutres en treillis permettent des portées plus longues que les ponts à poutres simples et, historiquement, leurs portées étaient comprises entre 30 et 60 m (100 et 200 pieds). Les ponts conçus avec des fermes situées au-dessus du tablier offrent une excellente occasion de construire un toit au-dessus de la chaussée. L'installation d'un toit au-dessus de la chaussée est un excellent moyen d'évacuer l'eau de la structure principale du pont et de la protéger du soleil. La présence de ces toits est la principale raison pour laquelle ces ponts couverts centenaires sont encore en service aujourd'hui. Le fait qu'ils fassent toujours partie de notre paysage témoigne autant de leur robustesse que de leur attrait.

Bien que conçue à l'origine comme une mesure de réhabilitation des tabliers de ponts vieillissants, la technique de stratification sous contrainte a été étendue aux nouveaux ponts par l'application de contraintes au moment de la construction initiale. Les tabliers stratifiés sous contrainte offrent un meilleur comportement structurel, grâce à leur excellente résistance aux effets des charges répétées.

Les trois principales considérations liées à la durabilité des ponts en bois sont la protection par la conception, le traitement de préservation du bois et les éléments remplaçables. Un pont peut être conçu de manière à s'auto-protéger en détournant l'eau des éléments structurels. Le bois traité a la capacité de résister aux effets des produits chimiques de déglaçage et aux attaques des agents biotiques. Enfin, le pont doit être conçu de manière à ce que, à un moment donné, un seul élément puisse être remplacé relativement facilement, sans perturbation ni coût importants.

Pour plus d'informations, consultez les ressources suivantes :

Ponts routiers en bois (Conseil canadien du bois)
Guide de référence sur les ponts en bois de l'Ontario (Conseil canadien du bois)
CSA S6 Code canadien de conception des ponts routiers
CSA O86 Conception technique du bois

Grands bâtiments en bois - Recherche

Tests

Les recherches en cours comprennent le plus grand essai de feu de bois massif au monde - cliquez ici pour des mises à jour sur les résultats de l'essai en cours. https://firetests.cwc.ca/

Études

Rapports

Recherche sur les incendies

Recherche et guides sur l'acoustique

Initiative de démonstration des grands bâtiments en bois Rapports d'essai
(financement assuré par Ressources naturelles Canada)

Visitez la bibliothèque de recherche de Think Wood pour obtenir des ressources supplémentaires.

Bâtiments de moyenne hauteur - Recherche

Études

Général

Structures et séismes

Mouvement vertical dans les structures à plate-forme en bois (Fiches d'information de la CAC)

Conception de murs de cisaillement à base de bois pour plusieurs étages : Analyse dynamique linéaire et approche basée sur la mécanique

Essais

Autres rapports

Visitez la bibliothèque de recherche de Think Wood pour obtenir des ressources supplémentaires.

bannière pour research.thinkwood.com

Efficacité énergétique

On estime que 30 à 40 % de l'énergie utilisée en Amérique du Nord est consommée par les bâtiments. Au Canada, la majorité de l'énergie opérationnelle des bâtiments résidentiels est fournie par le gaz naturel, le mazout ou l'électricité, et est consommée pour le chauffage des locaux. Étant donné que les bâtiments sont une source importante de consommation d'énergie et d'émissions de gaz à effet de serre au Canada, l'efficacité énergétique dans le secteur des bâtiments est essentielle pour atteindre les objectifs d'atténuation du changement climatique.

Comme le souligne le Cadre pancanadien sur la croissance propre et le changement climatique, les gouvernements fédéral, provinciaux et territoriaux se sont engagés à investir dans des initiatives visant à favoriser l'efficacité énergétique des maisons et des bâtiments, ainsi que dans des programmes d'étalonnage et d'étiquetage énergétique.

Malgré le nombre croissant de choix offerts aux consommateurs, la manière la plus rentable d'améliorer la performance énergétique des bâtiments est restée inchangée au fil des décennies :

- maximiser la performance thermique de l'enveloppe du bâtiment en ajoutant plus d'isolation et en réduisant les ponts thermiques ; et

- augmenter l'étanchéité à l'air de l'enveloppe du bâtiment.

L'enveloppe du bâtiment est généralement définie comme l'ensemble des composants qui séparent l'espace conditionné de l'espace non conditionné (air extérieur ou sol). La performance thermique et l'étanchéité à l'air de l'enveloppe du bâtiment (également connue sous le nom d'enceinte du bâtiment) influencent l'efficacité énergétique de l'ensemble du bâtiment et influencent de manière significative la quantité de pertes et de gains de chaleur. Les codes et normes du bâtiment et de l'énergie au Canada ont fait ou font actuellement l'objet de révisions, et les exigences minimales en matière de performance thermique pour les enveloppes de bâtiments à ossature en bois sont désormais plus strictes. Les bâtiments les plus efficaces sur le plan énergétique sont construits avec des matériaux qui résistent au flux de chaleur et sont construits avec précision pour tirer le meilleur parti de l'isolation et des barrières d'air.

Pour maximiser l'efficacité énergétique, les murs extérieurs et les toits doivent être conçus avec des matériaux d'ossature qui résistent au flux de chaleur, et doivent inclure des barrières d'air continues, des matériaux d'isolation et des barrières météorologiques pour empêcher les fuites d'air à travers l'enveloppe du bâtiment.

La résistance au flux de chaleur des assemblages de l'enveloppe du bâtiment dépend des caractéristiques des matériaux utilisés. Les assemblages isolés ne sont généralement pas homogènes dans l'ensemble de l'enveloppe du bâtiment. Dans les murs ou les toits à ossature légère, les éléments d'ossature se trouvent à intervalles réguliers et, à ces endroits, le taux de transfert de chaleur est différent de celui des espaces entre les éléments d'ossature. Les éléments d'ossature réduisent la résistance thermique de l'ensemble du mur ou du plafond. Le taux de transfert de chaleur à l'emplacement des éléments d'ossature dépend des propriétés thermiques ou isolantes du matériau d'ossature. Le taux élevé de transfert de chaleur à l'emplacement des éléments d'ossature est appelé pont thermique. Les éléments d'ossature d'un mur ou d'un toit peuvent représenter 20 % ou plus de la surface d'un mur extérieur ou d'un toit, et comme la performance thermique de l'ensemble dépend de l'effet combiné de l'ossature et de l'isolation, les propriétés thermiques des matériaux d'ossature peuvent avoir un effet significatif sur la résistance thermique globale (effective) de l'ensemble.

Le bois est un isolant thermique naturel grâce aux millions de minuscules poches d'air présentes dans sa structure cellulaire. La conductivité thermique augmentant avec la densité relative, le bois est un meilleur isolant que les matériaux de construction denses. En ce qui concerne les performances thermiques, les bâtiments à ossature bois sont intrinsèquement plus efficaces que les autres matériaux de construction courants, principalement en raison de la réduction des ponts thermiques à travers les éléments structurels en bois, y compris les montants, les colonnes, les poutres et les planchers en bois. Le bois perd moins de chaleur par conduction que les autres matériaux de construction et les techniques de construction à ossature bois permettent une large gamme d'options d'isolation, y compris l'isolation des cavités des montants et l'isolation rigide extérieure.

La recherche et le suivi des bâtiments démontrent de plus en plus l'importance de la réduction des ponts thermiques dans les nouvelles constructions et dans les bâtiments existants. L'impact des ponts thermiques peut contribuer de manière significative à la consommation d'énergie de l'ensemble du bâtiment, au risque de condensation sur les surfaces froides et au confort des occupants.

Il est logique de se concentrer sur l'enveloppe du bâtiment et la ventilation au moment de la construction, car il est difficile d'apporter des modifications à ces systèmes à l'avenir. Les bâtiments à haute performance coûtent généralement plus cher à construire qu'une construction conventionnelle, mais le prix d'achat plus élevé est compensé, du moins en partie, par des coûts de consommation d'énergie plus faibles tout au long du cycle de vie. De plus, les bâtiments à haute performance sont souvent de meilleure qualité et plus confortables à vivre et à travailler. L'amélioration de l'efficacité énergétique des bâtiments s'est également avérée être l'une des possibilités les moins coûteuses de contribuer aux objectifs de réduction de la consommation d'énergie et d'atténuation du changement climatique.

Plusieurs programmes de certification et d'étiquetage sont proposés aux constructeurs et aux consommateurs pour réduire la consommation d'énergie dans les bâtiments.

Ressources naturelles Canada (RNCan) administre le programme R-2000, qui vise à réduire les besoins énergétiques des maisons de 50 % par rapport à une maison construite selon le code. Un autre programme administré par RNCan, ENERGY STAR®, vise à obtenir une efficacité énergétique de 20 à 25 % supérieure à celle prévue par le code. Le système de cotation ÉnerGuide évalue les performances énergétiques d'une maison et peut être utilisé à la fois pour les maisons existantes et dans la phase de planification d'une nouvelle construction.

D'autres programmes de certification et systèmes d'étiquetage ont des objectifs de performance fixes. La maison passive est une norme rigoureuse pour l'efficacité énergétique des bâtiments, qui vise à réduire la consommation d'énergie et à améliorer les performances globales. La charge de chauffage des locaux doit être inférieure à 15 kWh/m2 et l'étanchéité à l'air doit être inférieure à 0,6 changement d'air par heure à 50 Pa, ce qui permet de créer des bâtiments à très faible consommation d'énergie qui nécessitent jusqu'à 90 % d'énergie de chauffage et de refroidissement en moins que les bâtiments conventionnels.

Le NetZero Energy Building Certification, un programme géré par l'International Living Future Institute, est un programme basé sur la performance et exige que le bâtiment ait une consommation énergétique nette nulle pendant douze mois consécutifs.

Green Globes et Leadership in Energy and Environmental Design (LEED) sont d'autres systèmes d'évaluation des bâtiments qui prévalent sur le marché de la conception et de la construction.

 

Pour plus d'informations, consultez les ressources suivantes :

Performance thermique des assemblages à ossature légère - IBS No.5 (Conseil canadien du bois)

Code national de l'énergie pour les bâtiments

Ressources naturelles Canada

Logement en C.-B.

Maison passive Canada

Globes verts

Conseil du bâtiment durable du Canada

Association nord-américaine des fabricants d'isolants (NAIMA)

Institut international du futur vivant

Changement climatique

Les préoccupations liées au changement climatique encouragent la décarbonisation du secteur du bâtiment, y compris l'utilisation de matériaux de construction responsables de moins d'émissions de gaz à effet de serre (GES) et l'amélioration des performances opérationnelles tout au long du cycle de vie des bâtiments. Responsable de plus de 10 % des émissions totales de GES au Canada, le secteur du bâtiment joue un rôle important dans l'atténuation du changement climatique et l'adaptation à celui-ci. La réduction de l'impact des bâtiments sur le changement climatique offre un rendement environnemental élevé pour un investissement économique relativement faible.

Le gouvernement du Canada, en tant que signataire de l'Accord de Paris, s'est engagé à réduire les émissions de GES du Canada de 30 % par rapport aux niveaux de 2005 d'ici 2030. En outre, le Cadre pancanadien sur la croissance propre et le changement climatique reconnaît que la forêt et les produits du bois ont la capacité de contribuer à la stratégie nationale de réduction des émissions par :

  • l'amélioration du stockage du carbone dans les forêts ;
  • l'augmentation de l'utilisation du bois dans la construction ;
  • la production de carburant à partir de bioénergie et de bioproduits ; et
  • promouvoir l'innovation dans le développement de produits biosourcés et les pratiques de gestion forestière.

Le Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC) se fait également l'écho de l'importance du secteur de la sylviculture et des produits du bois en tant que composante essentielle de l'atténuation des effets du changement climatique, en déclarant qu'une stratégie de gestion durable des forêts visant à maintenir ou à augmenter les stocks de carbone forestier tout en produisant du bois, des fibres ou de l'énergie, génère le plus grand bénéfice durable pour l'atténuation du changement climatique. En outre, le GIEC proclame que "les options d'atténuation du secteur forestier comprennent l'extension de la rétention de carbone dans les produits ligneux récoltés, la substitution de produits et la production de biomasse pour la bioénergie".

L'industrie forestière canadienne s'engage à éliminer 30 mégatonnes de dioxyde de carbone (CO2) par an d'ici 2030, ce qui équivaut à 13 % des engagements nationaux du Canada dans le cadre de l'Accord de Paris. Plusieurs mécanismes seront utilisés pour relever ce défi, notamment :

  • le remplacement de produits, en utilisant des produits biologiques à la place de produits et de sources d'énergie dérivés de combustibles fossiles ;
  • les pratiques de gestion forestière, notamment l'utilisation accrue, l'amélioration de l'utilisation des résidus et de la planification de l'utilisation des terres, ainsi que l'amélioration de la croissance et des rendements ;
  • la prise en compte des réservoirs de carbone des produits biosourcés à longue durée de vie ; et
  • une plus grande efficacité des processus de fabrication des produits du bois

Le Canada abrite 9 % des forêts de la planète, qui ont la capacité d'agir comme d'énormes puits de carbone en absorbant et en stockant le carbone. Chaque année, le Canada exploite moins d'un demi pour cent de ses terres forestières, ce qui a permis à la couverture forestière du pays de rester constante au cours du siècle dernier. La gestion durable des forêts et les exigences légales en matière de reboisement permettent de maintenir ce vaste réservoir de carbone. Une forêt est un système naturel considéré comme neutre en carbone tant qu'elle est gérée de manière durable, ce qui signifie qu'elle doit être reboisée après la récolte et ne pas être convertie à d'autres utilisations. Le Canada possède certaines des réglementations les plus strictes au monde en matière de gestion forestière, exigeant une régénération réussie après l'exploitation des forêts publiques. Lorsqu'elles sont gérées de manière responsable, les forêts constituent une ressource renouvelable qui sera disponible pour les générations futures.

Le Canada est également un leader mondial en matière de certification forestière volontaire par une tierce partie, ce qui constitue une garantie supplémentaire de gestion durable des forêts. Les programmes de gestion durable des forêts et les systèmes de certification s'efforcent de préserver la quantité et la qualité des forêts pour les générations futures, de respecter la diversité biologique des forêts et l'écologie des espèces qui y vivent, ainsi que les communautés concernées par les forêts. Les entreprises canadiennes ont obtenu la certification d'une tierce partie sur plus de 150 millions d'hectares de forêts, ce qui représente la plus grande superficie de forêts certifiées au monde.

La forêt représente un réservoir de carbone, stockant le carbone biogénique dans les sols et les arbres. Le carbone reste stocké jusqu'à ce que les arbres meurent et se décomposent ou brûlent. Lorsqu'un arbre est coupé, 40 à 60 % du carbone biogénique reste dans la forêt ; le reste est prélevé sous forme de grumes et une grande partie est transférée dans le réservoir de carbone des produits du bois dans l'environnement bâti. Les produits du bois continuent à stocker ce carbone biogénique, souvent pendant des décennies dans le cas des bâtiments en bois, retardant ou empêchant la libération de CO2 Les émissions de gaz à effet de serre.

Les produits du bois et les systèmes de construction ont la capacité de stocker de grandes quantités de carbone ; 1 m3 de bois S-P-F stocke environ 1 tonne de CO2 équivalent. La quantité de carbone stockée dans un produit en bois est directement proportionnelle à la densité du bois. Au Canada, une maison unifamiliale moyenne stocke près de 30 tonnes de CO2 dans les produits du bois utilisés pour sa construction. La plupart des produits de construction biosourcés stockent en fait plus de carbone dans les fibres de bois qu'ils n'en libèrent au cours des phases de récolte, de fabrication et de transport de leur cycle de vie.

En général, les produits biosourcés, comme le bois, qui poussent naturellement avec l'aide du soleil, ont des émissions intrinsèques plus faibles. Les émissions intrinsèques résultent des processus de production des matériaux de construction, depuis l'extraction ou la récolte des ressources jusqu'à la fin de vie, en passant par la fabrication, le transport et la construction. La bioénergie produite à partir de résidus biosourcés, tels que l'écorce d'arbre et la sciure de bois, est principalement utilisée pour générer de l'énergie pour la fabrication de produits en bois en Amérique du Nord. Les produits de construction en bois ont de faibles émissions de GES intrinsèques parce qu'ils sont cultivés à l'aide d'énergie solaire renouvelable, qu'ils utilisent peu d'énergie fossile pendant la fabrication et qu'ils ont de nombreuses options de fin de vie (réutilisation, recyclage, récupération d'énergie).

Les produits du bois peuvent se substituer à d'autres matériaux de construction et sources d'énergie à plus forte intensité de carbone. Les émissions de gaz à effet de serre sont ainsi évitées en utilisant des produits du bois à la place d'autres produits de construction à plus forte intensité de gaz à effet de serre. Facteurs de déplacement (kg CO2 évités par kg de bois utilisé) ont été estimés pour calculer la quantité de carbone évitée grâce à l'utilisation de produits du bois dans la construction de bâtiments.

 

Pour plus d'informations, consultez les ressources suivantes :

Lutter contre le changement climatique dans le secteur du bâtiment - Réduction des émissions de carbone (Conseil canadien du bois)

Conception résiliente et adaptative à l'aide du bois (Conseil canadien du bois)

Calculateur de carbone CWC

Défi "30 par 30" de l'industrie canadienne des produits forestiers en matière de changement climatique (Association des produits forestiers du Canada)

www.naturallywood.com

www.thinkwood.com

Construire en bois = protection proactive du climat (Binational Softwood Lumber Council et State University of New York)

Ressources naturelles Canada

Cadre pancanadien sur la croissance propre et le changement climatique (Gouvernement du Canada)

Groupe d'experts intergouvernemental sur l'évolution du climat

Analyse du cycle de vie

Les produits de construction et le secteur du bâtiment dans son ensemble ont un impact significatif sur l'environnement. Les instruments politiques et les forces du marché poussent de plus en plus les gouvernements et les entreprises à documenter et à rendre compte des impacts environnementaux et à suivre les améliorations. L'analyse du cycle de vie (ACV) est un outil qui permet de comprendre les aspects environnementaux liés à la construction, à la rénovation et à la modernisation des bâtiments et des ouvrages de génie civil. L'ACV est un outil d'aide à la décision qui permet d'identifier les approches de conception et de construction qui améliorent les performances environnementales.

Plusieurs juridictions européennes, dont l'Allemagne, Zurich et Bruxelles, ont rendu l'ACV obligatoire avant la délivrance d'un permis de construire. En outre, l'application de l'ACV à la conception des bâtiments et à la sélection des matériaux est une composante des systèmes d'évaluation des bâtiments écologiques. L'ACV peut être utile aux fabricants, aux architectes, aux constructeurs et aux agences gouvernementales en fournissant des informations quantitatives sur les impacts environnementaux potentiels et en fournissant des données permettant d'identifier les domaines à améliorer.

L'ACV est une approche basée sur la performance pour évaluer les aspects environnementaux liés à la conception et à la construction des bâtiments. L'ACV peut être utilisée pour comprendre les impacts environnementaux potentiels d'un produit ou d'une structure à chaque étape de sa vie, depuis l'extraction des ressources ou l'acquisition des matières premières, le transport, la transformation et la fabrication, la construction, l'exploitation, l'entretien et la rénovation jusqu'à la fin de vie.

L'ACV est une méthodologie scientifique internationalement reconnue qui existe sous d'autres formes depuis les années 1960. Les exigences et les orientations relatives à la réalisation d'une ACV ont été établies par le biais de normes internationales consensuelles, à savoir les normes ISO 14040 et ISO 14044. L'ACV prend en compte tous les flux d'entrée et de sortie (matériaux, énergie, ressources) associés à un système de produit donné. Il s'agit d'une procédure itérative qui comprend la définition des objectifs et du champ d'application, l'analyse de l'inventaire, l'évaluation de l'impact et l'interprétation.

L'analyse des stocks, également connue sous le nom d'inventaire du cycle de vie (ICV), consiste à collecter des données et à suivre tous les flux d'entrée et de sortie au sein d'un système de produits. Des bases de données publiques sur l'ICV, telles que la base de données américaine sur l'inventaire du cycle de vie, sont accessibles gratuitement afin d'obtenir ces données. Au cours de la phase d'évaluation de l'impact de l'ACV, les flux de l'ICV sont traduits en catégories d'impact potentiel sur l'environnement à l'aide de techniques de modélisation environnementale théoriques et empiriques. L'ACV permet de quantifier les impacts environnementaux potentiels et les aspects d'un produit, tels que :

  • Potentiel de réchauffement de la planète ;
  • Potentiel d'acidification ;
  • Potentiel d'eutrophisation ;
  • Potentiel d'appauvrissement de la couche d'ozone ;
  • Potentiel de smog ;
  • Consommation d'énergie primaire ;
  • la consommation de ressources matérielles ; et
  • Production de déchets dangereux et non dangereux.

Les concepteurs de bâtiments disposent d'outils d'ACV accessibles au public et conviviaux. Ces outils permettent aux concepteurs d'obtenir rapidement des informations sur l'impact potentiel sur l'environnement d'une large gamme d'assemblages génériques de bâtiments ou d'élaborer eux-mêmes des évaluations complètes du cycle de vie des bâtiments. Les logiciels d'ACV offrent aux professionnels du bâtiment des outils puissants pour calculer les impacts potentiels du cycle de vie des produits ou assemblages de construction et effectuer des comparaisons environnementales.

Il est également possible d'utiliser l'ACV pour effectuer des comparaisons objectives entre des matériaux, des assemblages et des bâtiments entiers, mesurées sur les cycles de vie respectifs et basées sur des indicateurs environnementaux quantifiables. L'ACV permet de comparer les compromis environnementaux associés au choix d'un matériau ou d'une solution de conception par rapport à un autre et, par conséquent, fournit une base efficace pour comparer les implications environnementales relatives de scénarios de conception de bâtiments alternatifs.

Une ACV qui examine d'autres options de conception doit garantir l'équivalence fonctionnelle. Chaque scénario de conception envisagé, y compris l'ensemble du bâtiment, doit répondre aux exigences du code du bâtiment et offrir un niveau minimum de performance technique ou d'équivalence fonctionnelle. Pour quelque chose d'aussi complexe qu'un bâtiment, cela signifie qu'il faut suivre et comptabiliser les intrants et les extrants environnementaux pour la multitude d'assemblages, de sous-assemblages et de composants de chaque option de conception. La longévité d'un système de construction a également un impact sur la performance environnementale. Les bâtiments en bois peuvent rester en service pendant de longues périodes s'ils sont conçus, construits et entretenus correctement.

De nombreuses études d'ACV dans le monde entier ont démontré que les produits et systèmes de construction en bois peuvent présenter des avantages environnementaux par rapport à d'autres matériaux et méthodes de construction. FPInnovations a réalisé une ACV d'un bâtiment de quatre étages au Québec construit en bois lamellé-croisé (CLT). L'étude a évalué comment la conception en CLT se comparerait à un bâtiment fonctionnellement équivalent en béton et en acier de la même surface de plancher, et a révélé une performance environnementale améliorée dans deux des six catégories d'impact, et une performance équivalente dans les autres catégories. En outre, en fin de vie, les produits biosourcés peuvent faire partie d'un système de produits ultérieurs lorsqu'ils sont réutilisés, recyclés ou récupérés pour produire de l'énergie, ce qui peut réduire les incidences sur l'environnement et contribuer à l'économie circulaire.

Cycle de vie des produits de construction en bois

Analyse du cycle de vie
Source des photos : CEI-Bois

Pour plus d'informations, consultez les ressources suivantes :

www.naturallywood.com

Institut des matériaux durables Athena

Construire pour un environnement et une économie durables (BEES)

FPInnovations. Analyse comparative du cycle de vie de deux bâtiments résidentiels à plusieurs étages : Cross-Laminated Timber vs. Concrete Slab and Column with Light Gauge Steel Walls, 2013.

Conseil américain du bois

Base de données de l'inventaire du cycle de vie aux États-Unis

ISO 14040 Gestion de l'environnement - Analyse du cycle de vie - Principes et cadre

ISO 14044 Gestion de l'environnement - Analyse du cycle de vie - Exigences et lignes directrices

Codes et normes

CODES ET NORMES DE CONSTRUCTION (LE SYSTÈME RÉGLEMENTAIRE)

L'industrie de la construction est réglementée par des codes de construction qui s'appuient sur.. :

  • Normes de conception qui fournissent des informations sur la manière de construire en bois,
  • Les normes de produits qui définissent les caractéristiques des produits du bois qui peuvent être utilisées dans les normes de conception, et
  • Normes d'essai qui définissent la méthodologie permettant d'établir les caractéristiques d'un produit du bois

La CCB est active sur le plan technique dans tous les domaines du système réglementaire. Il s'agit notamment de

CODES DE CONSTRUCTION - CWC participe activement au processus d'élaboration des codes de la construction au Canada. Le CWC est membre des comités nationaux et provinciaux du code de la construction. Ces comités sont équilibrés et la représentation est limitée à environ 25 membres par comité. Des intérêts concurrents (par exemple l'acier et le béton) siègent dans les mêmes comités. C'est un domaine où la CCB peut gagner ou perdre du terrain pour les produits de ses membres.

NORMES DE CONCEPTION - Chaque producteur de matériaux de construction élabore des normes de conception technique qui fournissent des informations sur la manière d'utiliser ses produits dans les bâtiments. Le CWC assure le secrétariat de la norme canadienne de conception du bois (CSA O86 "Conception technique en bois"), en fournissant à la fois l'expertise technique et le soutien administratif nécessaires à son développement. Le CWC est également membre du comité de l'American Wood Council (AWC) qui est responsable de la spécification nationale américaine pour la conception en bois.

NORMES DE PRODUITS - CWC participe à l'élaboration de normes canadiennes, américaines et internationales pour ses producteurs de produits de construction en bois.

NORMES DE TEST - CWC participe à l'élaboration de normes d'essai canadiennes, américaines et internationales dans des domaines qui concernent les produits du bois, tels que la résistance au feu.

Pages détaillées sur les codes et normes de construction :

Code du feu

Code national de prévention des incendies du Canada

Le Code national du bâtiment du Canada (CNB) et le Code national de prévention des incendies du Canada (CNPI), tous deux publiés par le Conseil national de recherches du Canada (CNRC) et élaborés par la Commission canadienne des codes du bâtiment et de prévention des incendies (CCCBPI), sont des documents complémentaires.

Le CNB établit des normes minimales pour la santé et la sécurité des occupants des nouveaux bâtiments. Il s'applique également à la modification des bâtiments existants, y compris les changements d'occupation. Le CNB n'est pas rétroactif. En d'autres termes, un bâtiment construit conformément à une édition particulière du CNB, en vigueur au moment de sa construction, n'est pas automatiquement tenu de se conformer à l'édition suivante du CNB. Ce bâtiment ne serait tenu de se conformer à une version actualisée du CNB que s'il faisait l'objet d'un changement d'occupation ou de modifications entraînant l'application du nouveau CNB en vigueur au moment du changement d'occupation ou de la modification majeure.

Le CNPI traite de la sécurité incendie pendant l'exploitation des installations et des bâtiments. Les exigences du CNPI, quant à elles, visent à garantir le maintien du niveau de sécurité initialement prévu par le CNB. Dans ce but, le CNPI réglemente :

  • la conduite d'activités entraînant des risques d'incendie
  • l'entretien des équipements de sécurité incendie et des moyens d'évacuation
  • les limitations concernant le contenu des bâtiments, y compris le stockage et la manipulation de produits dangereux
  • l'établissement de plans de sécurité incendie

Le CNPI est censé être rétroactif en ce qui concerne les systèmes d'alarme incendie, les colonnes montantes et les systèmes d'extinction automatique. En 1990, le CNPI a été révisé pour préciser que de tels systèmes "doivent être installés dans tous les bâtiments lorsque cela est exigé par le Code national du bâtiment du Canada et conformément à ses exigences". Cette disposition garantit que les bâtiments sont correctement protégés contre le risque inhérent au même niveau que celui exigé par le CNB pour un nouveau bâtiment. Il ne concerne pas les autres dispositifs de protection contre l'incendie tels que les mesures de contrôle des fumées ou les ascenseurs pour pompiers. Le CNPI garantit également que les changements d'utilisation des bâtiments n'augmentent pas le risque au-delà des limites des systèmes de protection incendie d'origine.

Le CNB et le CNPI sont rédigés de manière à minimiser les risques de conflit dans leur contenu respectif. Ils doivent tous deux être pris en compte lors de la construction, de la rénovation ou de l'entretien des bâtiments. Ils sont complémentaires, dans la mesure où le CNPI prend le relais du CNB une fois que le bâtiment est en service. En outre, les structures plus anciennes qui ne sont pas conformes au niveau de sécurité incendie le plus récent peuvent être rendues plus sûres grâce aux exigences du CNPI.

Les dernières modifications importantes du CNPI concernent la construction de bâtiments de six étages utilisant des matériaux combustibles. En conséquence, huit mesures de protection supplémentaires relatives aux bâtiments combustibles de moyenne hauteur ont été ajoutées pour faire face aux risques d'incendie pendant la construction lorsque les dispositifs de protection contre l'incendie ne sont pas encore en place.

Le programme WoodWorks du Conseil canadien du bois accueille BarrierTEK comme partenaire national
Introduction à la conception du bois
Introduction à la conception du bois
Conception d'un pont en bois
Conception d'un pont en bois
Atelier sur l’enseignement du bois et l’intégration professionnelle à Woodrise 2025
Solutions sismiques pour des structures en bois résistantes
Aménagement régional en bois pour les établissements d'enseignement
Systèmes d'encadrement réciproque
Préservation du bois de charpente
Connexions des murs de cisaillement et systèmes latéraux pour les bâtiments en bois
Construction en bois massif dans les laboratoires nucléaires canadiens
Diversifiez votre portefeuille de structures : Le bois dans les constructions commerciales de faible hauteur
Options de conception pour les bâtiments scolaires en bois de trois et quatre étages en Colombie-Britannique

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

1
2
3

Accéder à nos ressources

Restez dans le coup et ne manquez rien !

Quelle est votre profession ?

Aidez-nous à personnaliser le contenu pour vous.

Qu'est-ce qui vous intéresse le plus ?

Aidez-nous à personnaliser le contenu pour vous.

Icône d'expertise
Domaine d'expertise
Icône de la province
Province
Type de membre Icône
Partenaires nationaux de WoodWork
Icône de type de message
Type de poste
Icône Persona
Persona
Icône de langue
Langue
Tags Icône
Tags
Bois massif Icône Plus Environnement Icône Plus Sécurité Icône Plus Durabilité Icône Plus Systèmes de conception Icône Plus Budget Icône Plus Gestion de la construction Icône Plus Résistance au feu Icône Plus Bâtiments de grande taille Icône Plus Bâtiments courts Icône Plus
Icône de date
Date
Séparateur de ligne